开放式智能数控系统及其在线控制相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机床的智能化是提高机床加工效率、降低加工成本、确保工件加工精度以及改善工件表面加工质量的有效途径之一,已经得到国际上许多国家的重视和研究。当前,数控系统所采用的是一种专用的封闭式体系结构,其以固定参数形式设定加工过程变量,在整个制造过程中CNC只是一个封闭式的开环执行机构。随着现代制造业向信息化、敏捷制造模式的发展,越来越暴露出其固有的缺陷,而应用在线监督、控制机床的状态可以提高切削效率和加工的安全性。为此,本文对智能型模块化开放式数控系统的实现技术以及数控铣削参数的在线智能控制技术进行了深入的研究。
     研究开发了基于OMAC标准的开放式智能型铣削数控系统平台,该平台能实现插补控制和外部切削参数的实时采集及控制。对构建智能数控系统的相关技术做了研究和介绍,包括硬件设备和软件支持技术。智能控制器软件系统设计为七个功能模块,包括:人机交互模块、任务生成模块、任务协调模块、自适应控制模块、离散逻辑控制模块、轴组模块和轴运动模块。研究规划了各个功能模块的任务和模块间的逻辑关系,同时研究了外部加工参数的在线实时采集及系统实现方案,方案要求采集过程具有“硬实时”特性,即能保证参数采集的准确、定时,更要保证模块间的任务协调、可控制,还能为在线过程参数的智能控制预留编程接口。研究了基于SERCOS通讯模式时驱动器技术参数在线实时反馈至控制器的实现方案,技术参数主要包括机床的进给速度和主轴转速。智能数控系统平台和相关技术的研究为过程参数的在线智能控制奠定了基础。
     铣削力是铣削过程中重要的物理参数之一,它不仅决定了铣削过程中所消耗的功率,而且还直接影响铣削热的产生,而铣削热影响铣削温度,铣削温度易加速刀具的磨损或破损,最终影响刀具的使用寿命。为此,本文以提高粗铣削的加工效率为前提,研究且实现了基于铣削力约束的在线过程参数自适应智能控制的相关技术。在构建机床适应控制仿真模型的基础上,对铣削适应控制进行了仿真研究。首先,利用实验样本对设计的基于BP神经网络的切削系统环节进行了训练,研究并编写了自调整因子的模糊控制器函数,通过仿真实验验证了控制器和控制算法的正确性。其次,为了在开放数控系统中实现基于切削力约束的在线变进给速度控制,利用有限状态机技术对控制器进行了行为建模,设计使用改变进给速度倍率来改变加工过程进给速度的方法,并提出使用“双共享内存”技术实现插补加工和智能过程控制的同步与协调。最后,对台阶形铝合金工件进行了加工实验,验证了实现开放式智能数控系统在线变速切削技术的正确性和优越性。
     由于断续铣削力的循环变化、铣刀几何条件决定的瞬时切削厚度的变化,都会增大切削振动,引起切削质量不稳定。而切削过程的动态特性和机床—刀具—工件系统的模态特性之间的相互作用会导致颤振。颤振不仅限制了金属切削过程中的效率,还降低了工件的表面质量,增加了刀具磨损的速率,造成了加工噪声。因此,金属切削过程中避免和抑制颤振非常重要。为此,本文研究了变主轴转速在线抑制颤振的相关技术。首先,研究了颤振领域常用的传感器监控技术,尤其是三向切削力和振动加速度传感器的各向分量在颤振监控过程中的时域和频域敏感信号特征。其次,针对监控信号的频域特性,研究了快速傅立叶变换技术及在颤振过程中对信号有效信息的提取技术。研究了变主轴转速抑制颤振的算法,并建立了颤振频率与主轴转速间的关系模型,为实现颤振抑制提供了理论基础。最后,研究了在开放式数控系统中实现变主轴转速在线抑制颤振的相关技术,提出了基于位置模式和可重构设计的速度模式两种控制方案,并研究了其在控制器模块间的数据实现流程。对连续变切削深度铝合金工件进行了在线颤振抑制加工实验,实验验证了开放式智能铣削数控系统在线抑制颤振技术的有效性。
     目前,含有复杂曲面的产品和零件在现代制造业中所占的比例越来越大,同时对加工的精度和效率的要求也越来越高。为此,本文对自适应NURBS插补技术进行了研究。分析并开发了基于限定弓高误差的自适应NURBS插补算法,并对具有梯形、S型加减速的自适应NURBS插补算法进行了研究和仿真加工。研究了自适应NURBS插补的S型加减速的简化算法。针对基于限定弓高误差的自适应NURBS插补算法在曲率半径波动处易出现加速度和加加速度突变且易超出允许值的情况,提出了一种基于曲率变化特性的柔性加减速的自适应NURBS插补方法,并将插补过程分为加速、基于曲率的自适应调整、最后制动三个阶段。将提出的基于曲率变化特性的自适应NURBS插补算法集成至开发的智能数控系统控制器中,并通过加工实验验证了其正确性。
The intelligence of machine is one of an effective way in improving machiningefficiency, reducing processing cost, ensuring work-pieces’ machining accuracy andimproving the surface processing quality, and it has been accounted and studied inmany countries. At present, a kind of enclosed structure for numerical controlsystem is used, which sets process variables with fixed parameters form. Therefore,CNC is only an enclosed and open-loop actuator in the manufacturing. With thedevelopment of information, agile manufacturing mode in modern manufacturing,more and more inherent defects have been imposed. It can improve cuttingefficiency and manufacturing safety by using on-line supervision and controllingthe state of the machine. So some technologies have been deeply researched forrealization of an intelligent modular open architecture CNC system and cuttingparameters’ on-line intelligent control in milling.
     An open architecture intelligent milling CNC platform has been studied anddeveloped based on open modular architecture controller, which can realizeinterpolation control and external parameters’ real-time acquisition and control.Related technologies about realizing intelligent CNC system have been studied andintroduced, including hardware equipment and software supporting technologies.The software composition is divided into seven modules, including human machineinterface module, task generator module, task coordinate module, adaptive controlmodule, discrete logic control module, axis group module and axis module. At thesame time, the task for each module and logic relationships among modules havebeen planned. A scheme about external parameters’ on-line real-time acquisition andrealization of the CNC system have been studied and developed. There are severaldemands in this scheme, including the character of hard real-time in the process ofacquisition, which needs to acquire accurately and timely, to assure the tasks’coordinate and be controllable. On the other hand, it should reserve theprogramming interface for process parameters’ intelligent control. Theimplementation scheme has been studied how to feedback the actuator parameters tothe controller based on the SERCOS communication mode, and the parametersinclude the machine’s feed-rate and spindle speed. It plays an important role tostudy the intelligent CNC system platform and relative technologies for processparameters’ on-line intelligent control.
     Milling force is one of the most important physical parameters in the millingprocess, and it not only decides consumption power, but also directly affects the milling heat which affects the milling temperature. It is easy to cause tool’s wearand broken for high milling temperature. Finally it will affect the tool’s working life.For these reasons, relative technologies are studied about on-line processparameters’ adaptive intelligent control based on the constraint of milling force toimprove the milling efficiency in this thesis. Milling adaptive control has beenstudied in simulation on the basis of constructing machine tool’s adaptivesimulation model. At first, cutting system link based on designed BP network istrained with experimental samples. Then fuzzy controller function of automaticadjustment factor is studied and wrote. Finally the correctness of the controller andthe control algorithm are verified with simulation experiment. Secondly, to realizeon-line variable feed-rate control based on the constraint of cutting force in the openarchitecture CNC system, behavior model for the controller is established with thetechnology of finite state machine. The method of changing feed-rate override tochange the feed-rate is designed, and dual shared memory technology is raised torealize synchronization and coordination between interpolation and intelligentprocess control. At last, experiments verify the technologies of on-line variablefeed-rate to be correct and superior in the open architecture CNC system, which aredone with the step aluminum alloy work-piece.
     It will increase the cutting vibration and cause cutting quality unstable becauseof the cyclic changes of intermittent milling force and instantaneous cuttingthickness decided by tool’s geometry condition. On the other hand, it will formchatter due to the interaction between dynamic characters in the cutting process andmodal characteristics among machine, tool and work-piece. Chatter not only limitsthe cutting efficiency, but also reduces the quality of the work-piece surface,increases the tools’ wear rate, causes the process noise. So it is very important toavoid and suppress chatter during the metal cutting process. So relative on-linecontrol technologies about variable spindle speed suppress chatter have beenstudied in detailed in this thesis. Common sensor monitoring technologies areinvestigated in the field of chatter monitor. The time domain and frequency domainsensitive signal are studied including each component in three-component cuttingforce and acceleration sensors. Aimed at the control signal frequency characteristics,techniques including fast Fourier transform and the extraction of effectiveinformation are studied during chatter. The algorithm to suppress chatter by varyingspindle speed has been studied, and the relationship model is also set up betweenchatter frequency and spindle speed. All these provide the theoretical foundation torealize chatter suppression. Finally, Relative technologies are studied to suppresschatter by varying spindle speed in the CNC controller, and two control schemes are put forward including position mode and reconfigurable speed mode. At the sametime, the realization flowcharts are also studied about two schemes in the controllermodules. On-line chatter suppression experiments have been completed withcontinuous variable cutting depth aluminum alloy work-piece, and the experimentsverify the technologies’ correctness about on-line chatter suppression in the openarchitecture intelligent milling controller.
     At present, products and parts with complex curved surface are holding moreand more share in the modern manufacturing industry, and the demands ofmachining accuracy and efficiency are also becoming higher and higher. AdaptiveNURBS interpolation technologies have been studied in this thesis. AdaptiveNURBS interpolation algorithm based on chord error limited is analyzed anddeveloped, and the algorithm with trapezoid and S shape acceleration anddeceleration are studied and machined in simulation. A kind of simplified algorithmabout S shape acceleration and deceleration has been studied in the adaptiveNURBS interpolation. Because traditional algorithm is easy to break and beyond thelimited values in acceleration and jerk, an adaptive NURBS interpolation algorithmwith flexible acceleration and deceleration is presented which is based on thecharacteristics of the curvature. And this algorithm is divided into three phases,including acceleration, adaptive adjustment according to the curvature, braking inthe last. The algorithm presented is integrated into the developed controller ofintelligent CNC system, and it also has been verified its correctness with severalexperiments.
引文
[1]朱心红. PC平台开放式数控系统前景展望.现状·趋势·战略.2002,40(458):25~27
    [2]田小军,王会良.开放式数控系统的现状分析.洛阳工业高等专科学校学报.2003,13(1):22~23
    [3] OSACA Work Group. OSACA Handbook Part I: Basics of OSACA.http://www.osaca.org/.1996,7
    [4]李霞.开放式软件化数控系统相关技术的研究与实现.哈尔滨工业大学博士学位论文.2005:16~18
    [5]梁宏斌.基于接口标准的开放式数控系统的研究与实现.哈尔滨工业大学博士学位论文.2005:3~5
    [6]刘源.开放式数控系统的构建及其关键技术研究.哈尔滨工业大学博士学位论文.2010:1~2
    [7] THE OMAC API SET WORKING DOCUMENT, Version0.23, OMAC API SETWorking Document.1999:12
    [8] F. Wang, P. K. Wright. Open Architecture Controllers for Machine Tools, Part2: AReal Time Quintic Spline Interpolator. Transactions of the ASME Journal ofManufacturing Science and Engineering.1998,120(5):425~432
    [9] J. Park, Z. J. Pasek and Y. Shan. An Open-Architecture Real-Time Controller forMachining Processes. Manufacturing Systems.1996,25(1):23~27
    [10] R. G. Hillaire. New Machining Strategies with Open Architecture Controllers.PhD. Dissertation, University of California, Berkeley.2001:5~7
    [11] N. A. Erol, Y. Altintas and M. R. Ito. Open System Architecture Modular ToolKit for Motion and Machining Process Control. Mechatronics.2000,5(3):281~290
    [12]权秀敏,尹显明.数控技术发展趋势.新技术新工艺.2007,(6):14~16
    [13]李斌.基于构架/构件复用的开放式数控系统研究.华中科技大学博士学位论文.2005:4~10
    [14]谢经明,周祖德,陈幼平,陈冰.基于现场总线的开放式数控系统体系结构研究.华中科技大学学报(自然科学版).2002,30(4):1~3
    [15]康存锋,陈卫福,黄旭东等.基于PC的开放式数控系统.北京工业大学学报.2001,27(3):375~377
    [16]康存锋,杨建武,费仁元等.开放式PC型运动控制器的研究.中国机械工程.2004,15(9):800~802
    [17]王太勇,李宏伟,汪文津.赵巍.开放式数控系统分布式智能协作体系的研究.天津大学学报.2004,37(8):673~677
    [18]杨涛,秦旭达,王太勇.适用于集成制造模式的开放式数控系统研究.组合机床与自动化加工技术.2004,5:24~26
    [19]卢艳军,林浒,任朝晖,任立义.开放式数控系统体系结构的开发研究.东北大学学报.2004,25(9):891~894
    [20]陈友东,樊锐,陈五一,陈鼎昌.基于RT-Linux的开放式数控系统研究.中国机械工程.2003,14(16):1419~1422
    [21]马雄波.基于PC机的开放式多轴软数控系统关键技术研究与实现.哈尔滨工业大学博士学位论文.2007:21~34
    [22]杨猛.基于IPC的开放式数控系统研究、开发与应用.南华大学硕士学位论文.2007:11~23
    [23]占小猛,杨林,任仲伟.基于DMC运动控制卡的开放式数控系统研究.机械制造与自动化.2011,40(2):128~130
    [24]林峰,巫少龙.开放式数控系统的现状及发展趋势.机械(增刊).2003,30:12~16
    [25]曹树坤,张恒等.基于内核平台的开放式数控系统.机床与液压.2008,36(11):22~24
    [26]胡世广.具备智能特征的开放式数控系统构建技术研究.天津大学博士学位论文.2008:31~34
    [27]张小兵.数控技术发展趋势探讨.机电技术.2008,2:88~90
    [28]唐建新.开放式智能化、网络化的数控技术.常州工程职业技术学院学报.2006,47(1):27~30
    [29] A. Galip Ulsoy. Monitoring and Control of Machining Condition Monitoring andControl for Intelligent Manufacturing.2006,1~32
    [30] Sehoon Oh and Yoichi Hori. Parameter Optimization for NC Machine ToolBased on Golden Section Search Driven PSO. IEEE,2007:3114~3119
    [31] NURSEL ZTüRK, FERRUH ZTüRK. Hybrid neural network and geneticalgorithm based machining feature recognition. Journal of IntelligentManufacturing,2004,15:287~298
    [32] M. Milfelner, J. Kopac, F. Cus, U. Zuperl. Genetic Equation for the CuttingForce in Ball End Milling. Journal of Materials Processing Technology.2005,164:1554~1560
    [33] Sunilkumar Kakade, L.vijayaraghavan, Rkrishnamurthy. Monitoring of ToolStatus Using Intelligent Acoustic Emission Sensing And Decision Based NeuralNetwork. IEEE IA&C.1995:25~29
    [34] E. M. Rubio, R. Tet. Cutting Parameters Analysis for the Development of aMilling Process Monitoring System Based on Audible Energy Sound. Journal ofIntelligent Manufacturing.2009,20(1):43~54
    [35] Han-Ul Lee, Dong-Woo Cho. Development of a Reference Cutting Force Modelfor Rough Milling Feed-rate Scheduling using FEM Analysis. InternationalJournal of Machine Tools&Manufacture.2007,47:158~167
    [36] Fagor Automation. Needs of New Numerical Controls. Producción Mecánica,1999,3:74~83
    [37] Z. Kasirolvalad, M.R. JahedMotlagh, M.A. Shadmani. An intelligent ModelingSystem to Improve the Machining Process Quality in CNC Machine Tools UsingAdaptive Fuzzy Petrinets. Int J Adv Manuf Technol.2006,29:1050~1061
    [38] Rodolfo El′as Haber, Clodeinir R. Peres, etc. Toward Intelligent Machining:Hierarchical Fuzzy Control for the End Milling Process. IEEETRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY.1998,6(2):188~199
    [39]唐唤清.智能加工中切削刀具状态的在线监控方法及其发展趋势.机械研究与应用.1999,4(12):3~4
    [40]刘震,叶大鹏,林高飞.切削过程在线监测研究综述.福建省科协2005年学术年会“数字化制造及其它先进制造技术”专题学术会议.2005:60-63
    [41]刘清荣.基于铣削力信号的刀具磨损状态识别研究.大连交通大学硕士学位论文.2007:42-43
    [42]李锡文,杨明金等.模糊模式识别在铣刀磨损监测中的应用.机械科学与技术.2007,9(26):1113~1117
    [43]冯艳,罗良玲,夏林.基于软测量技术的刀具磨损的在线监测.机床与液压.2006,12:87~89
    [44]高宏力.切削加工过程中刀具磨损的智能监测技术研究.西南交通大学博士学位论文.2005:45~49
    [45]郑金兴,张铭钧,孟庆鑫.多传感器数据融合技术在刀具状态监测中的应用.传感器与微系统.2007,4(26):90~93
    [46]李曦,王红亮.数控加工一种恒负荷控制算法的研究.制造业自动化.2007,1:35~37
    [47]郑华平,李曦,唐小琦.基于自适应预测控制技术的数控铣削加工的研究与应用.机床与液压.2003,3:151~153
    [48]姚锡凡,陈统坚,彭永红.电机电流的检测及其在模糊智能加工系统中的应用.组合机床与自动化加工技术.2000,8:31~33
    [49]冯冀宁,刘彬,刁哲军等.基于小波神经网络的切削刀具状态监测.中国机械工程.2004,4(15):321~324
    [50]张臣,周来水,安鲁陵等.基于仿真的数控铣削加工参数优化研究.中国机械工程.2007,24(18):2955~2960
    [51]胡旭晓,杨克已等.数控机床智能控制系统鲁棒性策略研究.机械工程学报.2002,1(38):75~78
    [52]聂建华,王立岩.神经网络在切削加工过程中的应用.组合机床与自动化加工技术.2006,5:46~48
    [53]常田建等著,崔洪斌译.计算机辅助制造(第3版).清华大学出版社.2007:183~184
    [54] Robert G.Landers and A.Galip Ulsoy. Process Monitoring and Control ofMachining Operations. Landers, Ulsoy, and Furness.1996:1~36
    [55] R. Radulescir, S. G. Kapoor, R. E. DeVor. An Investigation of Variable SpindleSpeed Face Milling for Tool-Work Structures with Complex Dynamics, Part2:Physical Explanation. Journal of Manufacturing Science and Engineering.1997,119:273~280
    [56] Fussel, B. K., Hemmett, J. G., and Jerard, R. B. Modeling of Five-Axis End MillCutting Using Axially Discretized Tool Moves. Transactions of NAMRI/SME,1999,27:81~86
    [57] Chu, C. N., Kim, S. Y., and Lee, J. M.. Feed-Rate Optimization of Ball EndMilling Considering Local Shape Features. CIRP Ann.1997,46(1):433~436
    [58] Yazar, Z., Koch, K. F., Merrick, T., and Altan, T. Feed Rate Optimization Basedon Cutting Force Calculations in3-Axis Milling of Dies and Molds withSculptured Surfaces. Int. J. Mach. Tools Manuf.1994,34(3):365~377
    [59] Rida T. Faroukit, Jairam Manjunathaiaht, Sungchul Jee. Variable Feed-rate CNCInterpolators for Constant Material Removal Rates alongPythagorean-hodograph Curves. Computer-Aided Design.1998,30(8):631~640
    [60] S. J. Rober, Y. C. Shin, O. D. I. Nwokah. A Digital Robust Controller for CuttingForce Control in the End Milling Process. Journal of Dynamic Systems,Measurement, and Control.1997,119:146~152
    [61] Sung I. Kim,Robert G. Landers,A. Galip Ulsoy. Robust Machining ForceControl with Process Compensation. Journal of Manufacturing Science andEngineering.2003,125:423~430
    [62] S. J. Rober, Y. C. Shin. Control of Cutting Force for End Milling ProcessesUsing an Extended Model Reference Adaptive Control Scheme. Journal ofManufacturing Science and Engineering.1996,118:339~347
    [63] Chengying Xu, Yung C. Shin. An Adaptive Fuzzy Controller for ConstantCutting Force in End-Milling Processes. Journal of Manufacturing Science andEngineering.2008,130:1~10
    [64] K.Geels and M.Riickert. Comparison Between Constant Force and ConstantRate of Feed in Materialographic Cut-Off Machines: Surface Quality in Relationto Cutting Speed, Force, and Rate of Feed. MATERIALSCHARACTERIZATION.1996,36:225~233
    [65]宁仲夏,张广军,冯小军.基于BP神经网络的数控铣削约束自适应控制研究.控制与决策(增刊).2002,2(17):174~176
    [66]杨志永,张大卫,黄田.数控铣削加工过程的神经网络控制.天津大学学报.2000,2(33):206~210
    [67]姚小群,姚锡凡,陈统坚等.基于信息嫡的模拟退火算法优化铣削加工模糊控制器参数.工具技术.2006,4(40):35~37
    [68]吴文悌,刘晓婷.数控铣床轮廓铣削加工中确定进给速度的方法.机床与液压.2008,1(36):57~59
    [69]宋清华.高速铣削稳定性及加工精度研究.山东大学博士学位论文.2009:55~58
    [70]黄强,张根保,张新玉,曹东风.机床颤振过程的实验与分析.重庆大学学报.2008,31(4):360~364
    [71]于英华,徐兴强,徐平.以方差和互相关系数判别切削颤振的仿真研究.组合机床与自动化加工技术.2007,5:24~26
    [72] E. Budak. An Analytical Design Method for Milling Cutters with Non-constantPitch to Increase Stability, part2: Application. Transactions of the ASMEJournal of Manufacturing Science and Engineering.2003,125:35~38
    [73] A.R. Yusoff, S. Turner, C.M. Taylor, N.D. Sims. The Role of Tool Geometry inProcess Damped Milling. International Journal of Advanced ManufacturingTechnology.2010,50:883~895
    [74] Yusuke KURATA, Norikazu SUZUKI, Rei HIN. Chatter Suppression in Millingwith Anisotropic Tools. Micro-NanoMechatronics and Human Science.2009,11:547~552
    [75]王跃辉,王民.金属切削过程颤振控制技术的研究进展.机械工程学报.2010,46(7):166~174
    [76]曾立平,陈丰峰,唐进元.刀具颤振抑制用机械阻尼器的理论分析及数值模拟.机械设计与制造.2007,11:197~199
    [77]徐平,王洋,于英华.电流变技术在机床切削颤振控制中的应用.机械设计与制造.2008,3:131~133
    [78] E. Kuljanic, G. Totis, M. Sortino. Development of an Intelligent Multi-sensorChatter Detection System in Milling. Mechanical Systems and Signal Processing.2009,23:1704~1718
    [79] A. Sarhan, R. Sayed, A.A. Nassr. Interrelationships between Cutting ForceVariation and Tool Wear in End-Milling. Journal of Materials ProcessingTechnology.2001,109:229~235
    [80] E. Soliman, F. Ismail. Chatter Suppression by Adaptive Speed Modulation.International Journal of Machine Tools and Manufacture.1997,37(3):355~369
    [81] S. Saastry, S.G. Kapoor, R.E. DeVor. Floquet Theory based Approach forStability Analysis of the Variable Speed Face-Milling Process. Transactions ofthe ASME Journal of Manufacturing Science and Engineering.2002,124:10~15
    [82] Sébastien Seguy, Tamás Insperger, Lionel Arnaud. On the Stability of HighSpeed Milling with Spindle. Int J Adv Manuf Technol.2010,48:883~895
    [83] M. Zatarain, I. Bediaga. Stability of Milling Processes with Continuous SpindleSpeed Variation: Analysis in the Frequency and Time Domains, andExperimental Correlation Speed Variation. CIRP Annals-ManufacturingTechnology.2008,57:379~384
    [84] Y. S. LIAOt, Y. C. YOUNGt. A NEW ON-LINE SPINDLE SPEEDREGULATION STRATEGY FOR CHATTER CONTROL. Int..I. Mach. ToolsManufact.1996,36(5):651~660
    [85] X. Huang, R. Zeng, F. J. Yue. Application Research on NURBS InterpolationTechnique in High Speed Machining. Journal of Nan jing University ofAeronautics&Astronautics.2002,34(1):82~85
    [86]陈守年,王硕桂,干方建.三次参数样条插补精度的主要影响因素分析.机械与电子.2009(7):22~25
    [87] Bedi S, Ali I, Quan N. Advanced Interpolation Techniques for NC Machines.Journal of Engineering for Industry.1993,115(8):329~336
    [88] Yeh SS, Hsu DL. The Speed-Controlled Interpolator for Machining ParametricCurves. Computer-Aided Design.1999,31:349~357
    [89] Syh-Shiuh Yeh, Pau-Lo Hsu. Adaptive-Feedrate Interpolation for ParametricCurves with a Confined Chord Error. Computer-Aided Design.2002,34:229~237
    [90] C.-W. Cheng, M.-C. Tsai. Real-time Variable Feed-rate NURBS CurveInterpolator for CNC Machining. Int J Adv Manuf Technol.2004,23:865~873
    [91]黄河,王甫茂,古文伟.面向开放式数控系统的高性能自适应插补算法的研究.组合机床与自动化加工技术.2010,12:28~31
    [92]杜道山,燕存良,李从心.一种实时前瞻的自适应NURBS插补算法.上海交通大学学报.2006,40(5):843~847
    [93] Kakade, S., Vijayaraghavan, L. Krishnamurthy, R.. Monitoring of Tool StatusUsing Intelligent Acoustic Emission Sensing and Decision Based NeuralNetwork. Industrial Automation and Control, IEEE/IAS InternationalConference on (Cat. No.95TH8005).1995,5:25~29
    [94]陈宗雨,郭伟,王立峰.基于Windows N T与实时扩展的开放式数控系统的研究.计算机集成制造系统.2006,4(12):568~572
    [95]张细刚,龚邦明.基于SERCOS的开放式数控系统研发.机械设计与制造.2008,4:169~171
    [96]吕瑛,陈怀民等. RTX环境下某智能串口卡的驱动开发.科学技术与工程.2007,5(7):761~764
    [97]刘艳明.机床适应控制系统.华中科技大学出版社.2002:2~3
    [98]李军.在机械加工中用变速切削抑制再生颤振.机械与电子.2008,1:94~95
    [99] Nan-Chyuan Tsai, Din-Chang Chen, Rong-Mao Lee. Chatter Prevention forMilling Process by Acoustic Signal Feedback. Int J Adv Manuf Technol.2010,47:1013~1021
    [100] Dongting Liao, Xi Wang, Hui Yu. Experiments Research on High Speed DryMilling of Aluminum Based on Process Monitoring and Analysis.20102ndInternational Conference on Computer Engineering and Technology.2010,5:577~581
    [101]包善斐,张又国,于骏一,乔思茂.用切削力的频数差对切削颤振进行早期预报.振动工程学报.1992,5(2):140~144
    [102]石莉,贾春德,孙玉龙.应用小波研究动态铣削力及预报铣削颤振.哈尔滨工业大学学报.2006,38(10):1778~1780
    [103]肖露,刘献礼.基于小波变换切削力信号监控PCBN刀具破损的研究.机械工程师.2003,12:49~52
    [104] A. Sarhan, R. Sayed, A.A. Nassr etc. Interrelationships between Cutting ForceVariation and Tool Wear in End-Milling. Journal of Materials ProcessingTechnology2001,109:229~235
    [105] I. N. Tansel, M. Li, M. Demetgul etc. Detecting Chatter and Estimating Wearfrom the Torque of End Milling Signals by Using Index Based Reasoner (IBR).Int J Adv Manuf Technol. July,2010
    [106] Sheng Huang, Dan Hong Zhang, Wai Yie Leong etc. Detecting Tool BreakageUsing Accelerometer in Ball-nose End Milling.200810th Intl. Conf. onControl, Automation, Robotics and Vision Hanoi Vietnam.17–20December2008,927~933
    [107] Justin L. Milner and John T. Roth. CONDITION MONITORING WITHROUND CERAMIC INSERTS WHILE FACE MILLING USINGACCELERATION DATA. Proceedings of the ASME2010InternationalManufacturing Science and Engineering Conference. October12-15,2010,1~11
    [108]于骏一,吴博达.机械加工振动的诊断识别与控制.清华大学出版社.1994:74~99
    [109]蒋长锦,蒋勇.快速傅立叶变换及其C程序.中国科学技术大学出版社.2004:61~80
    [110](美)Dwight F.Mix, Kraig J. Olejniczak.小波基础及应用教程.机械工业出版社.2006:95~100
    [111] Y.S.LIAO, Y.C.YOUNG. A NEW ON-LINE SPINDLE SPEED REGULATIONSTRATEGY FOR CHATTER CONTROL. Int..I. Mach. Tools Manufact.1996,36(5):651~660
    [112] I. Bediaga, J. Mu oa, J. Hernández etc. An Automatic Spindle Speed SelectionStrategy to Obtain Stability in High-Speed Milling. International Journal ofMachine Tools&Manufacture.2009,49(5):384~394
    [113] Emad Al-Regib, Jun Ni, Soo-Hun Lee. Programming Spindle Speed Variationfor Machine Tool Chatter Suppression. International Journal of Machine Tools&Manufacture.2003,43:1229~1240
    [114]董玉红,杨清梅.机械控制工程基础.哈尔滨工业大学出版社.2003:106~112
    [115] Daoshan Du, YadongLiu, XinguiGuo etc. An Accurate Adaptive NURBS CurveInterpolator with Real-Time Flexible Acceleration/Deceleration Control.Robotics and Computer-Integrated Manufacturing.2010,26:273-281
    [116] Sung-Ho Nam, Min-Yang Yang. A Study on a Generalized ParametricInterpolator with Real-Time Jerk-Limited Acceleration. Computer-AidedDesign.2004,36:27-36
    [117] Mohammad Mahdi Emami, Behrooz Arezoo. A Look-Ahead CommandGenerator with Control over Trajectory and Chord Error for NURBS Curvewith Unknown Arc Length. Computer-Aided Design.2010,42:625-632