新型黄酮希夫碱金属配合物生物活性和纳米Fe_3O_4运载Gd(Ⅲ)配合物的磁共振成像分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄酮类化合物因其独特的结构而在抗癌抗肿瘤以及清除自由基方面具有良好的应用前景,将它们与希夫碱及其金属配合物等相关方面结合起来从而可以制备生物活性更高的化合物。在本文中,我们合成并表征了一系列黄酮类希夫碱配体及其金属配合物,并研究了它们与DNA结合的性质及抗氧化性能。磁性纳米粒子在生物医学方面也有广泛的用途,如可以用于生物分离、离子探针、核磁共振成像、靶向给药等方面,为此,我们研究了磁性纳米粒子在Zn2+离子检测和核磁共振造影剂方面的应用。为此,我们写作本论文,并可将论文内容分为四个部分:
     1.简要介绍了黄酮类化合物的药理活性,并对其金属配合物的生物活性研究进展作系统概述;随之,我们对磁性纳米粒子的制备、功能化和生物医学应用简要概述。
     2.为寻求高效的抗癌药物和抗氧化剂,我们制备了一系列黄酮类化合物的希夫碱配体,并合成其过渡和稀土金属配合物,通过元素分析、红外光谱、紫外光谱、质谱、X单晶衍射等物理化学手段对结构加以表征。同时,我们对所合成的化合物的生物活性进行研究。通过紫外吸收光谱、荧光光谱和粘度法对这些化合物与DNA相互作用的机制和强度加以研究,实验发现,我们所合成的化合物可以与DNA以插入模式相互作用,且金属配合物与DNA的作用强度更高,说明它们都是良好的、具有较强活性的潜在的抗癌药物。我们通过对所合成化合物清除超氧自由基和羟基自由基的研究确定它们的抗氧化活性,实验发现,它们都是非常良好的抗氧化剂,而且金属配合物的抗氧化活性远远高于相应的配体。
     3.锌离子在细胞生物学以及细胞营养过程中起着非常重要的作用,对锌离子的检测很重要。我们通过高温热解法制备粒径单一的磁性四氧化三铁纳米粒子,通过高生物兼容性的聚乙二醇高聚物对其加以修饰,把喹啉类的锌离子探针连接在磁性纳米粒子的表面,从而制备一种水溶性良好的锌离子探针,而且基于磁性纳米粒子的超顺磁性作用,可以将探针有效地输送至生物体内特定部位来实现对特定部位的锌离子检测。对于锌离子探针的研究也为其他水溶性良好的纳米探针的研究及有毒离子的清除开辟了一条新的途径。
     4. Gd3+-DTPA是首个获得美国食品药物管理局批准的能够用于临床应用的MRI造影剂,它是T1型造影剂;四氧化三铁纳米粒子是一种新型有效的T2造影剂。我们通过高温热解法制备粒径单一的磁性四氧化三铁纳米粒子,通过高生物兼容性的聚乙二醇高聚物对其加以修饰,使其与钆基造影剂连接,从而制备新型的造影剂,一方面增强了其靶向性,另一方面使所合成的造影剂的纵向弛豫效率增强到62.58mM-1s-1。
Flavonoids compounds were widely used in the fields of antitumor and antioxidative activity due to their special characteristics. Schiff base ligands and their metal complexes also possess a number of biological activities. Based on these reasons, we aimed to prepare some compounds with better biological activities. In this paper, we have synthesized and characterized a series of flavonoids Schiff base ligands and their metal complexes, including transition metal complexes and rare earth metal complexes. And we investigated their biological activities, such as DNA binding properties, antioxidant activities and so on. Magnetic nanoparticles are also applied in biomedicine area. They can be used as biological separation, ion sensors, magnetic resonance imaging contrast agent, drug delivery et al. And in this paper, we studied their uses on ions detection and magnetic resonance imaging contrast agent. The paper can be divided into four parts:
     1. A brief review on the biological activities of flavonoids and their metal complexes was given, and then the preparation, functionalization and biomedicine application of magnetic nanoparticles were summarized.
     2. In order to pursue more efficient antitumor drugs and antioxidants, we have prepared a series of flavonoids ligands and their metal complexes. Their structures were characterized by physicochemical methodologies, such as elemental analysis, infrared spectra, ultraviolet visible spectra, mass spectra, X single crystal diffraction and so on. We also investigated their biological activities. Their DNA binding mechanism and affinity were determined by ultraviolet visible titration, fluorescence spectra and viscosity measurements. Experimental results indicated that the flavonoids ligands and their metal complexes can intercalate into DNA base pairs, and the metal complexes can bind to DNA more strongly than the free ligands, showing that they are efficient potential antitumor drugs. In addition, we also studied the antioxidant activities of the ligand and their metal complexes by scavenging superoxide radical and hydroxyl radical effects in vitro, indicating that they are effective antioxidants and the antioxidant activity of the metal complexes is higher than that of the free ligand.
     3. Zinc ions are very important in the process of life, and the detection of zinc ions is also quite necessary. In this paper, we prepared the magnetic iron oxide nanoparticles via high-temperature decomposition of iron(III) acetylacetonate, and we functionalized them by high biological compatibility polyethyleneglycol derivatives. Quinoline derivatives were also coupled onto the surfaces of magnetic nanoparticles, and the new nanosensor was prepared. This kind of nanosensor can be used to detect zinc ions on the specific organs in aqueous media. The novel approach to devise nanosensor can be applied to design other water soluble nanosensors and eliminate toxic ions.
     4. Gd3+-DTPA is T1contrast agent, which is the first clinical MRI contrast agent; iron oxide nanoparticles are a kind of new T2contrast agents. We prepared the magnetic iron oxide nanoparticles via high-temperature decomposition of iron(III) acetylacetonate, and we functionalized them by high biological compatibility polyethyleneglycol derivatives. And the new contrast agent was prepared by coupling contrast agents based on gadolinium coordination compounds onto the surface of iron oxide nanoparticles. The new contrast agent not only enhanced the targeted ability of traditional contrast agents, but also increased the spin-lattice relaxation time to62.58mM-1s-1, which is almost8times as great as the traditional contrast agent, magnevist.
引文
[1]Puchtler, H., Meloan, S.N. On Schiff s bases and aldehyde-fuchsin:A review from H. Schiffto R.D. Lillie[J]. Histochemistry and Cell Biology.1981,72(3):321-332.
    [2]Samale, E.G.,Srinivasan, K., Koehi, J.K. Mechanism of the chromium-catalyzed epoxidation of olefins role of oxochromium(V)cations[J]. Journal of the American Chemical Society. 1985,107(25):7606-7617.
    [3]Bailey, N.A., Barbario, C.O.R, Fenton, D.E., Hellier, P.C. Attempted function of a mononuclear barium complex 24-membered bibraeehial terraimine Schiff-base macroecyle dericed from tris (2-aminoethyt)amine using salicylaldehyde[J]. Journal of the Chemical Society, Dalton Transactions.1995,86(5):765-770.
    [4]Jones, R.D., Budge, J.R., Linard, J.E. The infare spectra of some dioxygen and carbon monoxide metalloporphyvin complexes[J]. Chemical Review.1979,79:139-145.
    [5]钟超凡,邓建成,桶钰.双安息缩三四胺双核过渡金属配合物的合成、表征与载氧性质[J].高等学校化学学报.1998,19(2):174-178.
    [6]Lareroix, P.G., Daran, J.C. Synthesis,crystal structure,conduetivity and magnetic properties of trifluoromethylated dinuclear copper(II) complexes with tetrac-yaboquinodimethane[J]. Journal of the Chemical Society, Dalton Transactions.1997,88(7):1369-1374.
    [7]王军,卑凤利,马卫兴,杨绪杰,陆路德,汪信[Ni(C6H4N2)(CHC6H4O)2]配合物晶体结构及性质[J].无机化学学报.2003,19(6):609-612.
    [8]周双生,谢复新,倪诗圣.2,6-吡啶基二甲醛双缩(β-巯基乙胺)及其过渡金属配合物的合成[J].化学试剂.2002,24(1):26;46.
    [9]周毓萍,于红娟,杨正银,杨汝栋.3-醛基水杨酸缩氨基硫脲希土配合物的合成、表征及抑菌活性研究[J].无机化学学报.1998,14(2):162-167.
    [10]胡瑞祥,于青,梁宏,周忠远,周向葛.Schiff碱6-甲基-N-氧化吡啶-2-甲醛缩硫代氨基脲的合成及晶体结构[J].结构化学.2001,20(4):286-290.
    [11]Cowley, A.R., Dilworth, J.R., Donnelly, P.S., HesloP, J.M., Ratcliffe, S.J.J. Bifunctional chelators for copper radiopharmaceuticals:the synthesis of [Cu(ATSM)-amino acid] and [Cu(ATSM)-octreotide] conjugates[J]. Journal of the Chemical Society, Dalton Transactions. 2007,2:209-217.
    [12]Shimazaki, Y., Tani, F., Fukui, K., Naruta, Y., Yajmauchi, O. One-Electron Oxidized Nickel(II)-(Disalicylidene)diamine Complex:Temperature-Dependent Tautomerism between Ni(Ⅲ)-Phenolate and Ni(Ⅱ)-Phenoxyl Radical States[J]. Journal of the American Chemical Society.2003,125(35):10512-10513.
    [13]Afrasiabi, Z., Sinn, E., Kulkarni, P.P., Ambike, V., Padhye, S., Deobagakar, D., Heron, M., Gabbutt, C., Anson, C.E., Powell, A.K. Synthesis and characterization of copper(II) complexes of 4-alkyl/aryl-1,2-naphthoquinones thiosemicarbazones derivatives as potent DNA cleaving agents[J], Inorgica Chimica Acta.2005,358(6):2023-2030.
    [14]Brefuel, N., LePetit, C., Shova, S., Dahan, F., Tuchagues, J. Complexation to Fell, Nill, and ZnⅡ of Multidentate Ligands Resulting from Condensation of 2-Pyridinecarboxaldehyde with α,ω-Triamines:Selective Imidazolidine/Hexahydropyrimidine Ring Opening Revisited[J]. Inorganic Chemistry.2005,44(24):8916-8928.
    [15]余玉叶,赵国良,温一航Syntheses, Characterizations, Crystal Structures and Antibacterial Activities of Two Zinc(II) Complexes with a Schiff Base Derived from o-Vanillin and p-Toluidine[J]化学研究.2007,26(12):1395-1402.
    [16]Desai, S.B., Desai, P.B., Desia, K.R. Synthesis of some Schiff bases thiazolinones and azetidinones from 2,6-di-aminobonzol[1,2-d;4,5-d']bisthiazole and their anticancer activities[J]. Hetercycle Communications.2001,7(1):83-90.
    [17]叶勇.2-氯代苯甲醛丙氨酸希夫碱及其3d-过渡金属配合物的合成与表征[J].湖北大学学报.2001,23(1):57-61.
    [18]Isse, A.A., Gennaro, A. Electrochemical reduction of Schiff bases ligands H2 salen and H2 salophen[J]. Electrochimical Acta.1997,42(13-14):2065-2071.
    [19]Bastos, M.B.R., Moreir, J.C., Farias, P.A.M. Adsorptive stripping voltammetric behaviour of U02(Ⅱ)complexed with the Schiff base N,N-prime-ethylenebis salicylidenimine)in aqueous 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid medium[J]. Analytica Chimica Acta. 2000,408:83-88.
    [20]赵建章,赵冰,徐蔚青.Schiff碱N,N’-双水杨醛缩-1,6-己二胺的光致变色光谱的研究[J].高等学校化学学报.2001,22(6):971-975.
    [21]杜宝石,樊耀亭.镨、钕、钇甘氨酸三元配合物的晶体结构[J].结构化学.1996,15(2):141-146.
    [22]樊耀亭,朱伯仲,李娅.含稀土的混合氨基酸配合态多元微肥的研制及应用[J].稀土1997,18(4):57-59.
    [23]黎植昌.混合氨基酸稀土配合物及其应用研究[J].化学通报.1994,1:21-25.
    [24]邵建华,韩永圣,高芝祥.复合氨基酸稀土元素螯合物的生产和应用研究进展[J].稀土.2001,22(5):59-62.
    [25]Johnson, J.M., Walford, R., Harman, D., et al. Modern aging research,Vol 8:Free Radicals Aging and Degenerative Diseases[M].New York:Alan R Liss Inc,1986:561-568.
    [26]杜鸣,粱劳珍,唐波等.流动注射-光度法测定超氧阴离子自由基(O2-)与超氧化物歧化酶(SOD)活性的研究[J].高等学校化学学报.1999,20(3):369-373.
    [27]李金,刘京萍,范琪.超氧化物歧化酶模拟物-铜(Ⅱ)氨基酸配合物的初步研究[J].北京联合大学学报(自然科学版).2001,8(3):62-64.
    [28]叶勇严振寰,2—氯代苯甲醛丙氨酸席夫碱类抗癌药物对DNA作用的谱学研究[J].无机化学学报.1998,14(1):84-91.
    [29]李建章,秦圣英,李仲辉等.冠醚化单和双Schiff碱的合成及其钴(Ⅱ)配合物的氧加合性能[J].化学学报.1999,57(3):298-301.
    [30]贤景春,哈日巴拉,曹高娃等.5-氯水杨醛缩硫脲Schiff碱与锰配合物的合成及其对超氧离子的抑制作用[J].化学研究与应用.2000,12(4):437-439.
    [31]贤景春,哈日巴拉,李春等.新型Schiff碱配合物的合成及其对超氧离子的抑制作用 [J].合成化学.2000,8(1):12-15.
    [32]易国斌,崔英德,陈德余.天冬酰胺Schiff碱稀土配合物的合成、表征与抗O2-性能[J].化学通报.2002,65(2):119-122.
    [33]史卫良,陈德余,陈士明,严小敏.水杨醛天冬氨酸过渡金属配合物的ESR波谱及抗O2-性能[J].无机化学学报.2001,17(2):239-243.
    [34]王建华,雷文,王远亮.噻二唑类Schiff碱配合物的合成及其对超氧阴离子自由基的抑制活性[J].化学研究与应用.2003,15(3):335-337.
    [35]何秀英,吴纪梅,严振寰,吴自慎.邻甲氧基苯甲醛丙氨酸席夫碱及其金属配合物的合成、表征和对O2-自由基的抑制作用[J].无机化学学报.1995,11(3):302-307.
    [36]张邦乐,何炜,王多宁.3,5-二硝基水杨醛缩甘氨酸铜(Ⅱ)配合物的合成、表征及其抗O2-活性[J].西北药学杂志.2000,15(4):175-177.
    [37]陈德余,张义建,张平.甲硫氨酸席夫碱铜、锌、钴配合物的合成及抗O2-性能[J].应用化学.2000,17(6):607-610.
    [38]黄永华,龙姝,陈怀侠,叶勇.3-氯苯甲醛丙氨酸席夫碱及其3d-过渡金属配合物的研究[J].湖北大学学报(自然科学版).2002,24(2):159-163.
    [39]王金胜,郭春绒,程玉香.铈离子清除超氧自由基的机理[J].中国稀土学报.1997,15(2):151-154.
    [40]张芳,张前前,李苓,王修林.铜(Ⅱ)-苏氨酸-咪唑混配配合物的合成及其与DNA作用的光谱研究[J].中国海洋大学学报.2005,35(3):467-470.
    [41]吴立军,天然药物化学[M], 北京:人民卫生出版社.2003,173.
    [42]Long, E.C., Barton, J.K. On demonstrating DNA intercalation[J]. Accounts of Chemical Research.1990,23(9):271-279.
    [43]Nibbering, N.M.M. Gas-phase ion/molecule reactions as studied by Fourier transform ion cyclotron resonance[J]. Accounts of Chemical Research.1990,23(9):279-285.
    [44]张彦文.国外医学分册[M].1996,8(23):218-223.
    [45]黄华艺,查锡良.黄酮类化合物抗肿瘤作用研究进展[J].中国新药与临床杂志.2002,21(7):428-433.
    [46]Robin, J.H., Clark, T.J.D. The resonance raman spectrum of hexakis(dimethylamido)tungsten(VI)[J]. Inorganica Chimica Acta.1983,70:35-40.
    [47]Benetollo, F., Lobbia, G.G., Mancini, M., Pellei, M., Santini, C. Synthesis, characterization and hydrolytic behavior of new bis(2-pyridylthio)acetate ligand and related organotin(IV) complexes[J]. Journal of Organometallic Chemistry.2005,690:1994-2001.
    [48]黄丽梅等编.食品化学[M].北京:人民大学出版社.1986.440.
    [49]翁新楚.脂类的空气氧化[J].中国粮油学报.1993,3:22-28.
    [50]Burton, G.W., Ingold, K.U. Autoxidation of biological molecules.1.Antioxidant activity of vitamin E and related chain-breaking phenolic antioxidants in vitro[J]. Journal of the American Society Chemistry.1981,103(21):6472-6479.
    [51]Husain, S.R., Cillard, J., Cillard, P. Hydroxyl radical scavenging activity of flavonoids[J]. Photochemistry.1987,26(9):2489-2491.
    [52]Robak, J., Gryglewski, R.J. Flavonoids are scavengers of superoxide anions[J]. Biochemical Pharmacology.1988,37(5):837-841.
    [53]Larson, R.A.The antioxidants of higher plants[J]. Photochemistry.1988,27(4):969-978.
    [54]Beyeler, S., Testa, B., Perrissoud, D. Flavonoids as inhibitors of rat liver monooxygenase activities[J]. Biochemical pharmacology.1988,37(10):1971-1979.
    [55]汪德清,沈文梅,田亚平等.黄芪总黄酮对羟自由基所致哺乳动物细胞损伤的防护作用[J].中国中药杂志.1995,20(4):240-242.
    [56]Evans, C.R., Miller, N.J., Bolwell, P.G. et al. The relative antioxidant activities of plant-derived polyphenolic flavonoids[J]. Free radical Research.1995,22(12):375-383.
    [57]Wang, H., Cao, G.H., Prior, R.I. Oxygen Radical absorbing Capacity of anthocyanins[J]. Journal of Agricultural and Food Chemistry.1997,45(2):304-309.
    [58]王汉生.茶多酚降血脂及抗氧化作用动物实验[J].广东茶叶.1996,3:1-4.
    [59]张丽,商学军.黄酮类化合物对前列腺癌细胞的凋亡诱导作用[J].中华男科学杂志.2008,14(19):842-845.
    [60]黄祚瑶,刘晓宁,李建.槲皮素对人骨肉瘤细胞系MG-63中凋亡相关因子aspase-3的表达影响[J].华西医学.2008,23(5):1089-1090.
    [61]Sergeev, I.N., He, C.T., Li, S., et al. Apoptosis-inducing activity of hydroxylated polymethoxyflavones and polymethoxytlavones from orange peel in human breast cancer cells[J]. Molecular Nutrition & Food Research.2007,51(12):1478-1484.
    [62]Lahiry, L., Saha, B., Chakraborty, J., et a 1.Contribution of p53-mediated Bax transactivation in theaflavin induced mammary epithelial carcinoma cell apoptosis[J]. Apoptosis.2008, 13(6):771-781.
    [63]Erhart, L.M., et al Flavone initi-ates a hierarchical activation of the caspase-cascade in colon cancer cells[J]. Apoptosis.2005,10 (3):611-617.
    [64]Pan, M.H., Lai, C.S., Hsu, P.C. Acacetin induces apop tosis in human gastric carcinoma cells accompanied by activation of caspase cascades and p roduction of reactive oxygen species[J]. Journal of Agricultural and Food Chemistry.2005,53 (3):620-630.
    [65]Patel, D., Shukla, S. Apigenin and cancer chemo prevention:progress, potential and promise [J]. International Journal of Oncology.2007,30 (1):233-245.
    [66]Vargo, M.A., Voss, O.H., Poustka, F. Apigenin induced apoptosis is mediated by the activation of PKCd and caspases in leukemia cells[J]. Biochemical Pharmacology.2006, 72(6):681-692.
    [67]Quintin, J., Roullier, C., Thoret, C., et al. Synthesis and antitubulin evaluation of chromone based analogues of combretastatins[J]. Tetrahedron.2006,62 (17):4038-4051.
    [68]Ta, N., Walle, T. Aromatase inhibition by bioavailable methylated flavones[J]. Journal of Biochemistry and Molecular Biology.2007,107(122):127-129.
    [69]Anne, S., Agarwal, R., Nair, M.P., et al Inhibition of endotoxin-induced expression of intercellular adhesion molecule-1 and of leukocyte adhesion to endothelial cells by the plant flavonoid quercetin[J]. Journal of Allergy and Clinical Immunology.1994; 93:276.
    [70]Weber, C, Negrescu, E., Erl, W., et al Inhibitors of protein tyrosine kinase suppress TNF-stimulated induction of endothelial cell adhesion molecules[J]. The Journal of Immunology.1995,155:445-451.
    [71]Chang, W.C., Hsu, F.L. Inhibition of platelet activation and endothelial cell injury by flavan-3-ol and saikosaponin compounds-Prostaglandins Leukot[J]. Essential Fatty Acids. 1991,44:51-56.
    [72]黄河胜,马传庚,陈志武.黄酮类化合物药理作用研究进展[J].中国中药杂志.2000,25(10):589-592.
    [73]胡福良,李英华,朱威,陈民利,应华忠.蜂胶提取液对大鼠急性胸膜炎的作用及其机制的研究[J].营养学报.2007,2:189-191.
    [74]张荣庆,韩正康.异黄酮植物雌激素对小鼠免疫功能的影响[J].南京农业大学学报.1993,16(2):64-68.
    [75]彭增起,牛文娟,常彦红,等.蜂胶中的类黄酮及类黄酮的保健作用[J].中国养蜂.1996,4:14-15.
    [76]梁连生,余静,等.黄芪中黄酮化合物的药理作用[J].中西医结合心脑血管病杂志.2005,3(12):1085-1087.
    [77]张俊平等.水飞蓟宾对小鼠炎症损伤和肿瘤坏死因子的产生及活性的影响[J].药学学报.1997:573-577.
    [78]凌连生,何治柯,曾云鹗.脱氧核糖核酸荧光探针的研究进展[J].分析化学.2001,29:721-724.
    [79]Zhou, Y.L.,Shun, N.M., Li. Y.Z., et al. Improved fluorometric DNA determinationbased on the interaction of the DNA/Polycation complex with Hoechst33258[J]. Microchimica Acta. 2004,144:191-197.
    [80]Rehmann, J.P., Barton, J.K. Proton NMR studies of tris phenanthroline metal complexes bound to oligonucleotides:structural characterizations via selective paramagneticrelaxation[J]. Biochemistry.1990,29:1701-1704.
    [81]Friedman, A.E., Chambron, J.C., Sauvage, J.P., et al. Molecular "light switch" for DNA:[Ru(bpy)2+(dppz)]2+[J]. Journal of the American Chemical Society.1990, 112:4960-4963.
    [82]Styanarayana, S., Dabrowiak, J.C., Chaires, J.B. Neither ⊿- nor △-tris(phenanthroline)tuthenium(III) binds to DNA by classical intercalation[J]. Biochemstry. 1992,31:9319-9322.
    [83]周春琼,高飞,李树娥等.Eu(Ⅲ)与Hbbimp的配合物的合成、表征及与活化磷酸二酯键模型物BDNPP的水解动力学研究[J].中国稀土学报.2003,21(5):499-503.
    [84]Mark, E.B., Adrianne, K.T., Lawrence, Q.J., et al. Double-strand hydrolysis of plasmid bydicerium complexes at 37℃[J]. Journal of the American Chemical Society.2001, 123:1898-1901.
    [85]Wall, M., Rosemary, C.H., Chin, J. Double lewis acid activation in phosphate diestercleavage[J]. Angewandte Chemie International Edition.1993,32(11):1633-1637.
    [86]Barton, J.K., Dannenberg, J.J., Raphael, A.L. Enatiomeric selectivity in binding tris(phenanthroline)Zinc(II)to DNA[J]. Journal of the American Chemical Society.1982, 104:4967-4969.
    [87]Barton, J.K., Danishefsky, A.T., Goldberg, J.M. Tris(phenanthroline)ruthenium(Ⅲ): steroselectibity in binding to DNA[J]. Journal of the American Chemical Society.1984, 106:2172-2176.
    [88]Kumar C.V., Barton, J.K., Turro, N.J. Photophysics of ruthenium complexes bound to double helical DNA[J]. Journal of the American Chemical Society.1985,107:5518-5521.
    [89]Mai, H.Y., Barton, J.K. Chiral probe for A-form helices of DNA and RNA: Tris(tetramethylphenathroline)ruthenium[J]. Journal of the American Chemical Society.1986, 108:7414-7417.
    [90]张蓉颖,庞代文,蔡汝秀.DNA与其靶向分子相互作用研究进展[J].高等学校化学学报. 1999,20(8):1210-1217.
    [91]曾文亮,徐文方,张玲.抗肿瘤药物DNA小沟区结合剂的研究进展[J].中国药物化学杂志.2004,14(5):307-313.
    [92]Palanisamy, U.M., Mallayan P. DNA binding and cleavage activity of [Ru(NH3)4(diimine)]Cl2 complexes[J]. Inorganica Chimica Acta.2004,35(4):901-912.
    [93]Spiegler, C., Spiess, B., Goetz-Grandmont, G.J., Povey, D.C. Copper(Ⅱ) and zinc(Ⅱ) complexes of betaxolol in methanolic solution[J]. Inorganica Chimica Acta.1992, 196(2):171-175.
    [94]Rathindra, N.B., Kristi, A.llen, Michael W., Erika, V, Li, D., Robert, T.H. DNA polymerase versus DNA binding to the anticancer drug, cis-platin[J]. Inorganica Chimica Acta.2000, 300-302(20) 937-943.
    [95]Wu, J.Z., Ye, B.H., Ji, L.N., et al. Bis(2,2'-bipyridine)ruthenium(II)complexes with imidazo[4,5-f][1,10]-phenanthroline or 2-phenylimidazo[4,5-f]1,10-phenanth-roline[J]. Journal of the Chemical Society, Dalton Transactions.1997, (8):1395-1401.
    [96]Wu, J.Z., Wang, L., Ji, L.N., et al. Crystal structure investigation of 2-phenylimidazo[f] 1,10-phenanthroline[J]. Crystal Research and Technology.1996,31(7):857-862.
    [97]Liu, J.G.,Ye, B.H., Ji, L.N., et al. Polypyridyl ruthenium(II)complexes containing intramolecular hydron-bond ligand:synthesis,characterization and DNA binding propertied[J]. Journal of Inorganic Biochemistry.1999,76(3-4):265-271.
    [98]Zhen, Q.X., Ye, B.H., Ji, L.N., Wang, L., et al. Synthesis,characterization and the effect of ligand planarity of[Ru(bpy)2L]2+ on DNA binding affinity[J]. Journal of Inorganic Biochemistry.1999,76:47-53.
    [99]甄启雄,叶保辉,刘劲刚等.钌多吡啶配合物的合成及插入配体的位阻效应对键合DNA的影响[J].高等学校化学学报.1999,20:1661-1666.
    [100]Hurley, L.H., Reynolds, V.L., Swenson, D.H., et al.Reaction of the antitumor antibiotic CC-1065 with DNA:structure of a DNA adduct with DNA sequence apecificity[J], Science. 1984,226(4676):843-844.
    [101]朱冬晖,魏东芝,黄天宝,钱旭红,萘亚胺类化合物对DNA光敏剪切作用的初步研究[J],华东理工大学学报.1999,15(4)360-362.
    [102]计亮年,张黔玲,巢晖.多吡啶配合物在大分子DNA中的功能及其应用前景[J].科学通报.2001,46(6):451-450.
    [103]Cherstvy, A.G. Positively Charged Residues in DNA-Binding Domains of Structural Proteins Follow Sequence-specific Positions of DNA Phosphate Groups[J]. The Journal of Physical Chemistry B.2009,113 (13):4242-4247.
    [104]George, Psomas. Mononuclear metal complexes with ciprofloxacin:Synthesis, characterization and DNA-binding properties[J]. Journal of Inorganic Biochemistry.2008, 102(9):1798-1801.
    [105]Kashnian, S., Ezzati, J. Nazhad Dolatabadi[J]. Food Chemistry.2009(116):74-81.
    [106]敬登伟,张剑,谢克昌等.DNA与表面活性剂的相互作用(Ⅰ)—基于相行为的宏观研究进展[J].化学通报.2003,(9):579-586.
    [107]李文友,朱守田,何锡文等.光谱法研究Ge-132与DNA的作用机理[J].化学学报.2002,60(1):105-108.
    [108]李红,乐学义,吴建中等.铜(Ⅱ)邻菲咯啉蛋氨酸配合物与DNA相互作用的研究[J].化学 学报.2003,61(2):245-250.
    [109]凌连生,杨洗,何治柯等Ru(bipy)2(dppz)2+与DNA相互作用的光谱研究[J].分析科学学报.2001,17(1):11-15.
    [110]Cherstvy, A. G. Probing DNA-DNA Electrostatic Friction in Tight Superhelical DNA Plies[J]. The Journal of Physical Chemistry B.2009,113(16):5350-5355.
    [111]Pattarkine, M.V., Ganesh, K.N. DNA-Surfactant Interactions:Coupled Cooperativity in Ligand Binding Leads to Duplex Stabilization[J]. Biochemical and Biophysical Research Communications.1999,263(1):41-46.
    [112]李文友,朱守田,何锡文,梁宏.光谱法研究Ge-132与DNA的作用机理[J].化学学报.2002,60(1):105-108.
    [113]Xiong, Y, He, X.F., Zou, X.H., Wu, J.Z., Chen, X.M., Ji, L.N., Li, R.H., Zhou, J.Y., Yu, K.B. Interaction of polypyridyl ruthenium(II) complexes containing non-planar ligands with DNA[J]. Journal of the Chemical Society, Dalton Transactions.1999,1:19-23.
    [114]陈国珍,黄贤智,许金钩等,荧光分析法[M].科学出版社.1990.
    [115]宋玉民,康敬万,高锦章,冯亚非.钴(Ⅲ)配合物与DNA作用的研究[J].无机化学学报.2000,16(1):53-57.
    [116]Lippard, S.J. Platinum complexes:probes of polynucleotide structure and antitumor drugs[J]. Accounts of Chemical Research.1978,11(5):211-217.
    [117]EfinK, M.R., Ghiron, C.A. Fluorescence quenching studies with proteins[J]. Analytical Biochemistry.1981,114(2):199-227.
    [118]Howe, G.M., Wu, K.C., Bauer, W.R. Binding of platinum and palladium metallointercalation reagents and antitumor drugs to closed and open DNAs[J]. Biochemistry.1976, 15(19):4339-4346.
    [119]康丽芳,梁桂兆,舒茂,杨善彬,李志良.氨基酸0D-3D信息得分矢量用于人免疫缺陷病毒蛋白酶裂解位点预测及特异性分析[J].中国科学(B)辑.2008,38(7):607-612.
    [120]沈昊宇,乐芝凤,祝心德,张香才,冯长建,D—氨基葡萄糖 β—萘酚醛席夫碱及其Cu(Ⅱ)、Zn(Ⅱ)配合物的研究[J].华中师范大学学报.1995,29(4):465-468.
    [121]Li, W.Y., Xu, J.G., Guo, X.Q., Zhu, Q.Z., Zhao, YB. Study on the interaction between rivanol and DNA and its application to DNA assay[J]. Spectrochimica Acta Part A.1997, 53:781-787.
    [122]Nygren, J., Svanvik, N., Kubista, M. The interactions between the fluorescent dye thiazole orange and DNA[J]. Biopolymers.1998,46(1):39-51.
    [123]Carvlin, M.J., Datta-Gupta, N., Fiel, R.J. Circular Dichroism spectroscopy of cationic porphyrin bound to DNA[J]. Biochemical and Biophysical Research Communications.1982, 108:66-73.
    [124]Pastermack, R.F., Giannetto, A. Self-assembly of porphyrins on nucleic acid and polypeptides[J]. Journal of the American Chemical Society.1991,113:7799-7800.
    [125]Liu, J.G.,Ye, B.H., Ji, L.N., et al. Enantiomeric ruthenium(II)complexes binding to DNA: binding modes and enantioselectivity[J]. Journal of Bioinorganic Chemistry.2000, 5:119-128.
    [126]张志凌,左超,庞代文.DNA与金属锇配合物相互作用的表明电活性研究[J].化学学报.2005,63(22):2069-2076.
    [127]罗济文,张敏,张蓉颖等.抗癌药物的电化学研究(Ⅱ)道诺霉素在DNA修饰石墨粉末 微电极上的电化学行为及分析应用[J].分析科学学报.2002,18(1):1-5.
    [128]Carter, M.T., Rodriguze, M., Bard, A.J. Voltammetric studies of the interaction of metal chelates with DNA Tris-Chelated complexes of cobalt(Ⅱ) and iron(Ⅲ) with 1, 10-phenanthroline and 2,2'-bipyridine[J]. Journal of the American Chemical Society.1989, 111(24):8901-8911.
    [129]Brun, A.M., Harriuman, A. Energy- and Electron-Transfer Processes Involving Palladium Porphyrins Bound to DNA[J]. Journal of the American Chemical Society.1994, 116(23):10383-10393.
    [130]徐春,何品刚,方禹之.溴化乙锭标记DNA电化学探针的研究[J].高等学校化学学报.2000,21(8):1187-1190.
    [131]Qu, X.G., Chaires. J.B. Contrasting Hydration Changes for Ethidium and Daunomycin Binding to DNA[J]. Journal of the American Chemical Society.1999,121(11):2649-2650.
    [132]Tuit, T., Lincoln, B., Norden, B. Short-Circuiting the Molecular Wire:Cooperative Binding of △-[Ru(phen)2dppz]2+ and △-[Rh(phi)2bipy]3+ to DNA[J]. Journal of the American Chemical Society.1997,119(6):1454-1455.
    [133]Gary, G.H., Shui, X., Leng, F., Priebe, W., Chaires, J.B., Williams, L.D. Structure of a DNA-Bisdaunomycin Complex[J]. Biochemistry.1997,36(20):5940-5946.
    [134]Lincoln, P., Broo, A., Norden, B. Diastereomeric DNA-Binding Geometries of Intercalated Ruthenium(Ⅱ) Trischelates Probed by Linear Dichroism:[Ru(phen)2DPPZ]2+ and [Ru(phen)2BDPPZ]2+[J]. Journal of the American Chemical Society.1996, 118(11):2644-2653.
    [135]杨毅,李凤生.超细粒子复合技术进展[J].材料导报.2001,3:35-37.
    [136]Qu, S.C., Yang, H.B., Ren, D.W., Kan, S., Zou, G., Li, D., Li, M. Magnetite Nanoparticles Prepared by Precipitation from Partially Reduced Ferric Chloride Aqueous Solutions[J]. Journal of Colloid and Interface Science.1999,215(1):190-196.
    [137]Sun, S.H., Zeng, H. Size-Controlled Synthesis of Magnetite Nanoparticles, Journal of the American Chemical Society.2002,124(28):8204-8205
    [138]Pankhurst, Q.A., Connolly, J., Jones, S.K. et al. Applications of magnetic nanoparticles in biomedicine[J]. Journal of Physics D:Applied Physics.2003,36:R167-R181.
    [139]Perez, J.M., Josephson, L, Magnetic nanosensors for DNA analysis[J]. European Cells and Materials.2002,2(3):181-182.
    [140]Fawell, S., Seery, J., Daikh, Y., Moore, C., Chen, L.L., Pepinsky, B., Barsoum, J. Tat-mediated delivery of heterologous proteins into cells[J]. Proceedings of the National Academy of Sciences.1994,91:664-668.
    [1]Friedman, A.E., Kumar, C.V., Turro, N.J., Barton, J.K. Luminescence of ruthenium(II) polypyridyls:evidence for intercalative binding to Z-DNA[J]. Nucleic Acids Research.1991, 19(10):2595-2602.
    [2]Pyle, A.M., Morii, T., Barton, J.K. Probing microstructures in double-helical DNA with chiral metal complexes:recognition of changes in base-pair propeller twisting in solution[J]. Journal of the American Chemical Society.1990,112(25):9432-9434.
    [3]Dervan, P.B. Molecular recognition of DNA by small molecules[J]. Bioorganic & Medicinal Chemistry.2001,9(9):2215-2235.
    [4]Chan, S., Wong, W.T. Ruthenium 1992[J]. Coordination Chemistry Reviews.1995, 138:219-296.
    [5]Pratviel, G., Bernadou, J., Meunier, B. DNA And RNA Cleavage by Metal Complexes[J]. Advances in Inorganic Chemistry.1998,45:251-312.
    [6]Liang, F., Wang, P., Zhou, X., Li, T., Li, Z.Y., Lin, H.K., Gao, D.Z., Zheng, C.Y., Wu, C.T. Nickle(Ⅱ) and cobalt(Ⅱ) complexes of hydroxyl-substituted triazamacrocyclic ligand as potential antitumor agents[J]. Bioorganic & Medicinal Chemistry Letters.2004,14(8): 1901-1904.
    [7]Towyz, M.R. Reactive Oxygen Species, Vascular Oxidative Stress, and Redox Signaling in Hypertension:What Is the Clinical Significance? [J]. Hypertension.2004,44(3):248-252.
    [8]Fujimori, T., Yamada, S., Yasui, H., Sakurai, H., In, Y, Ishida, T. Orally active antioxidative copper(Ⅱ) aspirinate:synthesis, structure characterization, superoxide scavenging activity, and in vitro and in vivo antioxidative evaluations[J]. Journal of Biological Inorganic Chemistry.2005,10(8):831-841.
    [9]Banerjee, A., Dasgupta, N., De, B. In vitro study of antioxidant activity of Syzygium cumini fruit[J]. Food Chemistry.2005,90(4):727-733.
    [10]Proctor, P.H., Reynolds, E.S. Free radicals and disease in man[J]. Physiological Chemistry & Physics & Medical NMR.1984,16:175-195.
    [11]Knekt, P., Jarvinen, R., Seppanen, R., Heliovaara, M., Pukkala, L.T., Aromaa, A. Dietary Flavonoids and the Risk of Lung Cancer and Other Malignant Neoplasms [J]. American Journal of Epidemiology.1997,146(3):223-230.
    [12]Erlund, I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology [J]. Nutrition Research.2004,24(10): 851-874.
    [13]Sakaguchi, Y., Maehara, Y, Baba, H., Kusumoto, T., Sugimachi, K., Newmanv, R. Select this articleFlavone Acetic Acid Increases the Antitumor Effect of Hyperthermia in Mice[J]. Cancer Research.1992,52 (12):3306-3309.
    [14]Habtemariam, S.J. Flavonoids as inhibitors or enhancers of the cytotoxicity of tumor necrosis factor-alpha in L-929 tumor cells[J]. Journal of Natural Products.1997,60:775-778.
    [15]Aljancic, I., Vajs, V., Menkovic, N., Karadzic, I., Juranic, N., Milosavljevic, S., Macura, S. Flavones and sesquiterpene lactones from Achillea atrata subsp. multifida:antimicrobial activity[J]. Journal of Natural Products.1999,62(6):909-911.
    [16]Ko, F., Chu, C., Lin, C., Chang, C., Teng, C. Isoorientin-6-O-glucoside, a water-soluble antioxidant isolated from Gentiana arisanensis[J]. Biochimica et Biophysica Acta.1998,1389: 81-90.
    [17]Nkengfack, A., Vouffo, T., Fomun, Z., Meyer, M., Bergendorff, S.O. Prenylated isoflavanone from the roots of Erythrina sigmoidea[J]. Phytochemistry.1994,36(4):1047-1051.
    [18]Ramaswamy A. S., Jayaraman S., Sirsi M., Rao K. H. Antibacterial action of some naturally occurring citrus bioflavonoids[J]. Indian Journal of Experimental Biology.1972,10:72-73.
    [19]Misty, R., Raquel, M., Hind, A., Paul, A.S. Naringenin is a novel inhibitor of Dictyostelium cell proliferation and cell migration[J]. Biochemical and Biophysical Research Commucation. 2006,345(1):516-522.
    [20]Satyanarayana, S., Dabrowiak, J.C., Chaires, J.B. Neither △- nor A-tris(phenanthroline)ruthenium(II) binds to DNA by classical intercalation[J]. Biochemistry. 1992,31(39):9319-9324.
    [21]Kumar. C.V., Asuncion, E.H. DNA binding studies and site selective fluorescence sensitization of an anthryl probe[J]. Journal of the American Chemical Society.1993, 115(19):8547-8553.
    [22]Eriksson, M., Leijon, M., Hiort, C., Norden, B., Gradsland, A. Binding of A-and h-[Ru(phen)3]2+ to [d(CGCGATCGCG)] Studied by NMRt[J]. Biochemistry.1994, 33(17):5031-5040.
    [23]Xiong, Y., He, X.F., Zou, X.H., Wu, J.Z., Chen, X.M., Ji, L.N., Li, R.H., Zhou, J.Y., Yu, R.B., N,N',N"-Triphenylguanidinate(1-) complexes of ruthenium and palladium:syntheses and crystal structures[J]. Journal of the Chemical Society, Dalton Transactions.1999,1:19-24.
    [24]Winterbourn, C.C. Comparison of superoxide with other reducing agents in the biological production of hydroxyl radicals[J]. Biochemical Journal.1979,182:625-628.
    [25]Winterbourn, C.C. Hydroxyl radical production in body fluids. Roles of metal ions, ascorbate and superoxide[J]. Biochemical Journal.1981,198:125-131.
    [26]Geary, W.J. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds[J]. Coordination Chemistry Reviews.1971,7:81-122.
    [27]Narang, K., Singh, V.P. Synthesis and characterization of cobalt(II), nickel(II), copper(II) and zinc(II) complexes with acetylacetone bis-benzoylhydrazone and acetylacetone bis-isonicotinoylhydrazone[J]. Transition Metal Chemistry.1993,18(3):287-290.
    [28]Yang, Z.Y., Yang, R.D., Li, Q., Li, F.S. Sythesis characterization and biological activity of rare earth complexes of 1-phenyl-3-methyl-5-hydroxy-4-pyrazolyl phenyl ketone isonicotinoyl hydrazone[J]. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry.1999,29(2):205-214.
    [29]Yang, Z.Y. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry[J]. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry.2002,32(5):903-912.
    [30]Maarchetti, F., Pettinari, C., Pettinari, R., Leonesi, D., Lorenzotti, A. Group 12 metal complexes of tetradentate N2O2-Schiff-base ligands incorporating pyrazole:Synthesis, characterisation and reactivity toward S-donors, N-donors, copper and tin acceptors[J]. Polyhydron.1999,18(23):3041-3050.
    [31]Xu, Z. D., Liu, H., Xiao, S.L., Yang, M., Bu, X.H. Synthesis, crystal structure, antitumor activity and DNA-binding study on the Mn(Ⅱ) complex of 2H-5-hydroxy-1,2,5-oxadiazo[3,4-f]1,10-phenanthroline[J]. Journal of Inorganic Biochemistry.2002,90(3):79-84.
    [32]Wu, J.Z., Yuan, L., Wu, J.F. Synthesis and DNA binding of μ-[2,9-bis(2-imidazo[4,5-f] [1,10]phenanthroline)-1,10-phenanthroline]bis[1,10-phenanthroli necopper(Ⅱ)][J]. Journal of Inorganic Biochemistry.2005,99(11):2211-2216.
    [33]Sharma, S., Singh, S.K., Chandra, M., Pandey, D.S. DNA-binding behavior of ruthenium(II) complexes containing both group 15 donors and 2,2':6',2"-terpyridine[J]. Journal of Inorganic Biochemistry.2005,99(2):458-466.
    [34]Zhao, G.H., Li, F.H., Lin, H., Lin, H.K. Synthesis, characterization and biological activity of complexes of lanthanum(III) with 2-(1'-phenyl-2'-carboxyl-3'-aza-n-butyl)-1,10-phenanthroline and 2-(1'-p-phenol-2'-carboxyl-3'-aza-n-butyl)-1,10-phenanthroline[J]. Bioinorganic and Medical Chemistry.2007,15(1):533-540.
    [35]Xu, H., Zheng, K.C., Lin, L.J., Li, H., Gao, Y., Ji, L.N. Effects of the substitution positions of Br group in intercalative ligand on the DNA-binding behaviors of Ru(II) polypyridyl complexes[J]. Journal of Inorganic Biochemistry.2004,98(1):87-97.
    [36]Vaidyanathan, G.V., Balachandran, U.N. Synthesis, characterization and binding studies of chromium(III) complex containing an intercalating ligand with DNA[J]. Journal of Inorganic Biochemistry.2003,95(4):334-342.
    [37]Lawrence, D., Vaidyanathan, V.G., Nair, B.U. Synthesis, characterization and DNA binding studies of two mixed ligand complexes of ruthenium(II)[J]. Journal of Inorganic Biochemistry.2006,100(7):1244-1251.
    [38]Wang, B.D., Yang, Z.Y., Li, T.R. Synthesis, characterization, and DNA-binding properties of the Ln(III) complexes with 6-hydroxy chromone-3-carbaldehyde-(2'-hydroxy) benzoyl hydrazone[J]. Bioinorganic and Medical Chemistry.14,6012-6021 (2006).
    [39]Wu, J.Z., Yuan, L., Wu, J.F. Synthesis and DNA binding of μ-[2,9-bis(2-imidazo[4,5-f] [1,10]phenanthroline)-1,10-phenanthroline]bis[1,10-phenanthroli necopper(Ⅱ)]Original[J]. Journal of Inorganic Biochemistry.2005,99(11):2211-2216.
    [40]Hong, D., Jun, L., Kang, C.Z., Yi, Y., Hui, C. Synthesis, characterization, structures and DNA-binding properties of complexes [Ru(bpy)2(L)]2+(L=ptdb, ptda and ptdp) with asymmetric intercalative ligands[J]. Inorganica Chimica Acta.2005,358(12):3430-3440.
    [41]Wang, B.D., Yang, Z.Y., Wang, Q., Cai, T.K., Crewdson, P. Synthesis, characterization, cytotoxic activities, and DNA-binding properties of the La(III) complex with Naringenin Schiff-base[J]. Bioinorganic and Medical Chemistry.2006,14(6):1880-1888.
    [42]Kumar, C.V., Barton, J.K., Turro, M.J. Photophysics of ruthenium complexes bound to double helical DNA[J]. Journal of the American Chemical Society.1985, 107(19):5518-5523.
    [43]Efink, M.R., Ghiron, C.A. Fluorescence quenching studies with proteins[J]. Analytical Biochemistry.1981,114 (2):199-206.
    [44]David, S.S., Abhijit, M., David, M.P. Chemical nucleases[J]. Chemistry Reviews.1993,93(6): 2295-2316.
    [45]Satyanarayana, S., Dabrowiak, J.C., Chaires, J.B. Tris(phenanthroline)ruthenium(II) enantiomer interactions with DNA:Mode and specificity of binding[J]. Biochemistry.1993, 32(10):2573-2584.
    [1]Liu, L.X., Chen, J. Solubility of Hesperetin in Various Solvents from (288.2 to 323.2) K[J]. Journal of Chemical & Engineering Data.2008,53(7):1649-1650.
    [2]徐冬梅,刘雳,程翼宇.橙皮素对血管内皮细胞NO分泌功能的影响[J].南京师范大学学报:自然科学版.2008,3:96-99.
    [3]Formica, J.V., Regelson, W. Review of the biology of quercetin and related bioflavonoids[J]. Food and Chemical Toxicology.1995,33 (12):1061-1680.
    [4]Cai, Y.Z., Luo, Q.M., Sun, Corke, H. ntioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer[J]. Life Sciences.2004,74 (17):2157-2184.
    [5]Heim, K.E., Tagliaferro, A.R., Bobilya, D.J. Flavonoid antioxidants:chemistry, metabolism and structure-activity relationships [J]. The Journal of Nutritional Biochemistry.2002,13 (10):572-584.
    [6]Cooray, H.C., Janvilisri, T., Veen, H.W., Hladky, S.B., Barrand, M.A. Interaction of the breast cancer resistance protein with plant polyphenols[J]. Biochemical and Biophysical Research Communica.2004,317 (1):269-275.
    [7]So, F.V., Guthrie, N., Chambers, A.F., Carroll, K.K. Reduced blood accumulation of biotinylated monoclonal antibody A7 after the subsequent administration of avidin[J]. Cancer letters.1997,112 (2):127-134.
    [8]Mitsunaga, Y., Takanaga, H., Matsuo, H., Naito, M., Tsuruo, T., Ohtani, H., Sawada, Y. Antifertility and hormonal properties of flavones of Striga orobanchioides[J]. European Journal of Pharmacology.2000,395 (2):193-197.
    [9]Youdim, K.A., Dobbie, M.S., Kuhnle, G., Proteggente, A.R., Abbott, N.J., Rice-Evans, C. Interaction between flavonoids and the blood-brain barrier:in vitro studies[J]. Journal of Neurochemistry.2003,85 (1):180-192.
    [10]Jim, J.O., Brown, J., Fleming, J., Harrison, P.R. Effects of dietary flavonoids on major signal transduction pathways in human epithelial cells[J]. Biochemical Pharmacology.2003, 66(11):2075-2088.
    [11]Geary, W.J. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds[J]. Coordination Chemistry Reviews.1971,7 (1):81-122.
    [12]Maarchetti, F., Pettinari, C., Pettinari, R., Leonesi, D., Lorenzotti, A. Group 12 metal complexes of tetradentate N2O2-Schiff-base ligands incorporating pyrazole:Synthesis, characterisation and reactivity toward S-donors, N-donors, copper and tin acceptors[J]. Polyhydron.1999,18(23):3041-3050.
    [13]Narang, K., Singh, V.P. Synthesis and characterization of cobalt(II), nickel(II), copper(II) and zinc(II) complexes with acetylacetone bis-benzoylhydrazone and acetylacetone bis-isonicotinoylhydrazone[J]. Transition Metal Chemistry.1993,18 (3):287-290.
    [14]Xu, Z.D., Liu, H., Xiao, S.L., Yang, M., Bu, X.H. Synthesis, crystal structure, antitumor activity and DNA-binding study on the Mn(II) complex of 2H-5-hydroxy-1,2,5-oxadiazo[3,4-f]1,10-phenanthroline[J]. Journal of Inorganic Biochemistry.2002,90 (3):79-84.
    [15]Wilson, W.D., Ratmeyer, L., Zhao, M., Strekowski, L., Boykin, D. The search for structure-specific nucleic acid-interactive drugs:Effects of compound structure on RNA versus DNA interaction strength[J]. Biochemistry.1993,32(15):4098-4101.
    [16]Howe, G.M., Wu, K.C., Bauer, W.R. Binding of platinum and palladium metallointercalation reagents and antitumor drugs to closed and open DNAs[J]. Biochemistry.1976,15(19): 4339-4346.
    [17]Pyle, A.M., Rehmann, J.P., Meshoyrer, R., Kumar, C.V., Turro, N.J., Barton, J.K. Mixed-ligand complexes of ruthenium(II):factors governing binding to DNA[J]. Journal of the American Chemical Society.1989, 111(8):3051-3058.
    [18]Deng, H., Cai, J.W., Xu, H., Zhang, H., Ji, L.N. Ruthenium(II) complexes containing asymmetric ligands:synthesis, characterization, crystal structure and DNA-binding[J]. Dalton Transactions.2003,3:325-330.
    [19]Friedman, A.E., Chambron, J.C., Sauvage, J.P., Turro, N.J., Barton, J.K. A molecular light switch for DNA:Ru(bpy)2(dppz)2+[J]. Journal of the American Chemical Society.1990,112 (12):4960-4962.
    [20]Zeng, Y.B., Yang, N., Liu, W.S., Tang, N. Synthesis, characterization and DNA-binding properties of La(III) complex of chrysin[J]. Journal of Inorganic Biochemistry.2003,97 (3) 258-264.
    [21]Satyanarayana, S., Dabrowiak, J.C., Chaires, J.B. Tris(phenanthroline)ruthenium(II) enantiomer interactions with DNA:Mode and specificity of binding[J]. Biochemistry.1993, 32 (10):2573-2584.
    [22]Xing, R.G., Yu, H.H., Liu, S., Zhang, W.W., Zhang, Q.B., Li, Z.E. Li, P.C. Antioxidant activity of differently regioselective chitosan sulfates in vitro[J]. Bioorganic & Medicinal Chemistry.2005,13 (4):1387-1392.
    [23]Lerman, L.S. Structural considerations in the interaction of DNA and acridines[J]. Journal of Molecular Biology.1961,3 (1):18-30.
    [24]Howe, G.M., Wu, K.C., Bauer, W.R. Binding of platinum and palladium metallointercalation reagents and antitumor drugs to closed and open DNAs[J]. Biochemistry.1976,15(19): 4339-4346.
    [25]Liu, J.G., Zhang, Q.L., Shi, X.F., Ji, L.N. Interaction of [Ru(dmp)2(dppz)]2+ and [Ru(dmb)2(dppz)]2+ with DNA:Effects of the Ancillary Ligands on the DNA-Binding Behaviors[J]. Inorganic Chemistry.2001,40 (19):5045-5050.
    [26]Xing, R.G., Yu, H.H., Liu, S., Zhang, W.W., Zhang, Q.B., Li, Z.E., Li, P.C. Antioxidant activity of differently regioselective chitosan sulfates in vitro[J]. Bioorganic & Medicinal Chemistry.13 (2005) 1387-1392.
    [27]Youdim, K.A., Dobbie, M.S., Kuhnle, G., Proteggente, A.R., Abbott, N.J., Rice-Evans, C. Interaction between flavonoids and the blood-brain barrier:in vitro studies[J]. Journal of Neurochemistry.2003,85(1),180-192.
    [1]Thimmaiah, K.N. Liyd, W.D. Chandrappa, G.T. Stereochemistry and fungitoxicity of complexes of p-anisaldehydethiosemicarbazone with Mn (Ⅱ), Fe (Ⅱ), Co (Ⅱ) and Ni (Ⅱ)[J]. Inorganic Chimica Acta.1985,106(2):81-83.
    [2]Basumatary, J.K. Singh, A.K. Khandelwai, B.L. The ligational behaviour of thiosemicarbazones and semicarbazones with tellurium (Ⅳ)—reactions with TeC14[J]. Polyhedron.1988,7(8):635-639.
    [3]Williams, D.R. Metals, ligands, and cancer[J]. Chemical Review.1972,72(3):203-213.
    [4]Geary, W.J. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds [J]. Coordination Chemistry Review.1971,1:81-122.
    [5]Marchetti, F. Pettinari, C. Pettinari, R. Cingolani, A. Leonesi, D. Lorenzotti,A. Group 12 metal complexes of tetradentate N2O2-Schiff-base ligands incorporating pyrazole:Synthesis, characterisation and reactivity toward S-donors, N-donors, copper and tin acceptors[J]. Polyhedron.1999,18(23):3041-3050.
    [6]Narang, K.K. Singh, V.P. Synthesis and characterization of cobalt(II), nickel(II), copper(II) and zinc(II) complexes with acetylacetone bis-benzoylhydrazone and acetylacetone bis-isonicotinoylhydrazone[J]. Transition Metal Chemistry.1993,18 (3):287-290.
    [7]S.Satyanarayana, J.C. Dabrowiak, J.B. Chaires, Neither DELTA- nor LAMBDA-tris(phenanthroline)ruthenium(II) binds to DNA by classical intercalation[J]. Biochemistry. 1992,31(39):9319-9324.
    [8]Latheff, L. Kurup, M.R.P. Spectral and structural studies of nickel(II) complexes of salicylaldehyde 3-azacyclothiosemicarbazones[J]. Polyhedron 2008,27(1):35-43.
    [9]Pyle, A. Rehmann, M. Meshoyrer, J.P.R. Kumar, C.V. urro, N.J. Barton, TJ.K. Mixed-ligand complexes of ruthenium(II):factors governing binding to DNA[J]. Journal of American Chemistry Society.1989,111(8):3051-3058.
    [10]Li, Y. Yang, Z.Y. Wang, M.F. Synthesis, characterization, DNA binding properties and antioxidant activity of Ln(Ⅲ) complexes with hesperetin-4-one-(benzoyl) hydrazone[J]. European Journal of Medical Chemistry.2009,44(11):4585-4595.
    [11]Jocelyn, H.N. Leodevico, L.I. Biochips beyond DNA:technologies and applications [J]. Biotechnology Annual Review.2003,9:1-149.
    [12]Wilson,W.D. Ratmeyer, L. Zhao, M. Strekowski, L. Boykin, D. The search for structure-specific nucleic acid-interactive drugs:Effects of compound structure on RNA versus DNA interaction strength [J]. Biochemistry.1993,32(15):4098-4104.
    [13]Xiong, Y., He, X.F., Zou, X.H., Wu, J.Z., Chen, X.M., Ji, L.N., Li, R.H., Zhou, J.Y., Yu, K.B. Interaction of polypyridyl ruthenium(Ⅱ) complexes containing non-planar ligands with DNA[J]. J, Chem. Soc., Dalton Trans.1999,1:19-23.
    [14]Satyanaryana, S. Daborusak, J.C. Chaires, J.B. Tris(phenanthroline)ruthenium(Ⅱ) enantiomer interactions with DNA:Mode and specificity of binding[J]. Biochemistry.1993, 32(10):2573-2584.
    [15]Xiong, Y. He, X.F. Zou, X.H. Wu, J.Z. Chen, X.M. Ji, L.N. Li, R.H. Zhou, J.Y. Yu, K.B. Interaction of polypyridyl ruthenium(Ⅱ) complexes containing non-planar ligands with DNA[J]. Journal of the Chemistry Society, Dalton Transaction.1999,19-24.
    [16]Li, Y. Yang, Z.Y. Li, T.R. Synthesis, Characterization, Antioxidative Activity and DNA Binding Properties of the Copper(Ⅱ), Zinc(Ⅱ), Nickel(Ⅱ) Complexes with l,2-Di(4'-iminonaringenin)ethane Chem [J]. Chemical and Pharmaceutical Bulletin.2008, 56(11):1528-1534.
    [17]R. Xing, H. Yu, S. Liu, W. Zhang, Q. Zhang, Z. Li, P. Li, Antioxidant activity of differently regioselective chitosan sulfates in vitro[J].Bioorganic & Medicinal Chemistry.2005,13 (4): 1387-1392.
    [18]Winterbourn, C.C. Comparison of Superoxide with Other Reducing Agents in the Biological Production of Hydroxyl Radicals[J]. Biochemistry Journal.1979,182:625-628.
    [19]Latheff, L. Kurup, M.R.P. Spectral and structural studies of nickel(Ⅱ) complexes of salicylaldehyde 3-azacyclothiosemicarbazones[J]. Polyhedron.2008,27(l):35-43.
    [20]Chiang, S.Y Welch, J. Rauscher, F.J. Beerman, T.A. Effects of Minor Groove Binding Drugs on the Interaction of TATA Box Binding Protein and TFIIA with DNA[J]. Biochemistry. 1994,33(23):7033-7040.
    [21]Wang, B.D. Yang, Z.Y. Zhang, D.W. Wang, Y. Synthesis, structure, infrared and fluorescence spectra of new rare earth complexes with 6-hydroxy chromone-3-carbaldehyde benzoyl hydrazone[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy.2006, 63(1):213-219.
    [22]Wang, B.D. Yang, Z.Y. Wang, Q. Cai, T. Crewdson, K. P. Synthesis, characterization, cytotoxic activities, and DNA-binding properties of the La(Ⅲ) complex with Naringenin Schiff-base[J]. Bioorganic Medical Chemistry.2006,14(6):1880-1888.
    [23]Li, Y. Yang, Z.Y. Rare Earth Complexes with 3-Carbaldehyde Chromone-(Benzoyl) Hydrazone:Synthesis, Characterization, DNA Binding Studies and Antioxidant Activity [J]. Journal of Fluorescence.2010,20(1):329-342.
    [24]Dunja, S. Ben, W. Reid, C.J. John, F.M. Micromechanical Analysis of the Binding of DNA-Bending Proteins HMGB1, NHP6A, and HU Reveals Their Ability To Form Highly Stable DNA-Protein Complexes [J]. Biochemistry.2004,43 (43):13867-13874.
    [25]Gao, F. Chao, H. Zhou, F. Yuan, Y.X. Peng, B. Ji, L.N. DNA interactions of a functionalized ruthenium(II) mixed-polypyridyl complex [Ru(bpy)2ppd]2+[J]. Inorganic Biochemistry.2006, 100(9):1487-1494.
    [26]Xu, H. Zheng, K.C. Lin, L.J. Li, H. Gao, Y. Ji, L.N. Effects of the substitution positions of Br group in intercalative ligand on the DNA-binding behaviors of Ru(II) polypyridyl complexes[J]. Journal of Inorganic Biochemistry.2004,98(1):87-97.
    [27]Reihardt, C.G. Krugh, T.R. A comparative study of ethidium bromide complexes with dinucleotides and DNA:direct evidence for intercalation and nucleic acid sequence preferences [J]. Biochemistry.1978,17(23):4845-4854.
    [28]Zhao, G.H. Lin, G.K. Zhu, S.R. Sun, H.W. Chen, Y.T. Dinuclear palladium (II) complexes containing two monofunctional [Pd (en)(pyridine) Cl]+ units bridged by Se or S. Synthesis, characterization, cytotoxicity and kinetic studies of DNA-binding[J]. Journal of Inorganic Biochemistry.1998,70(3-4):219-226.
    [29]Liu, J.G. Zhang, Q.L. Shi, X.F. Ji, L.N.Interaction of [Ru (dmp)2(dppz)]2+ and [Ru (dmb)2(dppz)]2+ with DNA:effects of the ancillary ligands on the DNA-binding behaviors[J]. Inorganic Chemistry.2001,40 (19):5045-5050.
    [30]Liu, J.G. Ye, B.H. Li, H. Zhen, Q.X. Ji, L.N. Fu, Y.H. Polypyridyl ruthenium (II) complexes containing intramolecular hydrogen-bond ligand:syntheses, characterization, and DNA-binding properties[J]. Journal of Inorganic Biochemistry.1999,76(3-4) 265-271.
    [31]Towyz, R.M. Reactive Oxygen Species, Vascular Oxidative Stress, and Redox Signaling in Hypertension[J]. Hypertension.2004,44:248-252.
    [32]Fujimori, T. Yamada, S. Yasui, H. Sakurai, H. In, Y. Ishida, T. Orally active antioxidative copper(II) aspirinate:synthesis, structure characterization, superoxide scavenging activity, and in vitro and in vivo antioxidative evaluations[J]. Journal of Biological Inorganic Chemistry.2005,10(8):831-841.
    [33]Xing, R.E. Yu, H.H. Liu, S. Zhang, W.W. Zhang, Q.B. Li, Z.E. Li, P.C. Antioxidant activity of differently regioselective chitosan sulfates in vitro[J]. Bioorganic Medical Chemistry.2005, 13(4):1387-1392.
    [34]Cai, Y.Z. Luo, Q. Sun, M. Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer[J]. Life Sciences.2004,74(17): 2157-2184.
    [35]Heim, K.E. Tagliaferro, A.R. Bobilya, D.J. Flavonoid antioxidants:chemistry, metabolism and structure-activity relationships [J]. The Journal of Nutritional Biochemistry.2002,13(10): 572-584.
    [36]Nohara, A. Umetani, T. Sanno, Y. A facile synthesis of chromone-3-carboxaldehyde, chromone-3-carboxylic acid and 3-hydroxymethylchromone [J]. Tetrahedron Letter.1973, 14(22):1995-1998.
    [37]Howe, G.M. Wu, K.C. Bauer, W.R. Lippard, S.J. Binding of platinum and palladium metallointercalation reagents and antitumor drugs to closed and open DNAs[J]. Biochemistry. 1976,15(19):4339-4346.
    [38]Eftink, M.R. Ghiron, C.A. Fluorescence quenching studies with proteins [J]. Analytical Biochemistry.1981,144(2):199-227.
    [1]Havsteen, BH. The biochemistry and medical significance of the flavonoids[J]. Pharmacology & Therapeutics.2002,96(23):67-202.
    [2]Huang, W. Liu, M.Z. Li, Y. Tan, Y. Yang, G.F. Design, syntheses, and antitumor activity of novel chromone and aurone derivatives[J]. Bioorganic & Medicinal Chemistry.2007,15(15): 5191-5197.
    [3]Sosnovskikh, V.Y. Synthesis and reactions of halogen-containing chromones[J]. Russian Chemical Reviews.2003,72(6):489-516.
    [4]Li, Y. Yang, Z.Y. Wu, J.C. Synthesis, crystal structures, biological activities and fluorescence studies of transition metal complexes with 3-carbaldehyde chromone thiosemicarbazone[J]. European Journal of Medicinal Chemistry.2010,45(12):5692-5701.
    [5]Walenzyk, T. Carola, C. Buchholz, H. Konig, B. Chromone derivatives which bind to human hair[J]. Tetrahedron.2005,61(31):7366-7377.
    [6]Li, Y. Yang, Z.Y. Wang, M.F. Synthesis, Characterization, DNA binding Properties, Fluorescence Studies and Antioxidant Activity of Transition Metal Complexes with Hesperetin-2-hydroxy Benzoyl Hydrazone[J]. Journal of Fluorescence.2010,20:891-905.
    [7]Li, Y. Yang, Z.Y. DNA binding affinity and antioxidative activity of copper(II) and zinc(II) complexes with a novel hesperetin Schiff base ligand[J]. Inorganic Chimica Acta.2009, 362(13):4823-4831.
    [8]Cai, L. Suppression of nitrative damage by metallothionein in diabetic heart contributes to the prevention of cardiomyopathy[J]. Free Radical Biological Medical.2006,41(6):851-861.
    [9]Eriksson, M. Leijon, M. Hiort, C. Norden, B. Graeslund, A. Binding of.DELTA.- and. LAMBDA.-[Ru(phen)3]2+ to [d(CGCGATCGCG)]2 Studied by NMR[J]. Biochemistry.1994, 33(17):5031-5040.
    [10]Xiong, Y. He, X.F. Zou, X.H. Wu, J.Z. Chen, X.M. Ji, L.N. Li, R.H. Zhou, J.Y. Yu, K.B. Interaction of polypyridyl ruthenium(II) complexes containing non-planar ligands with DNA[J]. Journal of Chemical Society, Dalton Transaction.1999,1:19-24.
    [11]Winterbourn, C.C. Comparison of superoxide with other reducing agents in the biological production of hydroxyl radicals[J]. Biochemistry Journal.1979,182:625-628.
    [12]Winterbourn, C.C. Hydroxyl radical production in body fluids. Roles of metal ions,ascorbate and superoxide[J]. Biochemistry Journal.1981,198:125-131.
    [13]Nohara, A. Umetani, T. Sanno, Y. A facile synthesis of chromone-3-carboxaldehyde, chromone-3-carboxylic acid and 3-hydroxymethylchromone[J]. Tetrahedron Letters.1973, 14(22):1995-1998.
    [14]Geary, W.J. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds[J]. Coordination Chemistry Review.1971,7(1):81-122.
    [15]Marchetti, F. Pettinari, C. Pettinari, R. Cingolani, A. Leonesi, D. Lorenzotti, A. Group 12 metal complexes of tetradentate N2O2-Schiff-base ligands incorporating pyrazole synthesis, characterization reactivity toward S- donors, N-donors, copper and tin acceptors[J]. Polyhedron.1999,18:3041-3050.
    [16]Narang, K.K. Singh, V.P. Synthesis and characterization of cobalt(II), nickel(II), copper(II) and zinc(II) complexes with acetylacetone bis-benzoylhydrazone and acetylacetone bis-isonicotinoylhydrazone[J]. Transition Metal Chemistry.1993,18(3):287-290.
    [17]Wang, B.D. Yang, Z.Y. Zhang, D.W. Wang, Y. Synthesis, structure, infrared and fluorescence spectra of new rare earth complexes with 6-hydroxy chromone-3-carbaldehyde benzoyl hydrazone[J]. Spectrochimica Acta Part A 2006,63(1):213-219.
    [18]Pyle, A.M. Rehmann, J.P. Meshoyrer, R. Kumar, C.V. Turro, N.J. Barton, J.K. Mixed-ligand complexes of ruthenium (Ⅱ):factors governing binding to DNA[J]. Journal of the American Chemistry Society.1989,111(8):3051-3058.
    [19]Wilson, W.D. Ratmeyer, L. Zhao, M. Strekowski, L. Boykin, D. The search for structure-specific nucleic acid-interactive drugs:Effects of compound structure on RNA versus DNA interaction strength. Biochemistry[J].1993,32(15):4098-4104.
    [20]Xu, H. Zheng, K.C. Lin, L.J. Li, H. Gao, Y. Ji, L.N. Effects of the substitution positions of Br group in intercalative ligand on the DNA-binding behaviors of Ru(II) polypyridyl complexes[J]. Journal of Inorganic Biochemistry.2004,98(1):87-97.
    [21]Le-Pecq, J.B. Paoletti, C. A fluorescent complex between ethidium bromide and nucleic acids: Physical—Chemical characterization[J]. Journal of Molecular Biology.1967,27(1):87-106.
    [22]Lee, M. Rhodes, A.L. Wyatt, M.D. Forrow, S. Hartley, J.A. GC base sequence recognition by oligoimidazolecarboxamide and C-terminus-modified analogs of distamycin deduced from circular dichroism, proton nuclear magnetic resonance, and methidiumpropylethylenediaminetetraacetate-iron(II) footprinting studies[J]. Biochemistry. 1993,32(16):4237-4245.
    [23]Satyanarayana, S. Dabrowiak, J.C. Chaires, J.B.Tris(phenanthroline)ruthenium(II)enantiomer interactions with DNA:Mode and specificity of binding[J]. Biochemistry.1993,32(10): 2573.
    [24]Liu, J.G. Zhang, Q.L. Shi, X.F. Ji, L.N. Interaction of [Ru(dmp)2(dppz)]2+ and [Ru(dmb)2(dppz)]2+ with DNA:Effects of the Ancillary Ligands on the DNA-Binding Behaviors[J]. Inorganic Chemistry.2001,40(19):5045-5050.
    [25]Liu, J.G. Ye, B.H. Li, H. Zhen, Q.X. Ji, L.N. Fu, Y.H. Polypyridyl ruthenium(II) complexes containing intramolecular hydrogen-bond ligand:syntheses, characterization, and DNA-binding properties[J]. Journal of Inorganic Biochemistry.1999,76(3-4):265-271.
    [26]Towyz, R.M. Reactive Oxygen Species, Vascular Oxidative Stress, and Redox Signaling in Hypertension Vascular Oxidative Stress, and Redox Signaling in Hypertension[J]. Hypertension.2004,44:248-252.
    [27]Xing, R.G. Yu, H.H. Liu, S. Zhang, W.W. Zhang, Q.B. Li, Z.E. Li, P.C. Antioxidant activity of differently regioselective chitosan sulfates in vitro[J]. Bioorganic & Medicinal Chemistry. 2005,13(4):1387-1392.
    [1]Saengchantara, S.T., Wallace, T.W. Chromanols, chromanones and chromones[J]. Natural Product Reports.1986,465-475.
    [2]彭司勋,赵守训,廖清江,等环氧酶及其选择性抑制剂的研究进展[M].北京:化学工业出版社.2001:244.
    [3]Hutter, J.A., Salman, M., Stavinoha, W.B., et al. Antiinflammatory C-Glucosyl Chromone from Aloe barbadensis[J]. Journal of Natural Products.1996,59(5):541-543.
    [4]Morris, J., Wishka, D.G., Lin, A.H., et al. Synthesis and biological evaluation of antiplatelet 2-aminochromones[J]. Journal of Medicinal Chemistry.1993,36(14):2026
    [5]Mazzei, M., Balbi, A., Roma, G., et al. Synthesis and antiplatelet activity of some 2-(dialkylamino) chromones[J]. European Journal of Medicinal Chemistry.1988, 23:237-242.
    [6]Bolos, J., Gubert, S., Anglada, L., et al.7-[3-(1-Piperidinyl)propoxy]chromenones as Potential Atypical Antipsychotics[J]. Journal of Medicinal Chemistry.1996,39(15):2962-2970.
    [7]Hu, C.Q., Chen, K., Shi, Q. Anti-AIDS Agents,10. Acacetin-7-O-β-D-galactopyranoside, an Anti-HIV Principle from Chrysanthemum morifolium and a Structure-Activity Correlation with Some Related Flavonoids[J]. Journal of Natural Products.1994,57(1):42-51.
    [8]Athanasellis, G., Melagraki, G., Afantitis, A., Makridima, K., Markopoulou, O.I., A simple synthesis of functionalized 2-amino-3-cyano-4-chromones by application of the N-hydroxybenzotriazole methodology[J]. Arkivoc.2006,10:28-34.
    [9]Singh, G., Singh, R., Girdhar, N.K., Ishar, M.P.S. A versatile route to 2-alkyl-/aryl-amino-3-formyl- and hetero-annelated-chromones, through a facile nucleophilic substitution at C2 in 2-(N-methylanilino)-3-formylchromone[J]. Tetrahedron.2002, 58(12):2471-2480.
    [10]Piao, L.Z., Park, H.R., Park, Y.K., Lee, S.K., Park, J.H., Park, M.K. Mushroom tyrosinase inhibition activity of some chromones[J]. Chemical and Pharmaceutical Bulletin.2002, 50(3):309-311.
    [11]Bernini, R., Mincione, E., Coratti,A., Fabrizib, G. Epoxidation of chromones and flavonoids in ionic liquids[J]. Tetrahedron.2004,60:967-971.
    [12]Bondarenko, S., Frasinyuk, M.S., Khilya, V.P. Synthesis of 3,4'-dimethoxyiso-flavone derivatives[J]. Chemistry of Natural Compounds.2003,39(4):340-343.
    [13]Nohara, A., Hisashi, K., Takeshi,S., Morio, K., Yasashi, S. Studieds on antianaphylactic agents,Synthesis of 3-(1H-tetrazol-5-yl)chromones,a new series of antiallergic substances[J]. Journal of Medicinal Chemistry.1977,20(l):141-145.
    [14]ZemLyakov, A.E., Kuryanov, V.O., Chupakhina, T.A., Chirva, V.Y., Ishchenko. V., Garazd, M., Khilya, V.P. Synthesis of N-acetylglucosaminides With coumarin and chromone aglycons[J]. Chemistry of Natural Compounds.2002,38(2):149-153.
    [15]Nohara, A., Umetani, T., Sanno, Y. Facile synthesis of chromone-3-carboxaldehyde, chromone-3-carboxylic acid, and 3-hydroxymethylchromone[J] Tetrahedron Letter.1973, 14(22):1995-1998.
    [16]Geary, W.J. Use of conductivity measurements in organic solvents for the characterization of coordination compounds[J]. Coordination Chemistry Review.1971,7(1):81-122.
    [17]Marchetti, F., Pettinari, C., Pettinari, R., Cingolani, A., Leonesi, D., Lorenzotti, A. Group 12 metal complexes of tetradentate N2O2-Schiff-base ligands incorporating pyrazole:synthesis, characterisation and reactivity toward S-donors, N-donors, copper and tin acceptors[J]. Polyhedron.1999,18(23):3041-3050.
    [18]Narang, K.K., Singh, V.P. Synthesis and characterization of cobalt(II), nickel(II), copper(II) and zinc(II) complexes with acetylacetone bis-benzoylhydrazone and acetylacetone bis-isonicotinoylhydrazone[J]. Transition Metal Chemistry.1993,18(3):287-290.
    [19]Wang, B.D., Yang, Z.Y., Zhang, D.W., Wang, Y. Synthesis, structure, infrared and fluorescence spectra of new rare earth complexes with 6-hydroxy chromone-3-carbaldehyde benzoyl hydrazone[J]. Spectrochimica Acta Part A.2006,63(1):213-219.
    [20]Lehn, J.M. Perspectives in supramolecular chemistry:from molecular recognition to molecular information processing and self organization[J]. Angewandte Chemie International Edition.1990 29(11):1304-1319.
    [21]Latva, M., Takalo, H., Simberg, K., Ankare, K.J. Enhanced EuⅢ ion luminescence and efficient energy transfer between lanthanide chelates within the polymeric structure in aqueous solutions[J]. Journal of the Chemical Society, Perkin Transactions.1995, 2(5:995-999.
    [22]Wu, S.L., Wu, Y.L., Yang, Y.S. Rare earth(iii) complexes with indole-derived acetylacetones II. luminescent intensity for europium(iii) and terbium(iii) complexes[J]. Journal of Alloys and Compounds.1992,180(2):399-402.
    [23]Sato, S., Wada, M. Relations between Intramolecular Energy Transfer Efficiencies and Triplet State Energies in Rare Earth β-diketone Chelates[J]. Bulletin of the Chemical Society of Japan.1970,43(7):1955-1962.
    [24]Wu, W.N., Tang, N., Yan, L. Rare earth complexes with a novel ligand N-(naphthalen-2-yl)-N-phenyl-2-(quinolin-8-yloxy)acetamide:Preparation and spectroscopic studies[J]. Spectrochimica Acta Part A.2008,71(4):1461-1465.
    [25]Tang, Y, Tang, K.Z., Liu, W.S., Tan, M.Y. Assembly, crystal structure, and luminescent properties of three-dimensional (10,3)-a netted rare earth coordination polymers[J] Science in China Series B.2008,51(7):614-622.
    [26]Latva, M., Takalo, H., Mukkala, V.M., Matachescu, C., Rodriguez-Ubis, J.C., Kankare, J. Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield[J]. Journal of Luminescence.1997,75(2):149-169.
    [27]Gao, F., Chao, H., Zhou, F., Yuan, Y.X., Peng, B., Ji, L.N. DNA interactions of a functionalized ruthenium(II) mixed-polypyridyl complex [Ru(bpy)2ppd]2+[J]. Journal of Inorganic Biochemistry.2006,100(9):1487-1494.
    [28]Pyle, A.M., Rehmann, J.P., Meshoyrer, R., Kumar, C. V., Turro, N.J., Barton, J.K. Mixed-ligand complexes of ruthenium(Ⅱ):factors governing binding to DNA[J]. Journal of the American Chemistry Society.1989, 111(8):3051-3058.
    [29]Wilson, W.D., Ratmeyer, L., Zhao, M., Strekowski, L., Boykin, D. The search for structure-specific nucleic acid-interactive drugs:effects of compound structure on RNA versus DNA interaction strength[J]. Biochemistry.1993,32(15):4098-4104.
    [30]Xu, H., Zheng, K.C., Lin, L.J., Li, H., Gao, Y., Ji, L.N. Effects of the substitution positions of Br group in intercalative ligand on the DNA-binding behaviors of Ru(II) polypyridyl complexes[J]. Journal of Inorganic Biochemistry.2004,98(1):87-97.
    [31]Le-Pecq, J.B., Paoletti, C. A fluorescent complex between ethidium bromide and nucleic acids[J]. Journal of Molecular Biology.1967,27(1):87-106.
    [32]Lee, M., Rhodes, A.L., Wyatt, M.D., Forrow, S., Hartley, J.A. GC base sequence recognition by oligo(imidazolecarboxamide) and C-terminus-modified analogues of distamycin deduced from circular dichroism, proton nuclear magnetic resonance, and methidiumpropylethylenediaminetetraacetate-iron(II) footprinting studies[J]. Biochemistry. 1993,32(16):4237-4245.
    [33]Lerman, L.S. Structural considerations in the interaction of deoxyribonucleic acid and acridines[J]. Journal of Molecular Biology.1961,3:18-30.
    [34]Howe, G.M., Wu, K.C., Bauer, W.R., Lippard, S.J. Binding of platinum and palladium metallointercalation reagents and antitumor drugs to closed and open DNAs[J]. Biochemistry. 1976,15(19):4339-4346.
    [35]Satyanarayana, S., Dabrowiak, J.C., Chaires, J.B. Tris(phenanthroline)ruthenium(II) enantiomer interactions with DNA:Mode and specificity of binding[J]. Biochemistry.1993, 32(10):2573-2584.
    [36]Liu, J.G., Zhang, Q.L., Shi, X.F., Ji, L.N. Interaction of [Ru(dmp)2(dppz)]2+ and [Ru(dmb)2(dppz)]2+ with DNA:effects of the ancillary ligands on the DNA-binding behaviors[J]. Inorganic Chemistry.2001,40(19):5045-5050.
    [37]Liu, J.G., Ye, B.H., Li, H., Zhen Q.X., Ji, L.N., Fu, YH. Polypyridyl ruthenium(II) complexes containing intramolecular hydrogen-bond ligand:syntheses, characterization, and DNA-binding properties[J]. Journal of Inorganic Biochemistry.1999,76(3-4):265-271.
    [38]Wang, Q., Yang, Z.Y., Qi, G.F., Qin, D.D. Synthesis, crystal structure, antioxidant activities and DNA-binding studies of the Ln(III) complexes with 7-methoxychromone-3-carbaldehyde-(4'-hydroxy) benzoyl hydrazone[J]. European Journal of Medicinal Chemistry.2009,44(6):2425-2433.
    [39]Proctor, P.H., Reynolds, E.S. Free radicals and disease in man[J]. Physiological Chemistry & Physics & Medical NMR.1984,16(3),175-195.
    [1]Kimura, E. Progress in Inorganic Chemistry[M]. New York:John Wiley & Sons.1994,41: 443-490.
    [2]Strater, N., Lipscomb, W. N., Klabunde, T., and Krebs, B., Two-Metal Ion Catalysis in Enzymatic Acyl- and Phosphoryl-Transfer Reactions[J]. Angewandte Chemie, International English Edition.1996,35:2024-2055.
    [3]Cox, E.H., Mclenden, G.L. Zinc-dependent protein folding[J]. Current Opinion in Chemical Biology.2000,4:102-165.
    [4]Greisman, H.A., Pabo, C.O. A General Strategy for Selecting High-Affinity Zinc Finger Proteins for Diverse DNA Target Sites. Science[J].1997,275:657-661.
    [5]Choi, D.W., Koh, J.Y. Zinc and brain injury[J]. Annual Review of Neuroscience.1998, 21:347-375.
    [6]Frederickson, C.J., Bush, A.I. Synaptically released zinc:Physiological functions and pathological effects[J]. BioMetals.2001,14:353-366.
    [7]Mahoney, W., Thompsona, R.B., Dwight P., William M., Michele C., Badri. M., Sang, W.S., Chris F., Carol F., Petr H., at al. Fluorescent zinc indicators for neurobiology[J]. Journal of Neuroscience Methods.2002,118(1):63-75.
    [8]Kimura, K., Aoki, S. Chemistry of zinc(II) fluorophore sensors[J]. Biometals.2001,14(3-4): 191-204.
    [9]Frederickson, C.J., Kasarskis,E. J., Ringo, D., Frederickson, R.E. A quinoline fluorescence method for visualizing and assaying the histochemically reactive zinc (bouton zinc) in the brain[J]. Journal of Neuroscience Methods.1987,20(2):91-103.
    [10]Hendrickson, K.M., Geue, J.P., Wyness, O., Lincoln, S.F., Ward, A.D. Coordination and Fluorescence of the Intracellular Zn2+ Probe [2-methyl-8-(4-Toluenesulfonamido)-6-quinolyloxy]acetic Acid (Zinquin A) in Ternary Zn2+ Complexes[J]. Journal of American Chemical Society.2003,125(13):3889-3895.
    [11]Kubo, H., Yoshioka, N., Takeuchi, T. Fluorescent Imprinted Polymers Prepared with 2-Acrylamidoquinoline as a Signaling Monomer[J]. Organic Letter.2005,7(3):359-362.
    [12]Schulman, S.G., Sanders, L.B. Fluorescence and phosphorescence of 5-and 8-aminoquinoline[J]. Analytica Chimica Acta.1971,56:83-89.
    [13]Meervelt, L.V., Goethals, M., Leroux, N., Zeegers-Huyskens, T. X-ray and vibrational studies of 8-aminoquinoline. Evidence for a three-center hydrogen bond[J]. Journal of Physical Organic Chemistry.1997,10(9):680-686.
    [14]Wei, L., Babich, J., Eckelman, W.C., Zubieta, J.J. Rhenium Tricarbonyl Core Complexes of Thymidine and Uridine Derivatives[J]. Inorganic Chemistry.2005,44(7):2198-2209.
    [15]Frederickson, C.J., Kasarskis, E.J., Ringo, D.R. at al. A quinoline fluorescence method for visualizing and assaying the histochemically reactive zinc (bouton zinc) in the brain[J]. Journal of Neuroscience Methods.1987,20(2):91-103.
    [16]Nolan, E.M., Jaworski, J., Okamoto, K., Hayashi, Y., Sheng, M., Lippard, S.J. QZ1 and QZ2: Rapid, Reversible Quinoline-Derivatized Fluoresceins for Sensing Biological Zn(II)[J]. Journal of the American Chemistry Society.2005,127(48):16812-16823.
    [17]Komatsu, K., Urano, Y., Kojima, H, Nagano, T.J. Development of an Iminocoumarin-Based Zinc Sensor Suitable for Ratiometric Fluorescence Imaging of Neuronal Zinc[J]. Journal of the American Chemistry Society.2007,129(44):13447-13454.
    [18]Hanaoka, K., Kikuchi, K., Kojima, H., Urano, Y., Nagano, T.J. Development of a Zinc Ion-Selective Luminescent Lanthanide Chemosensor for Biological Applications[J]. Journal of the American Chemistry Society.2004,126(39):12470-12476.
    [19]Nolan, E.M., Lippard, S.J. Small-Molecule Fluorescent Sensors for Investigating Zinc Metalloneurochemistry[J]. Accounts of Chemical Research.2009,42(1):193-203.
    [20]Tsien, R.Y A non-disruptive for loading calcium buffers and indicators into cells[J]. Nature. 1981,290:527-528.
    [21]Jiang, P., Guo, Z. Fluorescent detection of zinc in biological systems:recent development on the design of chemosensors and biosensors[J]. Coordination Chemistry Review.2004, 248(3):205-229.
    [22]Wang, B.D., Xu, C.J., Xie, J., Yang, Z.Y, Sun, S.H. pH Controlled Release of Chromone from Chromone-Fe3O4 Nanoparticles[J]. Journal of the American Chemistry Society. 2008,130(44):14436-14437.
    [23]Gu, H.W., Ho, P.L., Tsang, K.W.T., Wang, L., Xu, B. Using Biofunctional Magnetic Nanoparticles to Capture Vancomycin-Resistant Enterococci and Other Gram-Positive Bacteria at Ultralow Concentration[J]. Journal of the American Chemistry Society.2003, 125(51):15702-15703.
    [24]Sun, S.H., Zeng, H. Size-Controlled Synthesis of Magnetite Nanoparticles[J]. Journal of the American Chemistry Society.2002,124(28):8204-8205.
    [25]Zhang, Y., Guo, X.F., Si, W.X., Jia, L.H., Qian, X.H. Ratiometric and Water-Soluble Fluorescent Zinc Sensor of Carboxamidoquinoline with an Alkoxyethylamino Chain as Receptor[J]. Organic Letter.2008,10(3):473-476.
    [26]Hirano, T., Kikuchi, K., Urano, Y., Higuchi, T., Nagano, T.J. Highly Zinc-Selective Fluorescent Sensor Molecules Suitable for Biological Applications[J]. Journal of the American Chemistry Society.2000,122(49):12399-12400.
    [1]Morawski, A.M., Lanza, G.A., Wickline, S.A. Targeted contrast agents for magnetic resonance imaging and ultrasound[J]. Current Opinion in Biotechnology.2005,16(1):89-92.
    [2]俞开潮,王国平,丁尚武等.用于磁共振成像对比增强的造影剂的研发进展[J].波谱学杂志.2004,21(4):505-525.
    [3]Meade, T.J., Taylor, A.K., Bull, S.R. New magnetic resonance contrast agents as biochemical reporters[J]. Current Opinion in Neurobiology.2003,13(5):597-602.
    [4]Lee, H., Lee, E., Kim, D.K., Jang, N.K., Jeong, Y.Y., Jon, S. Antibiofouling Polymer-Coated Superparamagnetic Iron Oxide Nanoparticles as Potential Magnetic Resonance Contrast Agents for in Vivo Cancer Imaging[J]. Journal of American Chemical Society.2006, 128(22):7383-7389.
    [5]Josephson, L., Tung, C.H., Moore, A., Weissleder, R. High-Efficiency Intracellular Magnetic Labeling with Novel Superparamagnetic-Tat Peptide Conjugates[J]. Bioconjugate Chemistry. 1999,10(2):186-191.
    [6]Bulte, J.W., Kraitchman, D.L. Iron oxide MR contrast agents for molecular and cellular imaging[J]. NMR Biomedicine.2004,17(7):484-499.
    [7]Zhuo, J., Gullapalli, R.P. MR Artifacts, Safety, and Quality Control[J]. Radio Graphics.2006, 26(1):275-297.
    [8]Runge, V.M. Safety of approved MR contrast media for intravenous injection[J]. Journal of Magnetic Resonance Imaging.2000,12:205-213.
    [9]Nakai, A., Togashi, K., Kosaka, K., Kido, A., Hiraga, A., Fujiwara, T, Koyama, T., Fujii, S. Uterine peristalsis:comparison of transvaginal ultrasound and two different sequences of cine MR imaging[J]. Journal of Magnetic Resonance Imaging.2004,20(3):463-469.
    [10]Voisin, P., Ribot, E.J., Miraux, S., Bouzier-Sore, A., Lahitte, J., Bouchaud, V., Mornet, S., Thiaudiere, E., Franconi, J., Raison, L., Labrugere C., Delville, M. Use of Lanthanide-Grafted Inorganic Nanoparticles as Effective Contrast Agents for Cellular Uptake Imaging[J]. Bioconjugate Chemistry.2007,18(4):1053-1063.
    [11]Taylor, K.M.L., Kim, J.S., Rieter, W.J., An, H., Lin, W., Lin, W. Mesoporous Silica Nanospheres as Highly Efficient MRI Contrast Agents[J]. Journal of American Chemistry Society.2008,130(7):2154-2155.
    [12]Wang, B.D. Xu, C.J., Xie, J., Yang Z., Sun, S.H. pH Controlled Release of Chromone from Chromone-Fe304 Nanoparticles[J]. Journal of American Chemistry Society.2008, 130(44):14436-14437.
    [13]Sun, S.H., Zeng, H. Size-Controlled Synthesis of Magnetite Nanoparticles[J]. Journal of American Chemistry Society.2002,124(28):8204-8205.
    [14]Ma, M., Zhang, Y., Yu, W., Shen, H.Y., Zhang H.Q., Gu, N. Preparation and characterization of magnetite nanoparticles coated by amino silane[J]. Colloids and Surfaces A.2003, 212(2-3):219-226.
    [15]Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds,4th ed[M]., Willey, New York,1986.
    [16]Bae, K.H., Kim, Y.B., Lee, Y., Hwang, J.Y., Park, H.W., Park, T.G. Bioinspired Synthesis and Characterization of Gadolinium-Labeled Magnetite Nanoparticles for Dual Contrast T1- and T2-Weighted Magnetic Resonance Imaging[J]. Bioconjugate Chemistry.2010,21(3):505-512.
    [17]Xu, C.J., Wang, B., Sun, S.H. Dumbbell-like Au-Fe3O4 Nanoparticles for Target-Specific Platin Delivery[J]. Journal of American Chemistry Society.2009,131(12):4216-4217.
    [18]Meade, T.J., Taylor, A.K., Bull, S.R. New magnetic resonance contrast agents as biochemical reporters[J]. Current Opinion in Neurobiology.2003,13(5):597-602.
    [19]Wang, Y.M., Cheng, T.H., Liu, G.C., Sheu., R.S. Synthesis of some N,N"-bis(amide) derivatives ofdiethylenetriaminepentaacetic acid and the stabilities of theircomplexes with Gd3+, Ca2+, Cu2+ and Zn2+[J]. Journal of the Chemical Society Dalton Transactions.1997, 6(5):833-838.