山茶花MADS-box家族B类基因克隆及在重瓣花形成中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
山茶花是我国传统十大名花之一,也是世界名贵花卉。重瓣型山茶花由于丰富的造型而深受喜爱,但野生状态下的山茶花为单瓣花型,在漫长的生物进化中单瓣花是如何变化为重瓣花类型的,是本研究之目的。从花发育的“ABC模型”理论可知,B类功能基因是同时参与了真核植物花瓣和雄蕊的发育从而影响到花器官的第二轮和第三轮结构确定性的关键因子,暗示了B功能基因在山茶重瓣花形成中起到关键作用。尽管B类基因的功能在模式植物中研究的较为清楚,但在山茶中B功能基因扮演什么角色及是否引起山茶重瓣花形成等均不为人知。
     采用RT-PCR (Reverse transcription polymerase chain reaction)和RACE(Rapid amplification of cDNA end)法从中国传统重瓣花型茶花名种‘红十八学士’(Cameliia japonica‘Hongshibaxueshi’)中分离出B功能基因4个成员的cDNA全长,分别命名为CjHGLO1、CjHGLO2、CjHDEF和CjHTM6,探讨了这4个成员的功能及其在部分山茶属植物不同花类型山茶花中的表达模式。研究发现,分离的‘红十八学士’B功能基因在大肠杆菌E. Coli BL21中经IPTG诱导能表达出相应的蛋白,表明分离的四个成员结构完整,具有完整编码蛋白质的能力。将四个成员的正义基因导入拟南芥发现,过表达CjHGLO1基因引起萼片和花瓣的融合,这种融合的趋势是从萼片和花瓣的基部开始,逐渐向上;过表达正义CjHGLO2没有引起转基因拟南芥表型改变;而过表达CjHDEF基因引起拟南芥第一轮萼片转变为花瓣,使得原来有4片花瓣的拟南芥转变为具有8片花瓣的花;过表达CjHTM6基因造成拟南芥的雌蕊在花苞尚未展开时即显著伸长,引起花瓣和雌蕊的不一致性生长,同时6枚雄蕊消失。
     采用Real-time PCR技术研究了B功能基因在山茶单瓣、半重瓣、托桂型、牡丹重瓣型和完全重瓣型等5个不同类型茶花中的表达模式发现,GLO1(GLOBOSA1)和GLO2(GLOBOSA2)的同源基因是在具有花瓣属性的部位高表达,而在具有或靠近萼片属性的部位表达量低或不表达,表明其在花瓣属性的决定中扮演重要角色;DEF(DEFICIENS)和TM6(TOMATO MADS BOX GENE6)同源异型基因是在雄蕊的融合处高表达,这种现象表明它们可能在雄蕊瓣化为花瓣的过程中扮演重要角色。在山茶单瓣花转变为重瓣花的过程中,是伴随着山茶花瓣数目的增加和花器官轮数的逐渐减少,其中B功能基因的表达域也逐渐缩小并稳定的在花瓣器官中高表达,这种现象表明B功能基因的功能域是逐渐的在向着中心部位的花瓣迁移,说明B功能基因在决定山茶花瓣属性中具有高度的保守性。
     通过本研究发现,B功能基因拓展了表达域是引起山茶萼片瓣化现象的原因之一,这种情况会造成山茶花瓣数目的增加是山茶重瓣花形成的原因之一。山茶重瓣花涉及积累起源、苞(萼)片起源和雌雄蕊等多种起源方式。
Camellia is one of the top ten traditional flowers in China, and also is one of the precious flowers in the world. In the natural states the camellia flowers is signal form and how to changes into double flowers in biology evolution is our research purpose. From“ABC model”theory of floral development we knew that B-function was key role in the second and third whorl in eukaryote plants, so, this phenomenon was implied that B-function may be play key factor for double flowers formation in camellia. Although the function of B-function gene was clearly in model plant, but it’s role in double flowers formation were unknown in camellia.
     To investigate the mechanism of B-function gene for double flower development in Camellia, B-function gene cDNA was cloned by RT-PCR and RACE methods and named CjHGLO1, CjHGLO2, CjHDEF and CjHTM6 respective, and its function and expression pattern were analyzed. The results showed that the coding protein of B-function gene was completely expressed in Escherichia coli BL21 by IPTG induced, this phenomenon indicated that the isolated genes had completed structure. The sense gene of B-function was transforred into Arabidopsis and the results showed that the sepals and petals were fused by CjHGLO1 gene, and the fused tendency started from based part. The phenotype was not changed by sense CjHGLO2 gene. The first-whorl sepals were completely transforrmed into petals by sense CjHDEF gene, so that all of pepals was eight. The stigma was extended when the flower buds was not opening in Arabidopsis by sense CjHTM6 gene, and the petals growth was not cohered with stigma, meanwhile, the stamens has disappeared.
     The expression pattern of B-function gene among signal、semi-double、anemone form、peony form and formal double was studied by Real-time PCR method. The results showed that B-function gene GLOBOSA1 (GLO1) and GLOBOSA2 (GLO2) had high expression at the part with petal identity, and had low or no expression at or near the part with sepal identity, and these kinds of expression showed that gene played an important role in determining petal identity. B-function gene DEFICIENS (DEF) and TOMATO MADS BOX GENE6 (TM6) had high expression at the fused part of stamens, and this implied the importance of gene when stamen transforrmed into petal. The petals were increased and the flower whorls were decrease when the signal transformed into double flowers in camellia, and expression domain of B-function was also toward to the central petals, the simplest explanation for this was that the B-function was removal toward the flower center, this phenomenon explained that the B-function gene was high conservative.
     Our analyses of the paper, the phenomenon of the sepals petaloid in camellia is extented of expression domain by B-function gene, and it is key factor in double flower formation. It has multiple origins including accumulation origin,sepal origin and stamens-carpels origin in double flowers formation in camellia. Thus, B-function gene is very important when signal evolved into double flowers in camellia.
引文
Ackerman CM, Yu Q, Kim S, Paull RE, Moore PH, Ming R. B-class MADS-box genes in trioecious papaya: two paleoAP3 paralogs, CpTM6-1 and CpTM6-2, and a PI ortholog CpPI [J]. Planta, 2008, 227: 741-753.
    Alvarez-Buylla ER, Pelaz S, Liljegren SJ, Gold SE, Burgeff C, Ditta GS, Ribas de Pouplana L, Martinez-Castilla L, Yanofsky MF. An ancestral MADS-box gene duplication occurred before the divergence of plants and animal [J]. Proc Natl Acad Sci, 2000, 97: 5328-5333.
    Aoki S, Uehara K, Imafuku M, Hasebe M, Ito M. Phylogeny and divergence of basal angiosperms inferred from APETALA3- and PISTILLATA-like MADS-box genes [J]. J Plant Res. 2004, 117(3): 229-44.
    Becker A, Saedler H, Theissen G. Distinct MADS-box gene expression patterns in the reproductive cones of the gymnosperm Gnetum gnemon [J]. Dev Genes Evol, 2003, 213(11): 567-572.
    Bowman JL, Drews GN, Meyerowitz EM. Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development [J]. Plant Cell, 1991, 3: 749-758.
    Bowman JL, Smyth DR, Meyerowitz EM. Genes directing flower development in Arabidopsis [J]. Plant Cell, 1989, 1(1): 37-52.
    Broholm SK, P?ll?nen E, Ruokolainen S, T?htiharju S, Kotilainen M, Albert VA., Eloma P, Teeri TH. Functional characterization of B class MADS-box transcription factors in Gerbera hybrida [J]. J Exp Bot, 2009, 61(1): 75-85.
    Causiera B, Schwarz-Sommerb Z, Daviesa B. Floral organ identity: 20 years of ABCs [J]. Semin Cell Dev Biol, 2010, 21(1): 73-79.
    Chan SW, Henderson IR, Jacobsen SE. Gardening the genome: DNA methylation in Arabidopsis thaliana [J]. Nat Rev Genet, 2005, 6: 351-360.
    Chang YY, Kao NH, Li JY, Hsu WH, Liang YL, Wu JW, Yang CH. Characterization of the possible roles for B class MADS Box genes in regulation of perianth formation in Orchid [J]. Plant Physiol, 2010, 152(2): 837-853.
    Chen MK, Lin IC, Yang CH. Functional analysis of three Lily (Lilium longiflorum) APETALA1-like MADS Box genes in regulating floral transition and formation [J]. Plant Cell Physiol, 2008, 49(5): 704-717.
    Coen ES, Meyerowitz EM. The war of the whorls: Genetic interactions controlling flower development [J]. Nature, 1991, 353: 31-37.
    Colombo L, Franken J, Koeteje E, van Went J, Dons HJ, Angenent GC, van Tuen AJ. The petunia MADS box gene FBP11 determines ovule identity [J]. Plant Cell, 1995, 7(11): 1859-1868.
    Danilevskaya ON, Meng X, Selinger DA., Deschamps S, Hermon P, Vansant G, Gupta R, Ananiev EV, Muszynski MG. Involvement of the MADS box gene ZMM4 in floral induction and inflorescence development in Maize [J]. Plant Physiol, 2008, 147: 2054-2069.
    Díaz-Riquelme J, Lijavetzky D, Martínez-Zapater JM,. Carmona MJ. Genome-wide analysis of MIKCC-Type MADS box genes in Grapevine [J]. Plant Physiol, 2009, 149: 354-369.
    Elena MK, Robert LD, Vivian FI. Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-Box gene lineages [J]. Genetics, 1998, 149: 765-783.
    Elena Rá,Barbara AA, Eduardo F, Marie E, Adriana G, Berenice G, Eduardo T, Silvia E, Esteban M, Alma P, Peter E, Elliot MM. B-Function expression in the flower center underlies the homeotic phenotype of Lacandonia schismatica (Triuridaceae) [J]. Plant Cell, 2010, 22(11): 3543–3559.
    Elitzur T, Vrebalov J, Giovannoni JJ, Goldschmidt EE, Friedman H. The regulation of MADS-box gene expression during ripening of banana and their regulatory interaction with ethylene [J]. J Exp Bot, 2010, 61(5): 1523-1535.
    Eng-Chong P, Michael RD. Plant developmental biology-biotechnological perspectives [M]. London: Springer press, 2009.
    Ferrario S, Immink RGH, Shchennikova A, Busscher-Lange J, Angenent GC. The MADS box gene FBP2 is required for SEPALLATA function in Petunia [J]. Plant Cell, 2003, 15: 914-925.
    Ford VS, Gottlieb LD. Bicalyx is a natural homeotic floral variant [J]. Nature, 1992, 358: 671-673.
    Gan Y, Filleur S, Ralhman A, Gotensparre S, Forde BG. Nutritional regulation of ANR1 and other root-expressed MADS-box genes in Arabidopsis thaliana [J]. Planta, 2005, 222: 730-742.
    Geitem K, Becker A, Kaufmann K, Caris P, Janssens S, Viaene T, Theiβen G,Smets E. Petaloidy and petal identity MADS-box genes in the balsaminoid genera Impatiens and Marcgravia [J]. Plant J, 2006, 47: 501-518.
    Gu Z, Steinmetz LM, Gu X, Scharfe C, Davis RW, Li WH. Role of duplicate genes in genetic robustness against null mutations [J]. Nature, 2003, 421: 63-66.
    Hibino Y, Kitahara1 K, Hirai S, Matsumoto S. Structural and functional analysis of rose class B MADS-box genes‘MASAKO BP, euB3, and B3’: Paleo-type AP3 homologue‘MASAKO B3’association with petal development [J]. Plant Sci, 2006, 170(4): 778-785.
    Hu J.Y., and Saedler H. Evolution of the inflated-calyx-syndrome (ICS) in Solanaceae [J]. Mol Biol Evol, 2007, 24:2443-2453.
    Immink RGH, Kaufmann K, Angenent GC. The‘ABC’of MADS domain protein behaviour and interactions [J]. Semi Cell Dev Bio, 2010, 21(1): 73-79.
    Jack T. Relearning our ABCs: news twists on and old model [J]. Trends Plant Sci, 2001, 6(7): 310-316.
    Jost JP, Saluz HP. DNA methylation: molecular biology and biological significance [M]. Berlin: Brrkauser Verlag, 1993:11.
    Kaufmann K, Melzer R, Theissen G. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants [J]. Gene, 2005, 347(2): 183-198.
    Ke SQ. Studies on interspecific hybirids of Actindia [J]. Acta Hortic, 1992, 297: 100-139.
    Kim S, Soltis DE, Soltis PS, Zanis MJ, Suh Y. Phylogenetic relationships among early-diverging eudicots based on four genes: were the eudicots ancestrally woody? [J]. Mol Phylogenet Evol, 2004, 31(1): 16-30.
    Kim SY, Yun PY, Fukuda T, Ochiaic T, Yokoyamad J, Kameya T, Kanno A. Expression of a DEFICIENS-like gene correlates with the differentiation between sepal and petal in the orchid, Habenaria radiata (Orchidaceae) [J]. Plant Sci, 2007, 172: 319-326.
    Kramer EM, Hall JC. Evolutionary dynamics of genes controlling floral development [J]. Curr Opin Plant Biol, 2005, 8: 13-18.
    Kramer EM. Aquilegia: a new model for plant development, ecology, and evolution [J]. Annu Rev Plant Biol. 2009, 60:261-77.
    Lenhard M,Bohner A,Jurgens G,et al. Ermination of stem cell maintenance in Arabidopsis floral meristems by inerations between WUSHEL and AGAMOUS [J]. Cell, 2001, 105: 805-814.
    Leseberg CH, Eissler CL, Wang X, Johns MA., Duvall MR, Mao L. Interaction study of MADS-domain proteins in tomato [J]. J Exp Bot, 2008, 59(8): 2253-2265.
    Lewin B. GenesⅨ[M]. Beijing: Science Press, 2008.
    Li QZ, Li XG, Bai SN, Lu WL, Zhang XS. Isolation of HAG1 and its regulation by plant hormones during in Vitro floral organogenesis in Hyacinthus orientalis L [J]. Planta, 2002, 215(4): 533-540.
    Litta A, Kramerb EM. The ABC model and the diversification of floral organ identity [J]. Semin Cell Dev Biol, 2010, 21(1): 129-137.
    Lohmann J U,Hong R,Hobe M,et al. A molecular link between stem cell regulation and floral patterning in Arabidopsis [J]. Cell, 2001, 105: 793-803.
    Ma H. The unfolding drama of flower development recent results from genetic and molecular analyses [J]. Gene Dev, 1994, 8(7): 745-756.
    Maere S, De Bodt S, Raes J, Casneuf T, Van Montagu M, Kuiper M, Van de Peer Y. Modeling gene and genome duplications in eukaryotes [J]. PNAS, 2005, 102: 5454-5455.
    Mandel MA,Yanofsky MF. The Arabidopsis AG8 MADS-box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1 [J]. Plant Cell, 1995, 7(11): 1763-1771.
    Mizukami Y,Ma H. Separation of AG function in floral meristem determinacy from that in reproductive organ ident by expressing antisense AG RNA [J]. Plant Mol Bio, 1995, 28: 767-784.
    Mlotshwa S, Yang Z, Kim Y, Chen X. Floral patterning defects induced by Arabidopsis APETALA2 and microRNA172 expression in Nicotiana benthamiana [J]. Plant Mol Biol, 2006, 61: 781-93.
    Mondragón-Palomino M,Thei?en G. Conserved differential expression of paralogous DEFICIENS- and GLOBOSA-like MADS-box genes in the flowers of Orchidaceae: refining the‘orchid code’[J]. Plant J, 2011, DOI: 10.1111/j.1365-313X.2011.04560.x
    Moore RC, Purugganan. The evolutionary dynamics of plant duplicate genes [J]. Curr Opin Plant Biol, 2005, 8(2): 122-128.
    Ohmoria S, Kimizua M, Sugitab M, Miyaoc A, Hirochikac H, Uchidaa E, Nagatob Y, Yoshida H. MOSAIC FLORAL ORGANS1, an AGL6-Like MADS Box Gene, Regulates Floral Organ Identity and Meristem Fate in Rice [J]. Plant Cell, 2009, 21:3008-3025.
    Peerbolte R, Leenhouts K, Hooykaas-van Slogteren GMS, Wullems GJ, Schilperoort RA. Clones from a shooty tobacco crown gall tumor II: irregular T-DNA structures and organization, T-DNA methylation and conditional expression of opine genes [J]. Plant Mol Bio, 1986, 7(4): 285-299.
    Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF. B and C floral organ identity functions require SEPALLATA MADS-box genes [J]. Nature, 2000, 405: 200-203.
    Pelaz S, Gustafson-Broewn C, Kohalmi SE, Crosby WL, Yanofsky MF. APETALA1 and SEPALLATA3 interact to promote flower development [J].Plant J, 2001, 26(4): 385-394.
    Preston JC, Kellogg EA. Conservation and divergence of APETALA1/FRUITFULL-like gene function in grasses: evidence from gene expression analyses [J]. Plant J, 2007, 52(1): 69-81.
    Reynolds J, Tampion J. Double flowers a scientific study [M]. London: Pembridge Press, 1983.
    Sasaki K, Aida R, Yamaguchi H, Shikata M, Niki T, Nishijima T, Ohtsubo N. Functional divergence within class B MADS-box genes TfGLO and TfDEF in Torenia fournieri Lind [J]. Mol Genet Genomics, 2010, 284(5): 399–414.
    Sather DN, Jovanovic M, Golenberg EM. Functional analysis of B and C class floral organ genes in spinach demonstrates their role in sexual dimorphism [J]. BMC Plant Biol. 2010, 10: 46.
    Savige T. The International Camellia Register [M]. USA: International Camellia Society Press, 1993 (Volume one).
    Saze H, Shiraishi A, Miura A, Kakutani T. Control of Genic DNA Methylation by a jmjC Domain-Containing Protein in Arabidopsis thaliana [J]. Science, 2008, 319: 462-465.
    Serrato CMA. Contibution to the study of marigold (Tagete ssp) flower traits [J]. Revist chapingo, 1990, 15(71-72): 151-155.
    Sink KC. The inheritance of apetalous flower type in Petunia hybrida Vilm and linkage tests with the genes for flower doubleness and frandiflora characers and its use in hybrid seed production [J]. Euphytica, 1973, 22:520-526.
    Sommer H, Beltrán J P, Huijser P, et al. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinu majus: the protein shows homology to transcription factors [J]. EMBO J, 1990, 9(3): 605-613.
    Su K, Zhao S, Shan H, Kong H, Lu W, Theissen G, Chen Z, Meng Z. The MIK region rather than the C-terminal domain of AP3-like class B floral homeotic proteins determines functional specificity in the development and evolution of petals [J]. New Phytol. 2008, 178(3): 544-58.
    Tapia-López R, García-Ponce B, Dubrovsky JG, Garay-Arroyo A, Pérez-Ruíz RV, Kim SH, Acevedo F, Pelaz S, Alvarez-Buylla ER. An AGAMOUS-Related MADS-Box Gene, XAL1 (AGL12), Regulates Root Meristem Cell Proliferation and Flowering Transition in Arabidopsis [J]. Plant Physiol, 2008, 146:1182-1192.
    Theissen G, Becker A, Dirosa A, Kim JT, Münster T, Winter KU, Saedler H. A short history of MADS-box genes in plants [J]. Plant Mol Biol, 2000, 42(1): 115-149.
    Theissen G, Saedler H. Floral quartets [J]. Nature, 2001, 409: 469-471.
    Theissen G. Development of floral organ identity: stories from the MADS house [J].Curr Opin Plant Biol, 2001, 4: 75-85.
    Tooke F, Batteyn H. A leaf-derived signal a quantitative determinant of floral in Impatiens [J]. Plant Cell, 2000, 12(10): 1837-1847.
    Tr?bner W, Ramirez L, Motte P, Hue I, Huijser P, L?nnig WE, Saedler H, Sommer H, Schwarz-Sommer Z. GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis [J]. EMBO J, 1992, 11(13): 4693-704.
    Tzengt Y, Yang CH. A MADS box gene from lily (Lilium longiflorum) is sufficient to generate dominant negative mutation by interacting with PISTILLA (PI) in Arabidopsis thaliana [J]. Plant Cell Physiol, 2001, 42(10): 1156-1168.
    Viaene T, Vekemans D, Irish VF, Geeraerts A, Huysmans S, Janssens S, Smets E, Geuten K. Pistillata─duplications as a mode for floral diversification in (Basal) asterids [J]. Mol Biol Evol, 2009, 26 (11): 2627-2645.
    Wagner A. Gene duplications, robustness and evolutionary innovations [J]. BioEssays, 2008, 30: 367-373.
    Waites R, Simon R. Signaling cell fate in plant meristems: Three clubs on one tousle [J].Cell, 2000, 103: 835-838.
    Weijier J. The interaction of gibberellic acid and indoleacetic acid in Impatiens [J]. Science, 1959, 129: 896-897.
    Xing S, Rosso MG, Zachgo S. ROXY1, a member of the plant glutaredoxin family, is required for petal development in Arabidopsis thaliana [J]. Development, 2005, 132: 1555-1565.
    Yu D, Kotilainen M, P?ll?nen E, Mehto M, Elomaa P, Helariutta Y, Albert VA, Teeri TH. Organ identity genes and modified patterns of flower development in Gerberahybrida (Asteraceae) [J]. Plant J,1999, 17(1): 51-62.
    Zachgo S., Saedler H., Schwarz-Sommer Z, Pollen-specific expression of DEFH125, a MADS-box transcription factor in Antirrhinum with unusual features [J]. Plant J, 1997, 11(5): 1043-1050.
    Zahn LM, Kong H, Leebens-Mack JH, Kim S, Soltis PS, Landherr LL, Soltis DE, dePamphilis CW, Ma H. The evolution of the SEPALLATA subfamily of MADS-Box genes: a preangiosperm origin with multiple duplications throughout angiosperm history [J]. Genetics, 2005a, 169(4): 2209–2223.
    Zahn LM, Leebens-Mack J, dePamphilis CW, Ma H, Theissen G. To B or not to B a flower: the role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms [J]. J Hered, 2005b: 96(3): 225-240.
    Zainol R, Stimart DP. A monogenic recessive gene, fw, conditions flower doubling in Nicotiana alata [J]. Hortscience, 2001, 36 (1): 128-130.
    Zhao L, Kim YJ, Dinh TT, Chen X. miR172 regulates stem cell fate and defines the inner boundary of APETALA3 and PISTILLATA expression domain in Arabidopsis floral meristems [J]. Plant J, 2007, 51(5): 840-849.
    陈东红.蝴蝶兰SQUA-lik基因的表达模式和功能分析[D].上海:复旦大学博士学位论文, 2007, 04, 10.
    陈段芬.中国水仙花型、花色发育基因(NTMADS1、NTMADS3、NTPDS1、NTPZDS1)的克隆与转化[D]. 北京:中国林业科学研究院博士学位论文, 2008, 7.
    陈俊愉,王四清,王香春,王彭伟.地被菊育种30年[A].陈俊愉教授文选[C].北京:中国农业科技出版社, 1997: 176-185.
    陈晓亚,汤章城.植物生理与分子生物学[M].北京:高等教育出版社, 2007(第三版).
    陈友民.园林树木学[M].北京:中国林业出版社, 1999: 389.
    程金水,刘青林.园林植物遗传育种学[M].北京:中国林业出版社, 2000: 49-52.
    代秉勋,沈显生,欧明涛,王平,代秉益,朱祥文.重瓣花油菜的培育及其在生物学中的意义[J].生物学杂志, 2003, 20(4): 28-30.
    冯献忠,罗达.被子植物花对称性的遗传控制[J].植物生理与分子生物学学报, 2002, 28: 411-418.
    高继银, Clifford R.Parks,杜跃强.山茶属植物主要原种彩色图集[M].杭州:浙江科学技术出版社, 2005, 3: 34-35.
    高继银,苏玉华,胡羡聪.国内外茶花名种识别与欣赏[M].杭州:浙江科学技术出版社, 2007.
    郭滨.蝴蝶兰花发育相关B类MADS-box基因克隆与鉴定[D].上海:复旦大学博士学位论文, 2006, 10, 12.
    黄秀强,陈俊愉,黄国振.莲属两个种亲缘关系的初步研究[J].园艺学报, 1992, 19(2): 164-170.
    李贵生.金粟兰花器官特征基因CsAP1、CsAP3、CsSEP3的结构、表达和进化研究[D].北京:中国科学院研究生院博士学位论文, 2005, 5.
    闵天禄.世界山茶属的研究[M].昆明:云南科技出版社, 2007.
    倪穗,李纪元,王强. 20个茶花品种遗传关系的ISSR分析[J].林业科学研究, 2009, 22(5): 623-629.
    萨姆布鲁克J,拉赛尔DW.分子克隆实验指南[M].北京:科学出版社, 2002(第三版).
    斯佩克特DL,戈德曼RD,莱因万德LA著(黄培堂等译).细胞实验指南[M].北京:科学出版社, 2001(第二版).
    孙大业,崔素娟,孙颖.细胞信号转导[M].北京:科学出版社, 2010(第四版).
    田敏,李纪元,倪穗,范正琪,李辛雷.基于ITS序列的红山茶组植物系统发育关系的研究[J].园艺学报, 2008, 35(11): 1685-1688.
    王镜岩,朱圣康,徐长法.生物化学[M].北京:高等教育出版社, 2003.
    王莲英.牡丹品种花芽形态分化观察及花型成因分析[J].园艺学报, 1986, 13 (3): 203-208.
    徐勇.桃花发育相关MADS box基因研究[D].北京:首都师范大学博士学位论文, 2007, 05, 31.
    姚小华.图书油茶高效生态栽培[M].杭州:浙江科学技术出版社, 2009, 05.
    翟中和,王喜忠,丁明孝.细胞生物学[M].北京:高等教育出版社, 2007(第三版).
    张宏达,任善湘.中国植物志[M]. 1998,第四十九卷,第三分册.
    赵印泉,刘青林.重瓣花的形成机理及遗传特性研究进展[J].西北植物学报, 2009, 29 (4): 0832-0841.
    朱玉贤,李毅,郑晓峰.现代分子生物学[M].北京:高等教育出版社, 2007(第三版).
    庄瑞林.中国油茶[M].北京:中国林业出版社, 2008, 3, 1(第二版).
    邹永梅,施季森,诸葛强,黄敏仁.遗传转化植物中沉默基因的消除[M].分子植物育种, 2006, 4(1): 95-102.