家族性肌萎缩侧索硬化模型SOD1~(G93A)转基因小鼠认知功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:肌萎缩侧索硬化(Amyotrophic Lateral Sclerosis ALS)是一种神经系统的变性疾病,一般认为ALS选择性损伤大脑皮层大锥体细胞及脑干运动神经核、脊髓前角的运动神经元,造成了脑和脊髓运动神经元的丢失,具体机制不明。然而在临床工作中发现ALS患者除运动系统症状外,部分伴有认知功能损害、感觉障碍、眼球运动障碍、自主神经功能障碍等运动系统外症状。因此,探讨ALS是否呈多系统累及,是我们需要关注的问题之一。
     ALS伴发的运动系统损害外症状中,以认知功能损害最为常见,而海马是公认的与认知功能有关的结构。在ALS患者的尸检研究中发现患者海马区可发现泛素阳性胞质内圆形、椭圆形包涵体,支持ALS累及非运动系统,并可能与临床上常见的认知功能损害有关。
     泛素系统(UPS)主要由泛素活化酶、泛素结合酶、泛素蛋白连接酶和26S蛋白酶体组成。其广泛存在于真核生物中,降解80%以上的细胞内错误折叠蛋白或其他突变蛋白,是精细的特异性的蛋白质降解系统,是体内重要的细胞调控体系。研究认为泛素蛋白酶体降解通路失调可导致异常蛋白在细胞内积聚,并进一步引起细胞功能紊乱及变性。因此,泛素蛋白在海马区的表达异常可导致底物蛋白在细胞中异常聚集,形成胞质内包涵体,损害海马神经元细胞的正常功能,导致认知功能的损害。
     本实验应用家族型肌萎缩侧索硬化动物模型—SOD1~(G93A)转基因小鼠,通过对动物的行为学改变及海马区病理学变化的研究,探讨ALS是否存在认知功能的损害及认知功能的损害与泛素海马区异常表达的相关性,为临床研究提供理论基础。
     方法:
     1实验动物模型的建立
     由B6SJL2 BTg ( SOD12~(G93A) ) 1Gur /J半合子雄鼠及B6SJLF1 /J + / +雌鼠(购自美国Jackson Lab)配种,在恒温( 22~27℃)、恒湿( 40~50% )、无特殊病原菌的动物房中繁殖、饲养SOD1~(G93A)转基因鼠,喂以灭菌水及颗粒型鼠类饲料。剪取小鼠尾部组织1mm,提取DNA,PCR技扩增,PCR产物经1.5%琼脂糖凝胶电泳后,,在长波紫外光下观察条带结果,鉴定SOD1(+)小鼠及SOD1(-)同窝对照小鼠。
     2动物分组
     Y型迷宫预选对电击反应较敏感,逃避反应迅速的60只小鼠(SOD1~(G93A)转基因清洁小鼠30只、同窝阴性对照小鼠30只)供实验用。随机分为60天组、90天组及120天组(onset3.5分),每组各20只。
     3 SOD1~(G93A)转基因小鼠评分标准
     应用Vercelli et al的行为学评分系统于SOD1~(G93A)转基因小鼠100天每周对动物的全身状态进行评分,1~5分定义如下:
     5:健康,不伴任何瘫痪症状
     4:轻微步态不稳及后肢瘫痪症状
     3:明显瘫痪及步态不稳
     2:后肢完全性瘫痪,动物仅靠前肢爬行
     1:后肢完全性瘫痪,动物主要呈侧卧位,和/或翻转后不能翻身或体重下降超过初始体重的20%。
     4跳台试验
     试验分两天进行:第一天,训练前先将不同病程的SOD1~(G93A)转基因清洁小鼠放入反应箱内自由活动3min,熟悉环境。然后将动物置于铜栅上,接通铜栅电源,通以36V交流电。动物受到电击,观察记录动物5 min内第一次找到平台的时间(为学习反应时间)及5 min内跳下平台的次数(为学习错误次数),学习反应时间及学习错误次数用以评价小鼠的学习功能。第二天,学习训练24h后,将动物置于平台上,接通铜栅电源,通以36V交流电。记录受测的动物5 min内第一次跳下平台的时间(为记忆潜伏时间),和5 min内跳下平台的次数(为记忆错误次数),记忆潜伏时间及记忆错误次数用以评价小鼠的记忆功能。
     实验过程中,动物有前肢跃起指向性找到平台的动作记录入学习反应时间,前肢指向性触及铜栅记录入记忆潜伏时间及学习、记忆错误次数。
     5组织病理学
     在动物麻醉状态下,4%多聚甲醛左心室快速灌注,留取脑组织。4%多聚甲醛固定24h后,于视神经水平脑横断面暴露海马,梯度酒精脱水,石蜡包埋,组织切片,免疫组织化学染色,光学显微镜下观察海马区泛素的表达情况。
     结果:SOD1~(G93A)转基因小鼠的记忆潜伏时间较同窝阴性对照小鼠延长,60天、90天及120天SOD1~(G93A)转基因小鼠的记忆潜伏时间分别为68.00±47.16s,55.20±92.99s,110.10±116.52s,同窝阴性对照小鼠的记忆潜伏时间分别为65.60±89.94s,158.00±88.31s,169.80±122.96s;同时SOD1~(G93A)转基因小鼠5min内记忆错误次数较同窝阴性对照小鼠增多,60天、90天及120天SOD1~(G93A)转基因小鼠的5min内记忆错误次数分别为3.40±2.84次,5.20±3.08次,1.80±1.32次,同窝阴性对照小鼠的记忆错误次数分别为3.30±2.16次,2.30±1.95次,2.00±2.75次。经t检验,各组SOD1~(G93A)转基因小鼠的记忆潜伏时间及记忆错误次数均较同窝阴性对照小鼠存在显著性改变(P<0.05),而学习反应时间及5min内学习错误次数较同窝阴性对照小鼠无明显差异性变化(P>0.05)。而随SOD1~(G93A)转基因小鼠病程的延长,其记忆潜伏时间之间并无显著性差异(P>0.05),而5min内记忆错误次数随病程延长存在统计学意义上的增多(P<0.05)。免疫组织化学染色显示在SOD1~(G93A)转基因小鼠海马的CA1、CA3及齿状回区均可发现泛素蛋白在细胞核周体的新月状或环形包涵体或粗颗粒状沉积,而在其同窝阴性对照的小鼠海马的CA1、CA3及齿状回区亦存在泛素的广泛表达,但表现为细颗粒状细胞质内的弥漫性广泛表达。并且SOD1~(G93A)转基因小鼠海马CA1、CA3及齿状回区的泛素阳性反应细胞比率均较同窝阴性对照小鼠显著性增多(P<0.05)。
     结论:SOD1~(G93A)转基因小鼠的记忆功能在发病早期较同窝阴性对照小鼠已出现有统计学意义的减退,且5min内记忆错误次数随病程延长而增多,而学习功能受损不明显。但SOD1~(G93A)转基因小鼠所表现出的记忆潜伏时间的缩短,与病程长短之间并无明显的相关性。同时,在SOD1~(G93A)转基因小鼠的病理免疫组织化学染色可见海马区神经元核周存在显著地泛素化蛋白异常聚集,可能与之所表现出的记忆功能的受损相关。
Objective: Amyotrophic lateral sclerosis(ALS)is a degenerative disease of nervous system, which leads to the lose of motor neurons in brain and spinal cord, while the pathogenesis is unknown. Generally, we take ALS as a disease that involved pyramidal cells of cerebrum cortex, motor nucleus of brainstem and anterior horn motor neurons of spinal cord selectivity. However,during clinical work, we find some ALS patients have non-motor system symptoms, for example cognitive function impairment, sensory disturbance, ocular motility disorders, autonomic nerves function impairment and so on. Therefore, to explore whether ALS was multi-system involvement, is one of the issues need to focus.
     Among the non-motor system symptoms of ALS, cognitive function impairment is more common. Autopsy found round or ellipsoidal ubiquitin inclusion body in hippocampus neurons, which in support of ALS involving non-motor systems, and may be a common clinical cognitive impairment related.
     Ubiquitin-proteasome system (UPS) contains ubiquitin-activating enzyme, ubiquitin conjugating enzyme, ubiquitin-protein ligase and 26S proteasome. It exists in eukaryotic organism generally. More than 80% of misfolding proteins or other mutant proteins within the cells are degradated by it. Also it is subtile and specific protein degradated system and important controlling cell system. Studies suggest that disorders of ubiquitin-proteasome degradation pathway can lead to accumulation of abnormal proteins in cells, and further lead to cell dysfunction and degeneration. Therefore, the abnormal expression of ubiquitin protein in the hippocampus can lead to the substrate protein aggregated abnormally in neurons, and form cytoplasm inclusion, which injury the normal function of hippocampus neurons and lead to cognitive function impairment.
     In present study, we used familial amyotrophic lateral sclerosis model- SOD1~(G93A) transgenic mice and observed the changes of mouse’behaviors and hippocampus structure, to explored whether ALS exist cognitive function impairment or not. The study could provide a theoretical basis for clinical research.
     Methods:
     1 developed animal model
     Using B6SJL2 BTg (SOD12~(G93A)) 1Gur /J hemizygote males and B6SJLF1 /J + / + females( Jackson Lab, America) to breed. Raising them in constant temperature(22~27℃), constant humidity(40~50%), depuratory housing, eating sterilizated water and granular pattern food of murids. Clipping tail of ~(G93A) transgenic mice about 1mm, extracting DNA, using PCR amplification, through 1.5% agarose gel electrophoresis, observing straps under long wave ultraviolet light, to identificate positive or negative mutants.
     2 grouped laboratory animal
     we select 60 mouse that is sensitive to electric shock through Y labyrinth (positive mutants :30 mouse, negative mutants:30 mouse ) (+/–mutants: 30 females and 30 males) and divide them into three group randomly:60 days,90 days and 120 days (onset 3.5). There are 20 mouse in each group.
     3 SOD1~(G93A) transgenic mice score standard
     For weekly assessment of general condition starting at day 100 we used a behavioural score system based on the score developed by Vercelli etc. from 1 to 5 defined as follows:
     5: healthy without any symptoms of paralysis,
     4: slight signs of destabilized gait and paralysis of the hind limbs,
     3: obvious paralysis and destabilized gait,
     2: fully developed paralysis of the hind limbs, animals only crawl on the forelimbs,
     1: fully developed paralysis of the hind limbs, animals predominantly lie on the side and/or are not able to straighten up after turning them on the back or lost more than 20% of their starting weight.
     4 step down test
     The step down test lasts two days. The first day: Putting the mice into the step down equipment to move freely about 3 minutes. Then take it on the copper grille and connect 36V alternating current. To observe in 5 minutes after electric shock, how long it takes to find the refuge area at the first time (as learning action time) and how manytimes it jumps down from refuge area (as learning errors frequency). Take all above as learning training results.The second day:24 hours after learning training,put transgene mice on the refuge area and connect 36 V alternating current.Take notes in the 5 minutes ,how long it take to jump down from refuge area (if overtopping 5 minutes, record it as 5 minutes) and how many times it jumps down from refuge area (as memory errors frequency).Take all above as memory training results.
     5 pathology
     Pour 4%paraformaldehyde into left ventricle fast when animals under anesthesia. Take the tissue of brains and fix them with 4% paraformaldehyde about 24 hours. Exposure hippocampus at optic nerve plane, dehydrate in gradient alcohol, then the tissues of brains were embedded in paraffin and sectioned at 5μm thickness. These sections were strained with anti-ubiquitin body to observe the forms of ubiquitin cytoplasm inclusion.
     Results: Comparing the memory action time of SOD1~(G93A) transgenic mice to negative controls , it shortens apparently.The memory action time of the 60 days ,90 days , and 120 days SOD1~(G93A) transgenic mouse are 68.00±47.16s, 55.20±92.99s, 110.10±116.52s. While the the memory action time of the negative controls are 65.60±89.94s, 158.00±88.31s, 169.80±122.96s.At the same time, the memory errors frequency in 5 minutes of SOD1~(G93A) transgenic mouse are 3.40±2.84 times, 5.20±3.08 times, 1.80±1.32 times, and the negative controls are 3.30±2.16 times, 2.30±1.95 times, 2.00±2.75 times. Through independent-samples T test, each group’s memory action time and memory errors frequency in 5 minutes have statistical significance comparing to the negative controls(P<0.05). And the memory errors frequency in 5 minutes increases with duration prolonged of ALS(P<0.05). While the learning action time and learning errors frequency in 5 minutes have no statistical significance(P>0.05).But the memory action time has no correlation with duration of ALS(P>0.05).
     The pathology finds crescent-or ring-shaped ubiquitin cytoplasm inclusions and granular cytoplasmic staining without a well-defined structure in CA1, CA3 and dentate gyrus of the SOD1~(G93A) transgenic mouse’hippocampus through immunohistochemistry. The most common type of dentate fascia inclusion had a crescent or ring shape. While generally in the negative controls , ubiquitin expresses in CA1,CA3 and dentate gyrus neurons cytoplasm, showed as tiny granular cytoplasmic staining. And the rate of positive neurons has statistical significance.
     Conclusions: Comparing to the negative controls, the spatial discrimination memory ability of SOD1~(G93A) transgenic mouse are injuried at prophase of onset. While learning ability injuring is not notablely. But the memory ability impairment is not complete correlation with duration of ALS. However, immunohistochemistry of SOD1~(G93A) transgenic mouse finds apparente polyubiquitinated protein aggregated abnormally in neurons cytoplasmic of hippocampus, which maybe correlation with the memory ability impairment.
引文
1苗建亭,游国雄,王者晋;血管性痴呆大鼠记忆障碍与海马胆碱能神经元关系的研究[J ];中华老年医学杂志,1997,16(6):327-330
    2许丹芸,游国雄,苗建亭等;脑缺血及血管性痴呆形成过程中一氧化氮机制的实验研究[J ];中华老年医学杂志,1999,18(4):240-243
    3 Vercelli A, Mereuta OM, Garbossa D, etal. Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroin ? ammation inmousemodel of amyotrophic lateral sclerosis. Neurobiol Dis 2008;31:395-405
    4刘力昌,李妍怡,张可兰;补脑膏对血管性认知障碍大鼠认知障碍的改善作用及其机制的研究;中医研究,2006年1月,第19卷,第1期
    5 George P, Charles W. The Rat Brain—in stereotaxic coordinates. Academic Press, 1998
    6 Lorente DNR.Studies on the structure of the cerebral cortex.Ⅱ.continuation of the study of the ammonic system.J Psychol Neurol,1934,46:113
    7 C.M.Wilson,G.M.Grace,D.G.Munoz,B.P.He, et al.Cognitive impairment in sporadic ALS:A pathologic continuum underlying a multisystem disorder. Neurology,2001;57:651-657
    8 Vasconcellos AP, Zugno A I , Dos Santos AH. Na+, K+ATPase activity is reduced in hippocampus of rats submitted to an experimental model ofdepression: effect of chronic lithium treatment and possible involvement in learning deficits [ J ]. Neurobiol Learn Mem, 2005, 84 (2) : 1022 110
    9袁力勇、戴体俊、苏珍等,跳台实验训练后小鼠自然遗忘时间的观察,徐州医学院学报,2007年02期
    10 Abrahams S, Goldstein LH, Kew JJ, et al. (1996) Frontal lobe dysfunction in amyotrophic lateral sclerosis. A PET study. Brain 119:2105-2120
    11 Abrahams S, Goldstein LH, Al-Chalabi A, et al. (1997) Relation between cognitive dysfunction and pseudobulbar palsy in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 62:464-472
    12 Hoerth-Lomen C, Murphy J, Langmore S, et al. (2003) Are amyotrophic lateral sclerosis patients cognitively normal? Neurology 60:1094-1097
    13 S-M Kim, K-M Lee, Y-H Hong, Reduced vital capacity in amyotrophic lateral relation between cognitive dysfunction and sclerosis, J. Neurol. Neurosurg. Psychiatry ,2007;78;1387-1389
    14 Baddeley A. 2003. Working memory: looking back and looking forward [J].Nat Rev Neurosci, 4(10): 829-839
    15 Lee I, Kesner RP. Time-dependent relationship between the dorsal hippocampus and the prefrontal cortex in spatial memory [J]. J Neurosci, 2003.23(4): 1517-1523
    16 Moser MB, Moser EI , Forrest E. Spatial learning with a minislab in the dorsal hippocampus [ J ]. Pr oc Natl Acad Sci USA, 1995,92 (21) :96972 9701
    17库宝善,加压素与学习记忆[ J ];生理科学进展,1981,12 (1):79
    18 Omi Katsuse and Dennis W. Dickson, Ubiquitin Immunohistochemistry of Frontotemporal Lobar Degeneration Differentiates Cases With and Without Motor Neuron Disease. Alzheimer Dis Assoc Disord 2005; 19:S37-S43
    19 Muratani, M. and Tansey, W.P. (2003) How the ubiquitin–proteasome system controls transcription. Nat. Rev. Mol. Cell Biol. 4, 192-201
    20 Helen C Ardley, Chao-Chun Hung, Philip A Robinson. The aggravating role of the ubiquitin–proteasome system in Neurodegeneration, FEBSLetters 579 (2005) 571-576
    21 Bendotti, C. and Carri, M.T. (2004) Lessons from models of SOD1-linked familial ALS. Trends Mol. Med., 10, 393-400
    22强辉,王唯析,马维虎,大鼠海马结构及其CCK神经元在学习记忆中的作用研究,陕西医学杂志2006年第35卷第3期
    1 C.M.Wilson,M.Grace,D.G.Munoz,et al.Cognitive impairment in sporadic ALS:A pathologic continuum underlying a multisystem disorder. Neurology,2001;57:651-657
    2 Messman PJ,SimsJ,Cooke N, et al.Prevelence and correlates of neuropsychological deficits in amyotrophic lateral sclercsis. J Neurol Neurosurg Psychiatry,1996;61:450-455
    3 Lomen-Hoerth C, Anderson T, Miller B. The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology 2002;59:1077-9
    4 Ringholz GM, Appel SH, Bradshaw M, et al. Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology 2005;65:586-90
    5 Von Braunmuhl A. Picksche Krankheit und amyotrophische Lateralsklerose. Allg Z Psychiat Psychischgerichtliche,Med,1932;96: 364-366
    6 Neary D, Snowden JS, Gustafson L, et al. Frontotemporal lobar degeneration: A consensus on clinical diagnostic criteria. Neurology. 1998; 51:1546-1554
    7 Julie Phukan, Niall P Pender, Orla Hardiman,Cognitive impairment in amyotrophic lateral sclerosis,neurology.thelancet.com Vol 6 November 2007,994-1003
    8 Gregory A. Rippon,Nikolaos Scarmeas,Paul H. Gordon, et al.An Observational Study of Cognitive Impairment in Amyotrophic Lateral Sclerosis.ARCH NEUROL,May 29, 2006; 345-352
    9 M. J. Strong, G. M. Grace, J. B. Orange, et al. A prospective study of cognitive impairment in ALS. Neurology - Volume 53, Issue 8 (November 1999)
    10 K.S. Paulus, I. Magnano , M.R. Piras , et al. Visual and auditory event-related potentials in sporadic amyotrophic lateral sclerosis. Clinical Neurophysiology, 113 (2002) 853-861
    11 Kato S, Oda M, Hayashi H, et al. Participation of the limbic system and itsassociated areas in the dementia of amyotrophic lateral sclerosis. J NeurolSci. 1994;126:62-69
    12 Jackson M, Lennox G, Lowe J. Motor neurone disease-inclusion dementia. Neurodegeneration 1996; 5: 339-50
    13 Omi Katsuse, and Dennis W. Dickson, Ubiquitin Immunohistochemistry of Frontotemporal Lobar Degeneration Differentiates Cases With and Without Motor Neuron Disease, Alzheimer Dis Assoc Disord 2005;19:S37-S43
    14 Kawashima T, Doh-ura K, Kikuchi H, et al. (2001) Cognitive dysfunction in patients with amyotrophic lateral sclerosis is associated with spherical or crescent-shaped ubiquitinated intraneuronal inclusions in the parahippocampal gyrus and amygdala, but not in the neostriatum. Acta Neuropathol, 102:467-472
    15 Osamu Yokota, Seishi Terada, Hideki Ishizu, et al. Increased expression of neuronal cyclooxygenase-2 in the hippocampus in amyotrophic lateral sclerosis both with and without dementia, Acta Neuropathol (2004),107 : 399-405
    16 S-M Kim, K-M Lee, Y-H Hong, et al.Relation between cognitive dysfunction and reduced vital capacity in amyotrophic lateral sclerosis, J. Neurol. Neurosurg. Psychiatry, 2007;78;1387-1389
    17 Talbot PR (1996), Frontal lobe dementia and motor neuron disease. J Neural Transm Suppl, 47:125-132
    18 Talbot PR, Goulding PJ, Lloyd JJ, et al. (1995) Inter-relation between classic motor neuron disease and frontotemporal dementia: neuropsychological and single photon emission computed tomography study. J Neurol Neuro-surg Psychiatry, 58:541-547
    19 Abrahams S, Goldstein LH, Kew JJ, et al. (1996) Frontal lobe dysfunction in amyotrophic lateral sclerosis. A PET study. Brain, 119:2105-2120
    20 Abrahams S, Goldstein LH, Al-Chalabi A, et al. (1997) Relation between cognitive dysfunction and pseudobulbar palsy in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry,62:464-472
    21 Hoerth-Lomen C, Murphy J, Langmore S, et al. (2003) Are amyotrophic lateral sclerosis patients cognitively normal? Neurology ,60:1094-1097
    22 Hogg KE, Goldstein L, Leigh P. The psychological impact of motor neurone disease. Psychol Med 1994;24:625-632
    23 Tedman BM, Young C, Williams I. Assessment of depression in patients with motor neuron disease and other neurologically disabling illness. J Neurol Sciences 1997;152(suppl 1):S75-S79
    24 Lou J-S, Reeves A, Benice T, Fatigue and depression are associated with poor quality of life in ALS. Neurology 2003;60:122-123
    25 Moore M, Moore P, Shaw P. Mood disturbances in motor neurone disease. J Neurol Sci 1998;160(suppl 1):S53-S56
    26 Bocker FM, Siebold I, Neundorfer B. Disability in everyday tasks and subjective status of patients with advanced amyotrophic lateral sclerosis. Fortschr Neurol Psychiatry,1990;58:224-236
    27 Dorothée Lulé, Sonja H?cker, Albert Ludolph, et al.Depression and Quality of Life in Patients With Amyotrophic Lateral Sclerosis,Deutsches ?rzteblatt International Dtsch Arztebl Int 2008; 105(23): 397-403
    28 Goldstein LH, Atkins L, Leigh P. Correlates of quality of life in people with motor neuron disease (MND). ALS Motor Neuron Disord 2002;3:123-129
    29 Clarke S, Hickey A, O’Boyle C, et al. Assessing individual quality of life in amyotrophic lateral sclerosis. Quality Life Res 2001;10:149-158
    30 Trail M, Nelson ND, Van J, et al.A study comparing patients with amyotrophic lateral sclerosis and their caregivers on measures of quality of life, depression, and their attitudes toward treatment options. J Neurol Sci 2003;209:79-85
    31 Ganzini L, Johnston W, McFarland B, et al. Attitudes of patients with amyotrophic lateral sclerosis and their caregivers toward assisted suicide. N Engl J Med 1998;339:967-973
    32 Rabkin JG, Wagner GJ, Del Bene M. Resilience and distress among amyotrophic lateral sclerosis patients and caregivers. Psychosom Med2000;62:271-279
    33 Norquist JM, Jenkinson C, Fitzpatrick R, et al.: Factors which predict physical and mental health status in patients with amyotrophic lateral sclerosis over time. Amyotroph Lateral Scler Other Motor Neuron Disord 2003, 4:112-117
    34 Rabkin JG, Albert SM, Del Bene ML, et al.Prevalence of depressive disorders and change over time in late stage ALS. Neurology 2005, 65:62-67
    35 S.M. Albert, J.G. Rabkin, M.L. Del Bene, et al.Wish to die in end-stage ALS, Neurology. 2005 July 12; 65(1): 68-74
    36 Jeremy D Isaacs, Andrew F Dean, et al.Amyotrophic lateral sclerosis with sensory neuropathy: part of a multisystem disorder? J Neurol Neurosurg Psychiatry 2007;78:750-753
    37 K Pugdahl, A Fuglsang-Frederiksen, M de Carvalho, et al. Generalised sensory system abnormalities in amyotrophic lateral sclerosis: a European multicentre study. J Neurol Neurosurg Psychiatry 2007;78:746-749
    38姚晓黎、张成、盛文利等,肌萎缩侧硬化症的诊断及病因分析,(附238例报告),[J]中国神经精神疾病杂志,2001,27(3):219-220
    39 Hammad M, Silva A, Glass J, et al. Clinical, electrophysiologic, and pathologic evidence for sensory abnormalities in ALS. Neurology 2007;69:2236-42
    40 Isaacs JD, Dean AF, Shaw CE, et al. Amyotrophic lateral sclerosis with sensory neuropathy: part of a multisystem disorder? J Neurol Psychiatry, 2007, 78: 750-753
    41 Asai H, Hirano M, Udaka F, et al. Sympathetic disturbances increase risk of sudden cardiac arrest in sporadic ALS. J Neurol Sci 2007;254:78-83
    42 Konno, H.T., T. Yamamoto, Y. Iwasaki and H. Iizuka (1986) Shy-Drager syndrome and amyotrophic lateral sclerosis. Cytoarchitectonic and morphometric studies of sacral autonomic neurons. J. Neurol. Sci., 73: 193-204
    43 de Groat WC (2006) Integrative control of the lower urinary tract:preclinical perspective. BJP 147:S25-S40
    44王者晋、商军科、苗建亭,运动神经元病及运动神经元病综合征,中国临床康复2002年7月第6卷第13期:1908-1909
    45 Uono, M., Nagashima, T., Kanehisa, Y., et al. (1979)‘Onuf’in relation to bladder control: clinical and pathological studies in cases of ALS. Annual Report of the Research Committee of CNS Degenerative Disease, The Ministry of Health and Welfare of Japan, pp. 22-25
    46 Kihira T, Yoshida S, Yoshimasu F, et al. (1997) Involvement of Onuf’s nucleus in amyotrophic lateral sclerosis. J Neurol Sci 147:81-88
    47 Tameko Kihira, Sohei Yoshida, Fumio Yoshimasub, et al. Involvement of Onuf’s nucleus in amyotrophic lateral sclerosis,Journal of Neurological Sciences 147 (1997) 81-88
    48 M. Bergmann, M. Vdpel, K. Kuchelmeister ,Onuf’s nucleus is frequently involved in motor neuron disease/amyotrophic lateral sclerosis, Journal of the Neurological Sciences ,129 (1995) 141-146
    49 Sakuta M, Nakanishi T, Toyokura Y (1978) Anal muscle electromyograms differ in amyotrophic lateral sclerosis and Shy-Drager syndrome. Neurology 28:1289-1293
    50 Amborova P, Hubkal P, Ulkova I, et al. (2003) The pacemaker activity of interstitial cells of cajal and gastric electrical activity. Physiol Res, 52:275-284
    51 Hirohide Asai,Makito Hirano,Fukashi Udaka, et al. Sympathetic disturbances increase risk of sudden cardiac arrest in sporadic ALS, Journal of the Neurological Sciences;254(2007):78-83
    52 Fabrizio Pisano,Giacinta Miscio,Giorgio Mazzuero, et al. Decreased heart rate variability in amyotrophic lateral sclerosis. Muscle & Nerve 1995; 18:1225-1231
    53 Anonymous. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996; 93:1043-1065
    54 Shimizu T, Kato S, Hayashi M, et al. Amyotrophic lateral sclerosis with hypertensive attacks: blood pressure changes in response to drug administration. Clin Auton Res 1996; 6:241-244
    55 Baltadzhieva R, Gurevich T, Korczyn AD. Autonomic impairment in amyotrophic lateral sclerosis. Curr Opin Neurol 2005;18:487-93
    56 Karlsborg M, Andersen EB, Wiinberg N, et al.Sympathetic dysfunction of central origin in patients with ALS. Eur J Neuro 2003;10:229-34
    57 Charchaflie RJ, Bustos Fernandez L, Perec CJ, et al. (1976). Functional studies of the parotid and pancreas glands in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry ,37:863-867
    58 Ralf Giess,Edgar Werner,Marcus Beck, et al. Impaired salivary gland function reveals autonomic dysfunction in amyotrophic lateral sclerosis. J Neurol (2002) 249 : 1246-1249
    59 M Beck, R Giess, T Magnus, et al. Progressive sudomotor dysfunction in amyotrophic lateral Sclerosis. J Neurol Neurosurg Psychiatry 2002;73:68-70
    60 Shindo K, Tsunoda S, Shiozawa Z. Increased sympathetic outflow to muscles in patients with amyotrophic lateral sclerosis: a comparison with other neuromuscular patients. J Neurol Sci 1995;134:57-60
    61 Mann, D. M. A., and Yates,(1974). Motor neurone disease: the nature of the pathogenic mechanism. Journal of Neurology, Neurosurgery, and Psychiatry, 37, 1036-1046
    62 Bonduelle, M., Bouygnes, P., Lormeau, G., et al. (1970). Etude clinique et evolutive de cent vingt cinq cas de sclerose laterale amyotrophique. Limites nosographiques et associations morbides. La Presse Medicale, 78, 827-832
    63 ANGEL ESTEBAN, CLARA DE ANDRtiS, AND SANTIAGO GIMtNEZ-ROLDAN. Abnormalities of Bell's phenomenon in amyotrophic lateral sclerosis. Journal ofNeurology, Neurosurgery, and Psychiatry, 1978, 41, 690-698
    64 C. Donaghy,V. Patterson,J. M. Gibson,Ocular fixation instabilities inmotor neurone disease. J Neurol (2009) 256:420-426
    65李焰生,运动神经元病伴帕金森症,中国临床神经科学杂志,1998,6:222
    66 Przedborski S, et al. Nigrostriatal dopaminergic function in familiar amyotrophic lateral sclerosis paticnts with and without copper/zinc superoxide dismutase mutations. Neurology,1996,47:1546