柽柳泛素交联酶基因的遗传转化及抗逆性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究将从极度抗旱、耐盐植物柽柳(Tamarix androssowii)中克隆得到的泛素交联酶基因(ubiquitin conjugating enzymes E2s),成功构建到植物表达载体pROKⅡ上,利用农杆菌介导法将泛素交联酶基因导入模式植物烟草基因组中,通过对转基因烟草的盐、旱胁迫试验,对泛素交联酶基因进行功能验证。
     对烟草进行遗传转化,共获得68株卡那霉素抗性芽,从中选出长势最优的15个株系,进行PCR检测,结果均为阳性;从15个株系中随机对6个株系进行PCR-Southem杂交,各转基因株系均出现杂交谱带,证明泛素交联酶基因己整合到烟草基因组中;进一步对6个株系进行RT-PCR和实时荧光定量RT-PCR检测,结果表明外源基因能够表达,但各株系外源基因的表达水平不尽相同,表达量最高的为TL3和TL1,TL10和TL11次之、最低的为TL5和TL7。
     分别对6个转基因株系进行了NaCl胁迫和干旱胁迫试验,分析逆境胁迫条件下转基因烟草与非转基因对照烟草的丙二醛(MDA)含量、相对电导率、超氧化物歧化酶(SOD)活性、叶绿素含量、相对生长量、生根率等指标的变化,结果表明,不同浓度NaCl胁迫处理后,各株系的相对电导率、MDA含量都逐渐增大,在NaCl浓度为440mmol.L~(-1)时,各转基因株系相对电导率平均值低于对照烟草的27.1%,MDA平均含量低于对照的22.6%;NaCl胁迫下,各转基因株系SOD平均活性最低的TL5也高于对照烟草的47.5%,叶绿素平均含量最高的TL10高于对照烟草的64.4%,最低TL3也高于对照烟草的29.7%:当NaCl浓度220mmol.L~(-1)时对照烟草生根率只有30%,而转基因烟草生根率保持在50~70%,综上说明,盐胁迫条件下,转基因烟草受害程度明显小于对照。
     干旱胁迫处理10d时,转基因烟草相对电导率平均值低于对照烟草的19.6%;对照烟草MDA含量为7.7μmol.g~(-1),而转基因烟草MDA含量大多在4.9~6.3μmol.g(-1)左右,低于对照烟草;此时转基因烟草的叶绿素平均含量为1.01mg.g~(-1),高于对照的64.5%,而SOD平均活性高于对照的32.3%;对转基因株系干旱胁迫10d时相对生长量进行调查,各转基因株系相对生长量在59%~83%范围之间,而对照株系的相对生长量为29.7%,说明泛素交联酶基因的导入提高了烟草的抗旱能力。
     综合以上结果,泛素交联酶基因的组成型表达能够不同程度提高转基因烟草逆境胁迫下细胞膜稳定性、SOD活性、叶绿素含量及相对生长量,说明泛素交联酶基因具有提高植物抗旱、耐盐性的功能。
The gene encoding a ubiquitin conjugating enzymes (E2s) was obtained from the Tamarix androssowii cDNA library. The plant genomic expression vector, pROK II, with the E2s gene was constructed and transferred into Nicotiana tabacum L via Agrobacterium-mediated transformation procedure. Moreover, the function of the exogenous E2s gene was examined under salt and drought stress.Sixty-eight resistant lines were obtained through kanamycin selection, and 15 well grown lines which subjected to PCR assay all showed positive. In PCR-Southern hybridization, we checked 6 transgenic plants selected from the 15 plants randomly. The result showed that the foreign target gene had been integrated into tobacoo genome. Real time RT-PCR method was employed to study the expression of the E2s gene, indicated that it was expressed but the expression rates varied. Among the six lines, TL3 and TL1 had the highest expression rate, TL10 and TL11 lines are lower, and TL5 and TL7 had the lowest expression rate.Contents of malondialdehyde (MDA) , activity of superoxide dismutase (SOD) . rate of conductivity, growth rate, content of chlorophyll and radication rate of the 6 lines were determined and analysised under NaCl and drought stress. When the transgenic lines were treated with 440mM NaCl. the average relative conductivity and MDA content are respectively 27.1% and 22.6% lower than the control. The SOD activity of TL5 was lowest in all the transgenic lines, which is still 47.5% higher than the control. The TL10 and TL3 have the highest and the lowest chlorophyll content among the six lines, they are 64.4% and 29.7% higher than the control. The radication rate of transgenic lines was about 50-70%, whereas the control line was only 30% in 220mM NaCl stress condition. The above results indicated that the transgenic lines suffered minor damage under NaCl stress.In the tenth day of drought stress, the average relative conductivity is 19.6% lower than control line, the MDA content of transgenic and control lines is 4.9~6.3μmolg~-1 and 7.7μmol g~-1 respectively. The average chlorophyll and SOD content is 64.5% and 32.3% higher than the control, the average SOD content of transgenic lines is 1.01mg/g. In this time, relative growth rate was ranged from 59% to 83% but the control line is about 29.7%. These results demonstrated that the introduced exogenous E2s gene enhanced the drought stress tolerance of tobacco.All the experiments results indicated that the constitutively expressed E2s gene from T. androssowii can improve the stability of cell membrane, increase the SOD activity and
    chlorophyll content, and enhance the relative growth rate under adverse environment. That was Els gene could ehance the tolerance of salt and drought stress of plant.
引文
[1] 张道远,张娟,潭敦炎等.国产怪柳科3属6种植物营养枝的解剖观察.西北植物学报.2003,23(3):382~388
    [2] 尹林克.中亚荒漠生念系统中的关键种-柽柳(Tamarix spp.)干旱区研究.1995,12:43~47
    [3] 王玉成.柽柳抗逆分子机理研究与相关基因的克隆.东北林业大学博士学位论文.2005:1
    [4] 赵鑫.晚期胚胎富集蛋白基因植物表达载体的构建及其功能验证.东北林业大学硕士论文.2005:48
    [5] 蔡智军.盐胁迫下转耐盐基因(betA基因)小黑杨的生理指标检测及耐盐性分析.东北林业大学硕士论文.2005:37
    [6] 詹立平.小黑杨(Populus simonii×p.nigra)单倍体植株转化胆碱氧化酶基因(codA)的研究.东北林业大学硕士论文.2005:48
    [7] 赵明范,葛成,翟志中.干旱地区次生盐碱地主要造林树种抗盐指标的确定及耐盐能力排序.林业科学研究.1997,10(2):194~198
    [8] 王伟.植物对水分亏缺的某些生化反应.植物生理学通讯.1998,34(5):388~393
    [9] 王娟,李德全.逆境条件下植物体内渗透调节物质的积累与活性氧代谢.植物学通报.2001,18(4):459~465
    [10] 刘国花,韩素英,齐力旺.植物抗旱耐盐基因工程研究及应用前景.世界农业.2003,总291期:44~46
    [11] 孙海丹.大豆耐盐相关基因GmA3和GmA5的筛选及其功能鉴定.东北师范大学硕士学位论文.2004:2
    [12] Munns R Frermaat. Whole plant response to salinity. Australian. Journal of Plant Physiology. 1986, 13: 143
    [13] 许祥明,叶和春,李国凤.植物抗盐机理的研究进展.应用与环境生物学报.2000,6(4):379~387
    [14] 倪秀珍,张强.抗盐植物研究进展.特产研究.2004(4):58~61
    [15] 李晓燕,宋占午,董志贤.植物的盐胁迫生理.西北师范大学学报(自然科学版).2004,40(3):106~117
    [16] 余叔文,汤章程.植物生理与分子生物学.1998年第二版.北京:科学出版社,2005:754~766
    [17] 李春艳.两种红树-秋茄和木榄幼苗抗盐生理生化基础研究.北京林业大学硕士学位论文.2005:4
    [18] Alscher RG, Cumming JR. Stress Responses in Plants: Adaptation and Acclimation Mechanisms. New York: Wiley-Liss. 1990: 217~239
    [19] 殷晓军,赵彦修,张慧.甜菜碱的合成及其相关基因的遗传工程.植物生理学通讯.2002,38(3):299~303
    [20] 陈雅君,冯淑华,陈桂芬.植物抗旱性鉴定指标的研究现状与进展.中国林副特产.2005(6):62~63
    [21] 刘琴,孙辉,何道文.干旱和高温对植物胁迫效应的研究进展.西华师范大学学报(自然科学版).2005,26(4):364~368
    [22] 张彤,齐麟.植物抗旱机理研究进展.湖北农业科学.2005(4):107~110
    [23] 王益奎,李鸿莉,王军等.烟草水分胁迫研究进展.中国烟草科学.2005(4):33~36
    [24] 汪邓民,周冀衡,朱显灵等.干旱胁迫下钾对烤烟生长及抗旱性的生理调节.中国烟草科学.1998,(3):26~29
    [25] 俞嘉宁.小麦耐早、耐盐相关基因的克隆、分析与功能研究.西北农林科技大学博士学位论文.2003:2~3
    [26] 王玮.植物对水分亏缺的某些生化反应.植物生理学通讯.1998,34(5):388~393
    [27] 汪耀富,蔡寒玉.烟草抗旱生理生化研究进展.安徽农业科学.2005,33(3):491~493
    [28] 王霞.水分胁迫对怪柳植物可溶性物质的影响.干旱区研究.1999(2):7~11
    [29] Davies WJ., Tardieu F., Trejo CL., Updateon long-distance signaling. How do chemical signals work in plants that grow in drying soil? Plant Physiol. 1994, 104: 309~314
    [30] Davies WJ., Zhang J., Root signals and the regulation of growth and development of plants in drying soil. Annu. Rev. Plant Physiol Plant Mol. Biol., 1991, 42: 55~76
    [31] Shinozaki K, Yamaguchi-Shinozald K. Molecular responses to dehydration and low temperature: , differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 2000, 3: 217~223
    [32] Tardien F., Davies WJ. Stomatal response to abscisic acid is a function of current plant water satus. Plant Physiol. 1992, 98: 540~545
    [33] Schlesinger D H, Gloderstein G. . Molecular conservation of 74 am ino acid sequence of ubiquitin between cattle and man[J] . Nature, 1975, 255: 423~424
    [34] Goldstein G, Scheid M, Hammerling U et al. . Isolation of a porlypeptide that has lymphocyte differentiating properties and is probably represented universally in living cell. Proc Natl Acad Sci USA, 1975, 72: 11~15
    [35] 王高鸿,黄久常.蛋白质的选择性降解.生命科学.1999,11:24~30
    [36] 侯学文,郭勇.泛素与植物逆境响应.植物生理学通讯.1998,34(6):474~478
    [37] von Kampen J, Wettem M, Schulz Mthe ubiquitin system in plants. Physiol Plant. 1996, 97: 618~624
    [38] 朱经春,王台,陈克成.泛素系统的组成和功能(一)—系统组成、底物识别与蛋白质泛素化.植物学通报.1999,16(3):208~218
    [39] Vierstra R, The ubiquitin/26Sproteasome pathway, the complex last chapter in the life omany plant proteins Trends Plant Sci. 2003(8): 135~142
    [40] 盛仙永,胡正海,林金星.泛素/蛋白酶体途径及其在高等植物有性生殖中的作用.西北植物学报.2004,24(8):1527~1536
    [41] 郭启芳,邹琦,王玮.植物泛素/26S蛋白酶体通路的生理功能和分子生物学.植物生理学通讯.2004,40(5):533~539
    [42] 刘萱,曹诚,刘传暄.泛素-蛋白酶体降解途径在细胞周期调控中的作用.生物技术通讯.2004,15(3):267~271
    [43] 牛国栋.甜菜夜蛾核多角体病毒泛素基因的分子进化及功能研究.中国科学院硕士学位学位论文.2003:19~23
    [44] Bachmair A, Novatchkova M, Potuschak T, Eisenhaber F. Ubiquitylation in plants: a post-genomic look at a post-translational modification. Trends Plant Sci. 2001, 6: 463~470
    [45] Callis J and Vierstra RD. Protein degradation in signaling. Curr Opin Plant Biol. 2000, 3: 381~386
    [46] Smalle J, Kurepa J, Yang P, Babiychuk E, Kushnir S, Durski A, Vierstra RD. Cytokinin growthresponses in Arabidopsis involve the 26S proteasome subunit RPN12. Plant Cell. 2002, 14: 17~32
    [47] Somers DE, Schultz TF, Milnamow M, Kay SA. ZEITLUPE encodes a novel clockassociated PAS protein from Arabidopsis. Cell. 2000, 14: 319~329
    [48] Austin MJ, Muskett P, Kahn K, Feys BJ, Jones JD, Parker JE. Regulatoryrole of SGT1 in early R gene-mediated plant defenses. Sci. 2002, 295: 2077~2080
    [49] Pichart CM. Ubiquitin in chains. Trends Biochem Sci. 2000, 25: 544~548
    [50] B.B.布坎南,W.格鲁伊森姆,R.L.琼斯.植物生物化学与分子生物学.瞿礼嘉,顾红雅,白书农.北京:科学出版社,2004:360~368
    [51] S.R.法内斯托克,A.斯泰因比歇尔.生物高分子:第七卷,聚酰胺和蛋白质材料Ⅰ.李秀荣.北京:化学工业出版社,2005:412~428
    [52] Wang H M, Zhu C H. Ubiquitin proteasome pathway in reproductive tissues. Prog Biochem Biophys. 2002, 29(1): 31~34
    [53] Callis J, Rassch J A, Vierstra R D. Ubiquitin extension protein of A rabidopsis tha liana, jBio. Chem. 1990, 265: 12486~12493
    [54] Schlesinger D H, Golderstein G. . Molecular conservation of 74 am ino acid sequence of ubiquitin between cattle and man. Nature. 1975, 255: 423~424
    [55] Glickman M H, Clechanovera. Theubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Phys-iol. Rev. 2002, 82: 373~428
    [56] Mcgrath J P, Jentsch S, Varshavsky A. UBA1: an essential yeast gene encoding ubiquitin-activating enzyme. Embo J. 1991, 10: 227~236
    [57] Vonkamponj, Wettemm, Schulzm. The ubiquitin system in plants. Physiol. Plant. 1996, 97: 618~624
    [58] 吴焱秋,柴家科.泛素/蛋白酶体途径的组成及其生物学作用.生理科学进展.2001,32(4):331~333
    [59] Kalchman M A, Oraham R K, Xia G, Koide H B, Hodgson J G, Graham K C, Goldberg Y P, Gietz R D, Pickapt C M, Hayden M R. Huntingtin is ubiquitinated and in teracts with a specific ubiquitin-conjugating enzyme. J. Biol. Chem. 1996, 271: 19385~19394
    [60] Hellmann H, Estelle M. Plant development: regulation by protein degradation. Science. 2002, 297: 793~797
    [61] Shigetsugu H, Kei-ichi I N. U-box proteins as a new family of ubiquitin ligases. Biochemi-cal and Biophysical Research Communication. 2003, 302: 635-645
    [62] Cecile M. Pickart. Mechanism underlying ubiquitination. Annu. Rev. Biochem. 20 01, 70: 503~533
    [63] Hatakeyama S, Yada, M, Matsumoto M, Ishida N, and Nakayama K. I. U box proteins as anew family of ubiquitin-protein ligese. J. Biol. Chem. 2001, 276: 33111~33120
    [64] Koegl M, Hoppe T, Schlenker S, Ulrich H. D, Mayer T. U, and Jentsch. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell. 1999, 96: 635~644
    [65] Glickman MH. Getting in and out of the proteasome. Semin. Cell Dev Biol. 2000, 11: 149~158
    [66] Voges D, Zwickl P, Baumeister W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem. 1999, 68: 1015~1068
    [67] Smalle J, Kurepa J, Yang P, Ernborg TJ, Babiychuk E, Kushnir S, Vierstra RD. The Pleiotropic Role of the 26S Proteasome Subunit RPN10 in Arabidopsis Growth and Development Supports a Substrate-Specific Function in Abscisic Acid Signaling. Plant Cell. 2003, 15: 965~980
    [68] Ciechanovera. The ubiquitin-proteasome pathway: on protein death and cell life. Embo. J. 1998, 17(24): 7151~7160
    [69] 郭启芳.冬小麦泛素基因的克隆与转化及表达特性研究.山东农业大学硕士学位论 文.2004:8~34
    [70] Saitohh, Hinchey J. Functional heterogeneity of smal lubiquitin related protein modifiers SUMO-1 versus SUMO-2/3. J. Biol. Chem. 2000, 275: 6252~5258
    [71] Belknap W R, Garbarino J E. The role of ubiquitin in plant senescence and stress responses. Trends Plant Sci. 1996, 1(1): 331~335
    [72] Finley D, ozkaynak E, Varshavsky A. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation and other stresses. Cell. 1987, 48: 1035~1046
    [73] 侯学文,郭勇.泛素与植物逆境响应.植物生理学通讯.1998,34(6):474~478
    [74] Van Lijsebettens M, Vanderhaeghen R, De Block M et al. An S18 ribosomal protein gene copy at the Arabidopsis PFL locus affects plant development by its specific expression in meristems. EMBOJ. 1994, 13: 3378~3388
    [75] Boyes DC, Nam J, Dangl JL. The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasmamembrane protein that is degraded coincident with the hypersensitive response. Proc Natl Acad Sci USA. 1998, 95: 15849~15854
    [76] Gindin E, Borochov A. Ubiquitin conjugation to protein increases following chilling of Clerodendrum leaves. Plant Physiol. 1992, 100: 1392~1395
    [77] Wettem M, Parag HA, Pollmann L et al. Ubiquitin in Chlamydomonas reinhardii distribution in the cell and effect of heat shock and photoinhibition on its conjugate pattern. Euro J Biochem. 1990, 191: 571~576
    [78] Fergusion DL, Guikema JA, Paulsen GM. Ubiquitin pool modulation and protein degradation in wheat roots during high temperature stress. Plant Physiol. 1990, 92: 740~746
    [79] 彭日荷,姚泉洪,熊爱生等.泛肽交联酶(E2)通过苯丙氨酸解氨酶基因启动子参与水稻对紫外光的防护.植物学报.2003,45(11):1351~1358
    [80] Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K. Cloning of cDNAs for genes that are early responsive to dehydration stress (ERDs) in Arabidopsis thaliana L: idetification of three ERDs as HSP cognate genes. Plant Mot Biol. 1990, 25: 791~798
    [81] 刘军,黄上志,傅家瑞等.种子活力与蛋白质关系的研究进展.植物学通报.2001,18(1):46~51
    [82] O'Mahony PJ, Oliver MJ. The involvement of ubiquitin in vegetative desiccation tolerance. Plant Mol Biol. 1999, 41: 657~667
    [83] 彭世清,陈守才.巴西橡胶树遍在蛋白基因的表达分析.热带作物学报.2002,23:32~35
    [84] 张玉秀,张延红,高华等.菜豆泛素基因在生物和非生物胁迫下的表达.西北植物学报.2002,22(3):505~510
    [85] 胡笳,郭燕婷,李艳梅.蛋白质翻译后修饰研究进展.科学通报.2005,50(11):1061~1072
    [86] 郭爱华,左宝峰,姚延梼等.自然降温对雪松叶片中叶绿素及电导率的影响.山东农业大学学报.2005,4:393~395
    [87] 毛桂莲,张春梅,许兴.NaCl胁迫对枸杞幼苗活性氧的产生和保护酶活性的影响.农业科学研究.2005,26(4):21~24
    [88] 吴关庭,陈锦清,胡张华等.根癌农杆菌介导转化获得俐逆性增强的高羊茅转基因植株.中国农业科学.2005,38(12):2395~2402
    [89] Wei A L(魏爱丽), Chen Y Z(陈云). Effect of IAAon soybean seedlings me mbtance injury and salt resistance. Acta Bot Boreal-occident Sin(西北植物学报). 2000, 20(3): 410~414.
    [90] 李阳,齐曼,尤努斯等.渗透胁迫对新疆大果沙枣幼苗叶片膜脂过氧化及膜保护酶的影响.新疆农业大学学报.2005,28(2):47~50
    [91] 孙方行,孙明高,夏阳等.NaCl胁迫对紫荆幼苗保护酶系统的影响.中南林学院学报.2005,25(6):34~37
    [92] 林树燕,丁雨龙.平安竹抗旱生理指标的测定.林业科技开发.2006,20(1):40~41
    [93] 刘金龙,杨秀清,姚延梼.铜锌元素与华北落叶松丙二醛含量关系的研究.山西农业大学学报.2003,(3):212~215
    [94] 王启明,李方远,徐心诚等.干旱胁迫对花荚期大豆叶片细胞膜透性和渗透调节物质含量的影响.河南农业科学.2005,8:39~42
    [95] Bence N F, Sampat R M, Kopito R R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science2001, (292): 1552~1555
    [96] 王翠花,孙志刚,杨晓松.PEG处理对大豆叶片抗氧化酶活性的影响.内蒙古民族大学学报(自然科学版).2005,20(5):523~526
    [97] 李丽霞,赵吉强,韩蕊莲.干旱胁迫对沙棘抗氧化酶的影响.烟台大学学报(自然科学与工程版).2006,19(1):30~35
    [98] 李宁,周宝利,白丽萍等.盐胁迫下嫁接茄子中几种保护酶活性的变化.辽宁农业科学.2006,1:10~12
    [99] 陈士刚,李青梅,陶晶等.盐碱胁迫对几种杨树光合色素含量的影响.吉林林业科技.2005,34(6):8~12
    [100] 李南羿,郭泽建.转录因子OPBPl和OsiWRKY基因的超表达提高水稻的耐盐及抗病能力.中国水稻科学.2006,20(1):13~18
    [101] 王姝杰,王法龙,李世访等.转Na+/H+antiporter(Nhap)基因烟草植株的获得及耐盐性鉴定.农业生物技术学报.2006,14(1):74~78
    [102] 张玉秀,张延红,高华,柴团耀/菜豆泛素基因在生物和非生物胁迫下的表达/西 北植物学报/2002,22(3):505~510
    [103] 李合生.植物生理生化实验原理和技术.2000年第1版.北京:高等教育出版社,2004:260~261