四氧化三铁包覆稀土掺杂钒酸钇荧光磁性纳米复合物制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来磁性荧光纳米粒子因为在生物荧光成像,药物投递,和治疗方面的潜在应用,受到了越来越多科学工作者的关注。然而自然界中并没有一种材料同时具有荧光和磁性,因此需要将两种性质结合到一种纳米复合物中。可给科学工作者选择的磁性材料主要包括:四氧化三铁,γ-三氧化二铁,磁性金属粒子。主要的制备方法有共沉淀法,热分解法,微乳胶法和水热、溶剂热合成法。这些方法都有自己的特点,制备的磁性纳米粒子粒径和分散性也各有不同。四氧化三铁因为制备方法简单,成本较低,磁性强而被广泛用于合成双功能纳米复合物。荧光材料可选的种类较多,主要分为无机和有机两大类。无机荧光材料包括镧系稀土离子掺杂化合物,半导体量子点;有机荧光材料包括有机染料,荧光蛋白。包覆的方案主要有磁性材料作为核,外层包覆荧光材料,或者两种材料混合被另一种包覆。然而每种路线的选择和材料的应用都有各自的优缺点,有很多挑战摆在科学工作者的面前。例如,铁氧化物具有光催化性,有机发光材料与之相接处在光照下会被分解。而无机发光材料中ZnS可以溶于四氧化三铁,形成锌铁氧体固溶体,失去发光性和磁性,这种问题可以通过中间加入隔离层解决。镧系稀土掺杂化合物的制备需要高温处理,如果用它作为荧光材料包覆在磁性材料外层,那么高温会破坏磁性材料,导致复合物的磁性能降低,这同样是很棘手的问题。
     本文的主要目的是合成具有磁性和发光性能的双功能纳米复合物,并通过各种测试手段,如X射线衍射(XRD),透射电子显微镜(TEM),场发射扫描电子显微镜(FESEM),来确定产物的结构,用荧光光谱(PL),振动样品磁强计(VSM)对产物的荧光性质和磁性质进行研究。主要工作内容如下:
     1.我们选取镧系稀土离子掺杂化合物作为荧光材料,水热法制备的四氧化三铁作为磁性材料,采用荧光物质作为核,外层包覆四氧化三铁的设计思路合成双功能纳米复合物。这种磁性在外,发光在内的包覆形式可以避免制备荧光纳米粒子时的高温处理步骤破坏四氧化三铁结构,导致双功能纳米复合物磁性过低的现象出现。我们用溶胶凝胶法制备分别掺杂铕离子的钒酸钇前驱体,在经过高温煅烧之后得到YVO_4:Eu~(3+)纳米粒子,用这种荧光纳米粒子作为核,通过水热法合成四氧化三铁包覆在外层,制得同时具有磁性和荧光性能的纳米复合物。我们通过XRD确定了合成的双功能纳米复合物中同时存在Fe_3O_4和YVO_4:Eu~(3+)相,用TEM确定双功能纳米复合物具有核壳结构,用FESEM表征了包覆前后的形貌变化。重点用PL对复合物和单纯荧光材料的荧光光谱进行了研究,讨论Fe_3O_4对YVO_4:Eu~(3+)荧光性质的影响。同时也通过VSM对复合物的磁性能进行了表征。我们还讨论了在包覆四氧化三铁层时不同表面活性剂和溶剂对YVO_4:Eu~(3+)_(5%)@Fe_3O_4双功能纳米复合物形貌和发光性能的影响。
     2.在上一章的基础上我们合成并研究了YVO_4:Dy~(3+)@Fe_3O_4荧光磁性纳米复合物,对比单纯的YVO_4:Dy~(3+)荧光纳米粒子研究了Fe_3O_4对荧光性质的影响,并得到Dy最佳掺杂浓度为1%,同时研究了YVO_4:Dy~(3+)@Fe_3O_4与Fe_3O_4的磁性质。
     3.我们用溶胶凝胶法制备了YVO_4共掺杂不同化学计量比的Eu~(3+)和Dy~(3+)前驱体,经过高温煅烧制备了能够发射不同颜色荧光的YVO_4:Eu~(3+)_(x%),Dy~(3+)_(y%)纳米粒子,用CTAB分散在水溶液中,通过水热法包覆一层四氧化三铁壳,从而制备了能够在同一波长激发光下发射不同荧光在双功能纳米复合物。我们用XRD,TEM对双功能纳米复合物的结构形貌进行了表征,用PL对双功能纳米复合物的荧光性质进行了研究,同时也研究了四氧化三铁对荧光材料的发光影响,得到各个发射峰位的变化曲线图,我们可以通过这组曲线来设计希望得到的发光颜色双功能纳米复合物。用VSM对双功能纳米复合物的磁性能进行了表征。最终我们得到了具有橘黄色,橙红色,逐渐趋于红色荧光发射的双功能纳米复合物,加上上两章中的单独的稀土离子掺杂纳米复合物,我们就可以合成在相同激发波长下能够发射黄绿光,橘黄光,橙红光,红光等不同颜色的双功能纳米复合物。
     4.在第五章中介绍了我们合成Fe_3O_4/ZnS荧光磁性双功能复合物的实验过程及对复合物荧光性质和磁性的研究结果。我们用水热法钴作为催化剂逆向歧化反应二价铁合成Co_xFe_(1-x)/CoFe_(3-y)O_4复合物,我们研究了钴的掺杂量对产物结构的影响,得知钴的掺杂量不能超过Co:Fe=1,超出则出现杂相。我们用这种磁性复合物作为磁性核,外层修饰了ZnS作为发光材料,得到具有荧光磁性的复合物。因为磁性核中含有磁性金属单质,所以具有较高的磁性能,但是ZnS受到磁核的影响,发光性能较低。因此我们为了提高ZnS的发光强度,掺杂不同浓度的Mn~(2+)来提高发光性能,确定较好的掺杂量为_(5%)摩尔分数。然后为了降低复合物的粒径,我们用水热法制备的Fe_3O_4纳米粒子代替Co_xFe_(1-x)/CoFe_(3-y)O_4复合物,同时因为ZnS可以溶解在Fe_3O_4中,我们在包覆ZnS之前在Fe_3O_4外层包覆了一层约16nm的SiO_2层,用来隔离发光物质和磁性物质。这样就得到了直径在550nm~900nm之间的Fe_3O_4@SiO_2@ZnS:Mn_(5%)纳米复合物,具有最强发射峰在490nm处的荧光发射,和饱和磁化强度27.6emu/g的磁性能。
In recent years, bifunctional nanocomposites that exhibit significant magneticmoment and luminescence have attracted much attention because of many potentialapplications in biological fluorescence imaging, drug delivery, and treatment. Innature, materials that exhibit significant magnetic moment and luminescence do notexist. The magnetic material can be used for nanocomposites, including: iron oxide,γ-ferric oxide, magnetic metal particles. The main preparation methods arecoprecipitation, thermal decomposition method, micro-emulsion method andhydrothermal, solvothermal synthesis method. These methods have its owncharacteristics. The preparation of magnetic nano-particle size and dispersion are alsodifferent. The iron oxide is widely used, for the simple preparation method, low cost,strong magnetic. The fluorescent materials include inorganic and organic twocategories. Inorganic fluorescent materials include the lanthanide rare earth ion-dopedcompounds, semiconductor quantum dots; organic fluorescent materials, includeorganic dyes, fluorescent proteins. The design of the composites is used magneticmaterial as the core, the outer layer coated with a fluorescent material, or a mixture oftwo material is coated by another. However, each route selection and application ofthe material have its own advantages and disadvantages, there are many challengesplaced in front of scientists. As the iron oxide particles are photocatalysts, thisnanocomposite must be stored away from daylight. The inorganic light-emittingmaterial ZnS can dissolve in the iron oxide to form zinc ferrite solid solution. Theywill lose the luminescence and magnetic. The problem can be solved by the middlebarrier. Preparation of lanthanide rare-earth doped compounds need high-temperatureprocessing. If it is used as the fluorescent material coated on the magnetic materials,the magnetic material will be destroyed.
     In this paper, we would like to synthesize a series of bifunctionalnanocomposites with magnetic and luminescent properties. The structure,luminescent and magnetic properties of the nanocomposites were investigated byX-ray diffraction (XRD), transmission electron microscopy (TEM), field emissionscanning electron microscope (FESEM), fluorescence spectroscopy (PL), andvibrating sample magnetometer (VSM). The main contents are as follows:
     1. We select the lanthanide rare-earth ions doped compounds as fluorescentmaterials, iron oxide synthesized by a hydrothermal method as magnetic materials.We use fluorescent nanoparticles as the core coated with iron oxide to synthesizebifunctional nanocomposites. This strategy, the phosphor coated with iron oxide,could avoid the high-temperature process of the preparation of phosphors, which candestroy the magnetic materials. We used the Sol-gel method to produce the yttriumvanadate doped with europium ion precursor. After high-temperature calcination, weobtained the YVO_4: Eu~(3+)nanoparticles. We used them as the nucleus, coated withFe_3O_4which synthesized by the hydrothermal method, then obtained magneto-opticbifunctional nanocomposites. We investigated the bifunctional nanocomposites byXRD, TEM, FESEM to determine their component, struction, and morphology. Wefocused on the luminescent properties of the nanocomposites and the phosphors, andinvestigated by PL. We discussed the impact of iron oxide on the luminescence. Themagnetic properties of the nanocomposites and the iron oxide were investigated byVSM. We also discussed the impact of the different surfactants and solvents, whichused to disperse the phosphors in the synthesis of Fe_3O_4, on the morphology and theluminescent properties of the YVO_4:Eu~(3+)_(5%)@Fe_3O_4bifunctional nanocomposites.
     2. Based on the previous chapter, we synthesized the YVO_4:Dy~(3+)@Fe_3O_4magneto-optic nanocomposites, and studied their luminescent and magneticproperties. We studied the impact of Fe_3O_4on the luminescent properties ofnanocomposites contrast to the pure YVO_4: Dy~(3+)nanoparticles. The optimal dopingconcentration of Dy is1%. We also studied the magnetic properties of theYVO_4:Dy~(3+)@Fe_3O_4nanocomposites and the pure Fe_3O_4nanoparticles.
     3. We were successfully prepared a series of different concentrations of Eu~(3+),Dy~(3+)codoping YVO_4@Fe_3O_4magnetic phosphors by using two steps route, including Sol-gel and hydrothermal method. We calcined the precursors whichprepared by the Sol-gel method to get the phosphors, then used CTAB to dispersethe phosphors in aqueous solution for coated with the Fe_3O_4which prepared by thehydrothermal method. Finally, we got a series of bifunctional nanocomposites withdifferent optical emission peaks, which excited in the same wavelengths. Wecharacterized the structure of the bifunctional nanocomposites by XRD, TEM. Weused PL to study the luminescent properties of nanocomposites. We also studied theimpact of Fe_3O_4on the luminescent properties of the phosphors, and got plots ofemission peaks intensity variation with various co-doping concentrations. We candesign nanocomposites with the desired emission. We characterized the magneticproperties of the nanocomposites by VSM. Finally, we successfully synthesized aseries of bifunctional nanocomposites with orange emission and orange-redemission. As increasing the co-doping concentration, the color gradually turned tored. Adding the rare-earth single-doped nanocomposites prepared in the previouschapters, we got the bifunctional nanocomposites with different emissions, such asyellow-green, orange, orange-red, red, in the same excitation wavelength.
     4. In the fifth chapter, we introduced the synthesis process of Fe_3O_4/ZnSmagneto-optic bifunctional composites and the findings of the fluorescent andmagnetic properties of the composites. We synthesized the Co_xFe_(1-x)/CoFe_(3-y)O_4composites by using cobalt as a catalyst to disproportion Fe (II) under hydrothermalcondition. We studied the influence of cobalt doping on the structure of thecomposites, and learned that cobalt doping amount can not exceed the Co: Fe=1. Ifit was excess, the hybrid phase would appear. We used these magnetic composites asthe magnetic core, modified with ZnS as luminescent materials, to synthesizebifunctional composites. Because of the magnetic metal in the core, the Ms of thebifunctional composites was high. However the fluorescent intensity of the ZnS wasdecreased affected by the magnetic core. In order to improve the fluorescentintensity of ZnS, we doped with different concentrations of Mn~(2+)as an excitationcentre. The optimum is5mol%. We used the Fe_3O_4nanoparticles prepared by thehydrothermal method instead of Co_xFe_(1-x)/CoFe_(3-y)O_4composites, in order to reducethe particle size. Because ZnS can be dissolved in Fe_3O_4, we used16nm SiO_2as a
     barrier to isolate the luminescent material and magnetic material. We got Fe_3O_4@SiO_2@ZnS: Mn_(5%)nanocomposites with the diameter between550nm~900nm, theemission peak at490nm, and the saturation magnetization27.6emu/g.
引文
[1] SCHRAND AM, RAHMAN MF, HUSSAIN SM, et al. Metal-basednanoparticles and their toxicity assessment [J]. Wiley Interdiscip Rev NanomedNanobiotechnol.2010,2:544–568
    [2] LI X, Nanoscale structural and mechanical characterization of naturalnanocomposites: Seashells [J]. JOM,2007,59:71-74
    [3] LU A H, SALABAS E L, SCHUTH F, Magnetic Nanoparticles: Synthesis,Protection, Functionalization, and Application [J]. Angew Chem. Int. Ed.2007,46:1222-1244.
    [4] TARTAJ P, MORALES M P, GONZALEZ-CARRENO T,et al. Advancesin magnetic nanoparticles for biotechnology applications [J]. J. MagnetismMagnetic Mater.2005,290:28-34
    [5] GAO J H, GU H W, XU B, Multifunctional Magnetic Nanoparticles: Design,Synthesis, and Biomedical Applications,[J]. Acc. Chem. Res.2009,42:1097-1107
    [6] SHYLESH S, SCHüNEMANN V, THIEL W R, Magnetically separablenanocatalysts: bridges between homogeneous and heterogeneous catalysis [J].Angew. Chem. Int. Ed.2010,49:3428-3459
    [7] FREY N A, PENG S, CHENG K, et al. Magnetic nanoparticles: synthesis,functionalization, and applications in bioimaging and magnetic energy storage,[J]. Chem. Soc. Rev.2009,38:2532-2542.
    [8] LAURENT S, FORGE D, PORT M, et al. Magnetic iron oxide nanoparticles:synthesis, stabilization, vectorization, physicochemical characterizations, andbiological applications [J]. Chem. Rev.2008,108:2064-2110.
    [9] GUPTA A K, GUPTA M, Synthesis and surface engineering of iron oxidenanoparticles for biomedical applications [J]. Biomaterials2005,26:3995-4021.
    [10] HYEON T Chemical synthesis of magnetic nanoparticles [J]. Chem Commun,2003:927–934
    [11] CHOU S W, SHAU Y H, WU P C, et al. In vitro and in vivo studies of FePtnanoparticles for dual modal CT/MRI molecular imaging [J]. J Am Chem Soc2010,132:13270–13278,
    [12] SHI X, WANG S H, SWANSON S D, et al. Dendrimer-functionalizedshell-crosslinked iron oxide nanoparticles for in vivo magnetic resonanceimaging of tumors [J]. Adv Mater,2008,20:1671–1678,
    [13] TABOADA E, SOLANAS R, RODRI′GUEZ E, et al.Supercritical-fluid-assisted one-pot synthesis of biocompatiblecore(γ-Fe2O3)/shell(SiO2) nanoparticles as high relaxivity T2-contrast agentsfor magnetic resonance imaging [J]. Adv Funct Mater,2009,19:2319–2324,
    [14] PENG R, ZHANG W, RAN Q, et al. Magnetically switchablebioelectrocatalytic system based on ferrocene grafted iron oxide nanoparticles[J]. Langmuir,2011,27:2910–2916,
    [15] CHOMOUCKA J, DRBOHLAVOVA J, HUSKA D, et al. Magneticnanoparticles and targeted drug delivering [J]. Pharmacol Res2010,62:144–149
    [16] SHKILNYY A, MUNNIER E, HERVE′K, et al. Synthesis and evaluation ofnovel biocompatible super-paramagnetic iron oxide nanoparticles as magneticanticancer drug carrier and fluorescence active label [J]. J Phys Chem C,2010,114:5850–5858
    [17] BERRY C C, CURTIS ASG, Functionalization of magnetic nanoparticles forapplications in biomedicine [J]. J Phys D Appl Phys,2003,36:R198–R206
    [18] J. P. JOLIVET, C. CHANEAC, E. TRONC, Iron oxide chemistry. Frommolecular clusters to extended solid networks [J]. Chem. Commun.2004,4:481-487.
    [19] MASSART R, Preparation of aqueous magnetic liquids in alkaline and acidicmedia [J]. IEEE Trans. Magn.1981,17:1247-1248.
    [20] MASSART R, CABUIL V J, Effect of some parameters on the formation ofcolloidal magnetite in alkaline medium: yield and particle size control,[J].Chim. Phys.1987,84:7-8
    [21] PENG S, SUN S, Synthesis and characterization of monodisperse hollowFe3O4nanoparticles [J]. Angew. Chem. Int. Ed.2007,46:4155-4158
    [22] SUN S, MURRAY C B, WELLER D, et al. Monodisperse FePt nanoparticlesand ferromagnetic FePt nanocrystal superlattices [J]. Science2000,287:1989-1992.
    [23] SUN S, ZENG H, Size-controlled synthesis of magnetite nanoparticles [J]. J.Am. Chem. Soc.2002,124:8204-8205.
    [24] ZENG H, LI J, LIU J P, et al. Exchange-coupled nanocomposite magnets bynanoparticle self-assembly [J]. Nature2002,420:395-398.
    [25] SUN S, ZENG H, ROBINSON D B, et al. Monodisperse MFe2O4(M=Fe, Co,Mn) nanoparticles [J]. J. Am. Chem. Soc.2004,126:273-279.
    [26] WANG C, DAIMON H, ONODERA T, et al. A General Approach to theSize‐and Shape‐Controlled Synthesis of Platinum Nanoparticles and TheirCatalytic Reduction of Oxygen [J]. Angew. Chem. Int. Ed.2008,47:3588-3591
    [27] JANA N R, CHEN Y, PENG X, Size-and shape-controlled magnetic (Cr, Mn,Fe, Co, Ni) oxide nanocrystals via a simple and general approach [J]. Chem.Mater.2004,16:3931-3935
    [28] PARK J, AN K, HWANG Y, et al, Ultra-large-scale syntheses of monodispersenanocrystals [J]. Nat. Mater.2004,3:891-895
    [29] LI Z, SUN Q, GAO M Y, Preparation of water‐soluble magnetitenanocrystals from hydrated ferric salts in2‐pyrrolidone: mechanism leadingto Fe3O4[J]. Angew. Chem. Int. Ed.2005,44:123-126.
    [30] HU F Q, WEI L, ZHOU Z, et al. Preparation of biocompatible magnetitenanocrystals for in vivo magnetic resonance detection of cancer [J]. Adv.Mater.2006,18:2553-2556
    [31] LANGEVIN D, Micelles and microemulsions [J]. Annu. Rev. Phys. Chem.1992,43:341-369.
    [32] BEE A, MASSART R, NEVEU S, Synthesis of very fine maghemite particles[J]. J. Magn. Magn. Mater.1995,149:6-9
    [33] ISHIKAWA T, KATAOKA S, KANDORI K, Effects of silicate and phosphateions on the formation of ferric oxide hydroxide particles [J]. J. Mater. Sci.1993,28:2693-2698
    [34] HYEON T, LEE S, PARK J, et al. Synthesis of highly crystalline andmonodisperse maghemite nanocrystallites without a size-selection process [J].J. Am. Chem. Soc.2001,123:12798-12801
    [35] GIRI S, SAMANTA S, MAJI S, et al. Magnetic properties of α-Fe2O3nanoparticle synthesized by a new hydrothermal method [J]. J. Magn. Magn.Mater.2005,285:296-302.
    [36] WANG X, ZHUANG J, PENG Q, A general strategy for nanocrystal synthesis[J]. Nature2005,437:121-124
    [37] WANG J, SUN J, SUN Q, et al. One-step hydrothermal process to preparehighly crystalline Fe3O4nanoparticles with improved magnetic properties [J].Mater. Res. Bull.2003,38:1113-1118
    [38] DENG H, LI X, PENG Q, et al. Monodisperse Magnetic Single‐CrystalFerrite Microspheres [J]. Angew. Chem. Int. Ed.2005,44:2782-2785
    [39] JéZéQUEL D, GUENOT J, JOUINI N, et al. Submicrometer zinc oxideparticles: Elaboration in polyol medium and morphological characteristics [J].J. Mater. Res.1995,10:77-83.
    [40] FIéVET F, LAGIER J P, BLIN B, et al. Homogeneous and heterogeneousnucleations in the polyol process for the preparation of micron and submicronsize metal particles [J]. Solid State Ionics1989,198:32–33.
    [41] CAI W, WAN J J, Facile synthesis of superparamagnetic magnetitenanoparticles in liquid polyols [J]. Colloid Interface Sci.2007,305:366-370.
    [42] WANG J, REN F, YI R, et al. Solvothermal synthesis and magnetic propertiesof size-controlled nickel ferrite nanoparticles [J]. J. Alloys Compd.2009,479:791-796.
    [43] BUTTER K, PHILIPSE A P, VROEGE G J, Synthesis and properties of ironferrofluids [J]. J. Magn. Magn. Mater.2002,252:1-3.
    [44] DUMESTRE F, CHAUDRET B, AMIENS C, et al. Superlattices of IronNanocubes Synthesized from Fe[N(SiMe3)2]2[J]. Science2004,303:818-821.
    [45] PAUL B K, MOULIK S P, Uses and applications of microemulsions [J]. Curr.Sci.2001,80:990-1001
    [46] GUPTA A K, GUPTA M, Synthesis and surface engineering of iron oxidenanoparticles for biomedical applications [J]. Biomaterials2005,26:3995-4021.
    [47] CARPENTER E E, SEIP C T, O’CONNOR C J, Magnetism of nanophasemetal and metal alloy particles formed in ordered phases [J]. J. Appl. Phys.1999,85:5184-5187.
    [48] LIU C, ZOU B, RONDINONEA J, et al. Reverse Micelle Synthesis andCharacterization of Superparamagnetic MnFe2O4Spinel FerriteNanocrystallites [J]. J. Phys. Chem. B2000,104:1141-1145.
    [49] WOO K, LEE H J, AHN J P, et al. Sol-Gel Mediated Synthesis of Fe2O3Nanorods [J]. Adv. Mater.2003,15:1761-1764.
    [50] MOUMEN N, PILENI M P, Control of the Size of Cobalt Ferrite MagneticFluid [J]. J. Phys. Chem.1996,100:1867-1873.
    [51] TAN W, SANTRA S, ZHANG P, et al. Coated nanoparticles US Patent6548264[P].2003-04-15.
    [52] XU H, TONG N H, CUI L L,et al. Preparation of hydrophilic magneticnanospheres with high saturation magnetization [J]. J. Magnetism MagneticMater.2007,311:125-130.
    [53] XU H, CUI L L, TONG N H, et al. Development of High MagnetizationFe3O4/Polystyrene/Silica Nanospheres via Combined Miniemulsion/EmulsionPolymerization [J]. J. Am. Chem. Soc.2006,128:15582-15583.
    [54] LU A H, SALABAS E L, SCHUTH F Magnetic nanoparticles: synthesis,protection, functionalization, and application [J]. Angew. Chem. Int. Ed.2007,46:1222–1244
    [55] PATONAY G et al Noncovalent Labeling of Biomolecules with Red and Near-Infrared Dyes [J]. Molecules2004,9:40–49
    [56] SHIMOMURA O, JOHNSON F H, SAIGA Y, Action of Cyanide onCypridinaLuciferin [J]. J. Cell. Comp. Physiol.1962,59:223–239
    [57] HEIM R, PRASHER D C, TSIEN R Y, Wavelength mutations andposttranslational autoxidation of green fluorescent protein [J]. Natl Acad. Sci.USA,1994,91:12501–12504
    [58] SINHA S P, Complexes of The Rare Earth [J]. Journal of Inorganic andNuclear Chemistry,1966,28:189-193
    [59] SELVIN P R Principles And biophysical applications of lanthanide-Basedprobes [J]. Annu. Rev. Biophys. Biomembr.2002,31:275–302
    [60] LI M AND SELVIN P R Luminescent Polyaminocarboxylate Chelates ofTerbium and Europium: The Effect of Chelate Structure [J]. J. Am. Chem.Soc.1995,117:8132–8138
    [61] PARAKW J et al, Biological applications of colloidalnanocrystals [J]. Nanotechnology2003,14:R15–27
    [62] EFROS A L AND EFROS A L, Interband absorption of light in asemiconductor sphere [J]. Sov. Phys.—Semicond.1982,16:772–775
    [63] EKIMOV A I AND ONUSHCHENKO A A, Quantum size effect in the opticalspectra of semiconductor microcrystals [J].Sov.Phys.—Semicond.1982,16:775–778
    [64] MURRAY C B, NORRIS D J, BAWENDI M G, Synthesis and characterizationof nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductornanocrystallites [J]. J. Am. Chem. Soc.1993,115:8706–8715
    [65] HAN M Y, GAO X, SU J Z, et al. Quantum-dot-tagged microbeads formultiplexed optical coding of biomolecules [J]. Nat Biotechnol2001,19:631-635.
    [66] MAUNDERS E A, DESHAZER L G,[J]. J. Opt. Soc. Am.1971,61:684.
    [67] BASS M, Electrooptic Q switching of the Nd:YVO4laser without anintracavity polarizer [J]. IEEE, J. Quantum Electron.1975,11:938-941.
    [68] O’CONNOR J R, Unusual crystal-field energy levels and efficient laserproperties of YVO4:Nd [J]. Appl. Phys. Lett.1966,9:407-409.
    [69] FIELDS R A, BIRNBAUM M, FINCHER C L, Highly efficient Nd: YVOdiode‐laser end‐pumped laser [J]. Appl. Phys. Lett.1987,51:1885-1886.
    [70] GERNER P, KRAMER K, GUDEL H U, Broad-band Cr5+-sensitized Er3+luminescence in YVO4[J]. J. Lumin.2003,102:112-118.
    [71] ZHANG H W, FU X Y, NIU S Y, et al. Low temperature synthesis ofnanocrystalline YVO4:Eu via polyacrylamide gel method [J]. J. Solid StateChem.2004,177:2649-2654.
    [72] LEVINE A K, PALILLA F C, A New, Highly Efficient Red‐EmittingCathodoluminescent Phosphor (YVO4: Eu) For Color Television [J]. Appl.Phys. Lett.1964,5:118-120.
    [73] M. Yu, J. Lin, Z. Wang, et al. Fabrication, Patterning, and Optical Properties ofNanocrystalline YVO4:A (A=Eu3+, Dy3+, Sm3+, Er3+) Phosphor Films viaSol-Gel Soft Lithography [J]. Chem. Mater.2002,14:2224-2231.
    [74] RIWOTZKI K, HAASE M, Wet-Chemical Synthesis of Doped ColloidalNanoparticles: YVO4:Ln (Ln=Eu, Sm, Dy)[J]. J. Phys. Chem. B,1998,102:10129-10135.
    [75] WANG H, YU M, LIN CK, et al. Core-shell structuredSiO2@YVO4:Dy3+/Sm3+phosphor particles: Sol-gel preparation andcharacterization [J]. J. Colloid Interface Sci.2006,300:176-182.
    [76] IGARASHI T, IHARA M, KUSUNOKI T, et al. Relationship between opticalproperties and crystallinity of nanometer Y2O3:Eu phosphor [J]. Appl. Phys.Lett.2000,76:1549-1551.
    [77] WEBER M J, Inorganic scintillators: today and tomorrow [J]. J. Lumin.2002,100:35-45
    [78] PALILLA F C, LEVINE A K, RINKEVIC M, Rare Earth Activated PhosphorsBased on Yttrium Orthovanadate and Related Compounds [J]. J. Electrochem.Soc.1965,112:776-779.
    [79] RAMBABU U, AMALNERKAR D P, KALE B B, et al. Fluorescence spectraof Eu3+-doped LnVO4(Ln=La and Y) powder phosphors [J]. Mater. Res.Bull.2000,35:929-936.
    [80] HOU Z Y, YANG P P, LI C X, et al. Preparation and Luminescence Propertiesof YVO4:Ln and Y(V, P)O4:Ln (Ln=Eu3+, Sm3+, Dy3+) Nanofibers andMicrobelts by Sol-Gel/Electrospinning Process [J]. Chem. Mater.2008,20:6686-6696.
    [81] EKAMBARAM S, PATIL K C, Rapid synthesis and properties of FeVO4,AlVO4, YVO4and Eu3+-doped YVO4[J]. J. Alloys Compd.1995,217:104-107.
    [82] FEY G T K, HUANG D L, Synthesis, characterization and cell performance ofinverse spinel electrode materials for lithium secondary batteries [J].Electrochim. Acta1999,45:295-314.
    [83] HAASE M, RIWOTZKI K, MEYSSAMY H, et al. Synthesis and properties ofcolloidal lanthanide-doped nanocrystals [J]. J. Alloys Compd.2000,303:191-197.
    [84] HUIGNARD A, GACOIN T, BOILOT J P, Synthesis and LuminescenceProperties of Colloidal YVO4:Eu Phosphors [J]. Chem. Mater.2000,12:1090-1094.
    [85] GAO J H, GU H W, XU B, Multifunctional Magnetic Nanoparticles: Design,Synthesis, and Biomedical Applications [J]. Acc. Chem. Res.2009,42:1097–1107.
    [86] MORIYAMA E H, ZHANG G, WILSON B C, Optical Molecular Imaging:From Single Cell to Patient [J]. Clin. Pharmacol. Ther.2008,84:267–271.
    [87] XU C, XIE J, HO D, et al. Au–Fe3O4Dumbbell Nanoparticles asDual-Functional Probes [J]. Angew. Chem., Int. Ed.2007,47:173–176.
    [88] CHOI J H, NGUYEN F T, BARONE, et al. Multimodal Biomedical Imagingwith Asymmetric Single-Walled Carbon Nanotube/Iron Oxide NanoparticleComplexes [J]. Nano Lett.2007,7:861–867.
    [89] HUH Y M, JUN Y M, SONG H T, et al. In Vivo Magnetic ResonanceDetection of Cancer by Using Multifunctional Magnetic Nanocrystals [J]. J.Am. Chem. Soc.2005,127:12387–12391.
    [90] HONG X, LI J, WANG M J, et al. Fabrication of Magnetic LuminescentNanocomposites by a Layer-by-Layer Self-assembly Approach [J]. Chem.Mater.2004,16:4022–4027.
    [91] VOLLATH D, SZABO D V, SEITH B, Magnetic properties of nanocrystallineCr2O3synthesized in a microwave plasma German Patent E000019638601C1[P].1996-05-14
    [92] VOLLATH D, LAMPARTH I, WACKER F, Ceramic nanoparticles coatedwith polymers based on acrylic derivatives German PatentDE000010203907A1[P].2002-05-15.
    [93] VOLLATH D, LAMPARTH I, SZABóD V, Nanocomposites as NewFunctional Materials [J]. BHM2002,147:350-358.
    [94] VOLLATH D, SZABO D V, Synthesis and properties of nanocomposites [J].Adv. Eng. Mater.2004,6:117-127.
    [95] VOLLATH D, SZABóD V, SCHLABACH S, Oxide/polymernanocomposites as new luminescent materials [J]. J. Nanoparticle Res.2004,6:181-191.
    [96] VOLLATH D, SZABó D V, The Microwave plasma process: a versatileprocess to synthesise nanoparticulate materials [J]. J. Nanoparticle Res.2006,8:417-428.
    [97] BERTORELLE F, WILHELM C, ROGER J, et al. Fluorescence-ModifiedSuperparamagnetic Nanoparticles: Intracellular Uptake and Use in CellularImaging [J]. Langmuir2006,22:5385-5391.
    [98] CHOI J, KIM J C, LEEC Y B, et al. Fabrication of silica-coated magneticnanoparticles with highly photoluminescent lanthanide probes [J]. Chem.Commun.2007,16:1644-1646.
    [99] LAI C W, WANG Y H, LAI C H, et al. Iridium-Complex-FunctionalizedFe3O4/SiO2Core/Shell Nanoparticles: A Facile Three-in-One System inMagnetic Resonance Imaging, Luminescence Imaging, and PhotodynamicTherapy [J]. Small2008,4:218-224.
    [100] WANG D, HE J, ROSENZWEIG N, et al. Superparamagnetic Fe2O3Beads-CdSe/ZnS Quantum Dots Core/Shell Nanocomposite Particles for CellSeparation [J]. Nano Lett.2004,4:409-413.
    [101] LIU B, XIE W, WANG D,et al. Preparation and characterization of magneticluminescent nanocomposite particles [J]. Mater. Lett.2008,62:3014-3017.
    [102] KIM H, ACHERMANN M, BALET L P,et al. Synthesis and Characterizationof Co/CdSe Core/Shell Nanocomposites: Bifunctional Magnetic-OpticalNanocrystals [J]. J. Am. Chem. Soc.2005,127:544-546.
    [103] Liu H L, Wu J H, Min J H, et al. Non-aqueous synthesis of water-dispersibleFe3O4–Ca3(PO4)2core–shell nanoparticles [J]. Nanotechnology2011,22:055701-055708
    [104] CHENG G, ZHANG J L, LIU Y L, et al. Synthesis of novelFe3O4@SiO2@CeO2microspheres with mesoporous shell for phosphopeptidecapturing and labeling [J]. Chem. Commun.2011,47:5732–5734
    [105] YANG P P, QUAN Z W, HOU Z Y, et al. A magnetic luminescent andmesoporous core–shell structured composite material as drug carrier [J].Biomaterials,2009,30:4786–4795
    [106] WANG W, ZOU M, CHEN K Z, Novel Fe3O4@YPO4:Re (Re=Tb, Eu)multifunctional magnetic–fluorescent hybrid spheres for biomedicalapplications [J]. Chem. Commun.,2010,46:5100–5102
    [1] ZENG H, LI J, LIU J P, et al. Exchanged-coupled nanocomposite magnets viananoparticle self-assembly,[J]. Nature,2002,420:395–398.
    [2] HE X D, LIU Y, LI H, et al. Photoluminescent Fe3O4/carbon nanocompositewith magnetic property,[J]. Journal of Colloid and Interface Science,2011,356:107-110
    [3] WANG H, LI Y X, SUN L, et al. Electrospun novel bifunctionalmagnetic-photoluminescent nanofibers based on Fe2O3nanoparticles andeuropium complex,[J]. Journal of Colloid and Interface Science,2010350:396-401
    [4] DE M, GHOSH P S, ROTELLO V M, Applications of Nanoparticles in Biology,[J]. Adv. Mater.,200820:4225-4241.
    [5] WANG Z L. Transmission Electron Microscopy of Shape-ControlledNanocrystals and Their Assemblies,[J]. J. Phys. Chem. B2000,104:1153-1175.
    [6] ZHANG D E, ZHANG X J, NI X M, et al. Fabrication and Characterization ofFe3O4Octahedrons via an EDTA-Assisted Route,[J]. Crystal Growth&Design,2007,7(10):2117–2119.
    [7] LI L, ZHAO M, TONG W, et al. Preparation of cereal-like YVO4:Ln3+(Ln=Sm,Eu, Tb, Dy) for high quantum efficiency photoluminescence,[J].Nanotechnology2010,12:195601-195609..
    [8] WANG J, HOJAMBERDIEV M, XU Y, CTAB-assisted hydrothermal synthesisof YVO4:Eu3+powders in a wide pH range,[J]. Solid State Sciences2012,14:191-196
    [9] BAO A, LAI H, YANG Y, et al. Luminescent properties of YVO4: Eu/SiO2core–shell composite particles,[J]. J. Nanopart. Res.2010,12:635–643.
    [10] NINGTHOUJAMA R S, SINGHB R L, SUDARSANA V, et al. Energy transferprocess and optimum emission studies in luminescence of core?shellnanoparticles: YVO4:Eu-YVO4and surface state analysis,[J]. Journal of Alloysand Compounds2009,484:782–789.
    [1] YU X, SHAN Y, LI G, et al. Synthesis and characterization of bifunctionalmagnetic-optical Fe3O4@SiO2@Y2O3: Yb3+,Er3+near-infrared-to-visibleup-conversion nanoparticles,[J]. J. Mater. Chem.2011,21:8104-8109.
    [2] WEN M, ZHAO W, ZHANG T, et al. A fluorescent magneticnanoalloy-Lanthanon-doped FePt:RE,[J]. J. Colloid Interface Sci.2008,322:143–151.
    [3] BUISSETTE V, GIAUME D, GACOIN T, et al. Aqueous routes tolanthanide-doped oxide nanophosphors,[J]. J. Mater. Chem.2006,16:529-539.
    [4] L. Li, M. Zhao, W. Tong, et al. Preparation of cereal-like Y V O4:Ln3+(Ln=Sm,Eu, Tb, Dy) for high quantum efficiency photoluminescence,[J].Nanotechnology2010,21:195601-195609.
    [5] WANG W, CHENG Z, YANG P, et al. Patterning of YVO4:Eu3+LuminescentFilms by Soft Lithography,[J]. Adv. Funct. Mater.2011,21:456-463.
    [6] SUN L, ZANG Y, SUN M, et al. Synthesis of magnetic and fluorescentmultifunctional hollow silica nanocomposites for live cell imaging,[J]. J.Colloid Interface Sci.2010,350:90–98.
    [7] GOVINDAIAH P, JUNG Y J, LEE J M, et al. Monodisperse and fluorescentpoly(styrene-co-methacrylic acid-co-2-naphthyl methacrylate)/Fe3O4composite particles,[J]. J. Colloid Interface Sci.2010,343:484–490.
    [8] WANG F, XUE X, LIU X, Multicolor tuning of (Ln, P)-doped YVO4nanoparticles by single-wavelength excitation,[J]. Angew. Chem. Int. Ed.2008,47:906-909.
    [9] M. Zhang, H. Fan, B. Xi, X. Wang, C. Dong, Y. Qian, Synthesis,Characterization, and Luminescence Properties of Uniform Ln3+-Doped YF3Nanospindles,[J]. J. Phys. Chem. C,2007,111:6652-6657.
    [10] G. Jia, Y. Song, M. Yang, Y. Huang, L. Zhang, H. You, Uniform YVO4:Ln3+(Ln=Eu, Dy, and Sm) nanocrystals: Solvothermal synthesis and luminescenceproperties,[J]. Opt. Mater.31(2009)1032–1037.
    [11] He F, Yang P, Niu N, et al. Hydrothermal synthesis and luminescent propertiesof YVO4:Ln3+(Ln=Eu, Dy, and Sm) microspheres,[J]. J. Colloid Interface Sci.2010,343:71-78.
    [12]张思远.稀土离子光谱学[M].北京:科学出版社,2008.
    [1] EROGBOGBO F, YONG K T, HU R, et al. Biocompatible MagnetofluorescentProbes: Luminescent Silicon Quantum Dots Coupled with SuperparamagneticIron(III) Oxide,[J]. ACS Nano2010,4:5131-5138.
    [2] XU C, WANG B, SUN S, Dumbbell-like Au-Fe3O4Nanoparticles forTarget-Specific Platin Delivery,[J]. J. Am. Chem. Soc.2009,131:4216-4217.
    [3] CHEN G, DESINAN S, NECHACHE R, et al. Bifunctional catalytic/magneticNi@Ru core-shell nanoparticles,[J]. Chem. Commun.,2011,47:6308–6310
    [4] WU H, ZHANG S, ZHANG J, et al. A Hollow-Core, Magnetic, andMesoporous Double-Shell Nanostructure: In Situ Decomposition/ReductionSynthesis, Bioimaging, and Drug-Delivery Properties,[J]. Adv. Funct. Mater.2011,21,1850–1862
    [5] MEDINTZ I L; MATTOUSSI H; CLAPP A R, Potential clinical applications ofquantum dots,[J]. Int. J. Nanomed.2008,3:151-167.
    [6] MADER H S, KELE P, SALEH S M, et al. Upconverting luminescentnanoparticles for use in bioconjugation and bioimaging,[J]. Curr. Opin. Chem.Biol.2010,14:582-596.
    [7] HAN M Y, GAO X, SU J Z, et al. Quantum-dot-tagged microbeads formultiplexed optical coding of biomolecules,[J]. Nat Biotechnol2001,19:631-635.
    [8] HOU Z Y, YANG P P, LI C X,et al. Preparation and Luminescence Properties ofYVO4:Ln and Y(V, P)O4:Ln (Ln=Eu3+, Sm3+, Dy3+) Nanofibers and Microbeltsby Sol-Gel/Electrospinning Process,[J]. Chem. Mater.2008,20:6686-6696.
    [9] WANG, Z L. Transmission Electron Microscopy of Shape-ControlledNanocrystals and Their Assemblies,[J]. J. Phys. Chem. B2000,104:1153-1175.
    [10] LI L, ZHAO M, TONG W, et al. Preparation of cereal-like Y V O4:Ln3+(Ln=Sm, Eu, Tb, Dy) for high quantum efficiency photoluminescence,[J].Nanotechnology2010,12:195601.
    [11] WANG J, HOJAMBERDIEV M, XU Y, et al. CTAB-assisted hydrothermalsynthesis of YVO4:Eu3+powders in a wide pH range,[J]. Solid State Sciences2012,14:191-196
    [1] MA Z Y, DOSEV D, NICHKOVA M, et al. Synthesis and bio-functionalizationof multifunctional magnetic Fe3O4@Y2O3:Eu nanocomposites,[J]. J. Mater.Chem.,2009,19:4695–4700
    [2] KATZ E, WILLNER I, Integrated Nanoparticle-Biomolecule Hybrid Systems:Synthesis, Properties, and Applications,[J]. Angew. Chem. Int. Ed.2004,43:6042-6108.
    [3] GUPTA A K, GUPTA M, Synthesis and surface engineering of iron oxidenanoparticles for biomedical applications,[J]. Biomaterials2005,26:3995-4021.
    [4] TARTAJ P, MORALES M D, GONZALEZ-CARRENO T,et al. Advances inmagnetic nanoparticles for biotechnology applications,[J]. J. Magn. Magn.Mater.2005,28:290-291.
    [5] T. NEUBERGER, B. SCHOPF, H. HOFMANN, et al. a new drug deliverysystem,[J]. J. Magn. Magn. Mater.2005,239:483-496.
    [6] ZHANG J L, SRIVASTAVA R S, MISRA R D K, Core-Shell MagnetiteNanoparticles Surface Encapsulated with Smart Stimuli-ResponsivePolymer: Synthesis, Characterization, and LCST of Viable Drug-TargetingDelivery System,[J]. Langmuir2007,23:6342-6351.
    [7] LI S M, WANG Q, WU A B, et al. Magnetic properties ofFexCo1-x/CoyFe1-yFe2O4composite under hydrothermal condition,[J].CurrentApplied Physics2009,9:1386–1392
    [8] A.B. Wu, D.M. Liu, L.Z. Tong, et al. Magnetic properties of nanocrystallineFe/Fe3C composites,[J]. CrystEngComm,2011,13(3):876-882
    [9] KIM M R, KANG Y M, JANG D J, Synthesis and Characterization of HighlyLuminescent CdS@ZnS Core-Shell Nanorods,[J]. J. Phys. Chem. C2007,111:18507-18511.
    [10] ISSAC A, JIN S, LIAN T, Intermittent Electron Transfer Activity From SingleCdSe/ZnS Quantum Dots,[J]. J. Am. Chem. Soc.2008,130:11280-11281.
    [11] HAN J, ZHANG W, CHEN W, et al. Far-Infrared Characteristics of ZnSNanoparticles Measured by Terahertz Time-Domain Spectroscopy,[J]. J. Phys.Chem. B2006,110(5):1989-1993.
    [12] WANG Z, WU L, CHEN M, et al. Facile Synthesis of SuperparamagneticFluorescent Fe3O4/ZnS Hollow Nanospheres,[J]. J. AM. CHEM. SOC.2009,131:11276–11277
    [13] YU X, WAN J, SHAN Y,et al. A Facile Approach to Fabrication of BifunctionalMagnetic-Optical Fe3O4@ZnS Microspheres,[J]. Chem. Mater.2009,21:4892–4898
    [14] LI S M, WANG Q, WU A B, et al. Magnetic properties ofFexCo1-x/CoyFe1-yFe2O4composite under hydrothermal condition,[J]. CurrentApplied Physics2009,9:1386–1392
    [15] WU A B, LIU D M, TONG L Z, et al. Magnetic properties of nanocrystallineFe/Fe3C composites,[J]. CrystEngComm,2011,13:876-882
    [16] Wang Z L. Transmission Electron Microscopy of Shape-ControlledNanocrystals and Their Assemblies,[J]. J. Phys. Chem. B2000,104:1153-1175.
    [17] CHEN W, WANG Z, LIN Z,et al. Absorption and luminescence of the surfacestates in ZnS nanoparticles,[J]. J. Appl. Phys.1997,82:3111-3115.
    [18] GENG B Y, LIU X W, DU Q B, et al. Structure and optical properties ofperiodically twinned ZnS nanowires,[J]. Appl. Phys. Lett.2006,88:163104.
    [19] BHATTACHARJEE B, LU C H, Multicolor luminescence of undoped zincsulfide nanocrystalline thin films at room temperature,[J]. Thin Solid Films2006,514:132-137.
    [20] BECKER W.G., BARD A.J., Photoluminescence and photoinduced oxygenadsorption of colloidal zinc sulfide dispersions,[J]. J. Phys. Chem.1983,87:4888-4893.
    [21] MURASE N, JAGANNATHAN R, KANEMATSU Y, et al. Fluorescence andEPR Characteristics of Mn2+-Doped ZnS Nanocrystals Prepared by AqueousColloidal Method,[J]. J. Phys. Chem., B1999,103:754-760.
    [22] YANAGIDA S, YOSHIDA M, SHIRAGAMI T, et al. Semiconductorphotocatalysis. I. Quantitative photoreduction of aliphatic ketones to alcoholsusing defect-free zinc sulfide quantum crystallites,[J]. J. Phys. Chem.1990,94:3104-3111.
    [23] DENZLER D, OLSCHEWSKI M, SATTLER K, Luminescence studies oflocalized gap states in colloidal ZnS nanocrystals,[J]. J. Appl. Phys.1998,84:2841-2845.
    [24] CHUNG J H, AH C S, JANG D J, Formation and Distinctive Decay Times ofSurface-and Lattice-Bound Mn2+Impurity Luminescence in ZnSNanoparticles,[J]. J. Phys. Chem. B2001,105,4128-4132.