转铁蛋白受体MR分子探针Tf-SPION的合成及初步在体研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分MR分子探针Tf-SPION的合成与表征
     目的:合成MR成像分子探针转铁蛋白-超顺磁性氧化铁纳米粒螯合物Tf-SPION,并对其理化性质进行表征和评价。
     材料与方法:按酰胺化反应合成用Tf-SPION。将超顺磁性氧化铁纳米粒用EDCA/NHS活化,15分钟后磁板分离,用PBS将沉淀重新分散。将转铁蛋白加入上述SPION溶液中,混匀后放置过夜,次日吸附沉淀、去除上清,加入缓冲液将Tf-SPION溶液浓度调整为5mg/ml。EDAC/NHS活化转铁蛋白,加入超顺磁性氧化铁纳米粒,过夜反应10-24小时,磁板分离,加入缓冲液将Tf-SPION溶液浓度调整为5mg/ml,4℃储存备用。通过红外光谱、透射电镜、动态激光散射仪对Tf-SPION的结构和粒径进行观察,测定螯合物Tf-SPION的T2弛豫率。
     结果:成功合成MR分子探针Tf-SPION。经过红外光谱检测,证实转铁蛋白Tf与超顺磁性氧化铁纳米粒SPION已经偶联为Tf-SPION。透射电镜检测Tf-SPION微粒呈球形,颗粒均匀,分散良好,粒子核心平均粒径为18.3±1.1nm;SPION平均粒径为7.9±0.5nm;动态激光散射仪检测Tf-SPION粒径为143.5±49.36nm。Tf-SPION弛豫率为94.618Mm/s,单纯SPION弛豫率173.39Mm/s。
     结论:螯合物Tf-SPION满足MR分子探针所需的条件,能够用于MR分子成像。
     第二部分移植性肝肿瘤转铁蛋白受体MR分子成像的在体实验研究
     目的:观察分别经静脉、动脉途径引入Tf-SPION对肝肿瘤的靶向性成像效果。
     材料与方法:40只肝左外侧叶种植Walker-256肿瘤SD大鼠被随机分为A、B、C、D、E五组(每组各8只大鼠)。A、B、C两组分别为经尾静脉注射0.2ml生理盐水,0.2ml SPION和0.2ml Tf-SPION。D、E两组在手术显微镜下将聚乙烯微导管经胃十二指肠动脉逆行插入肝动脉,分别经导管肝动脉注射0.2mlTf-SPION和0.2ml SPION。以上各组SD大鼠在干预后1小时内、4小时、24小时、96小时分别行腹部磁共振T2横断位扫描。扫描完成后,选取肿瘤最大径层面,分别测量肿瘤组织及同层面背部肌肉组织的T2信号强度,计算肿瘤的T2相对信号强度比RR。每组各4只大鼠在干预后1小时和96小时MR扫描结束后处死,通过普鲁士蓝染色观察肝脏组织中铁粒子含量及分布。
     结果:SD大鼠移植性肝肿瘤模型造模成功。MR扫描显示,瘤块多呈类圆形,最大直径平均值1.06±0.35cm。统计学分析表明,A、B组间RR在干预后各时间点均无显著性差异(P>0.05);C、B组间,以及D、C组间RR值在干预后各时间点均有显著性差异(P<0.01);D、E组间RR值在干预后1小时存在显著性差异(P<0.01)。普鲁士蓝染色显示,与其他组相比,D组肝肿瘤摄取铁粒子效率最高。
     结论:SPION在偶联转铁蛋白后,能够增加对肿瘤细胞转铁蛋白受体的亲和力,促进肿瘤细胞的摄取;经动脉途径引入Tf-SPION,能够更好地靶向性显示移植性肝肿瘤。
Part Ⅰ:Preparation and characterization of the magnetic resonance molecular imaging probes:transferrin (Tf)-superparamagnetic iron oxide nanoparticles (SPION)
     Objective:To synthesis the MR molecular imaging probes Tf-SPION and characterize the physicochemical properties of the prepared probes.
     Materials and Methods:Tf-SPION is synthesized according to the principle of the amidation reaction. The carboxyl groups in the surface of SPION are actived by the activating agent1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) and protective agent N-hydroxy succinimide (NHS). The actived SPION particles are separated as the form of precipitation with a magnetic plate. The precipitation is washed with phosphate buffer solution (PBS) to remove the unreacted EDC and NHS. Then the precipitation is dispersed in the PBS. Transferrin is added into the actived SPION solution and reactived overnight at room temperature. Adsorb the precipitation with a magnetic plate, and remove the supernatant. The concentration of Tf-SPION is adjusted to5mg/ml with PBS.
     The infrared spectroscopy is used to identify the compounds of the synthesized precipitation which is a single component of Tf-SPION but not a mixture. The surface morphology is detected by the transmission electron microscopy (TEM) and dynamic light scattering (DLS). Then the T2relaxation rate is tested respectively by MR.
     Results:The MR molecular imaging probes Tf-SPION is synthesized successfully with the amidation reaction method.
     The precipitation is conformed to be the single compound of Tf-SPION but not the mixture of the Tf and SPION by infrared spectroscopy. Tf-SPION particles are spherical and uniform in the image of TEM and DLS, with a particle mean size is18.3±1.1nm,143.5±49.36nm respectively, and the SPION is7.9±0.5nm,71.45±29.80nm respectively. The Tf-SPION relaxation rate is94.618mM/s and the SPION relaxation rate is173.39mM/s.
     Conclusion:The chelate Tf-SPION we have synthesized shows the conditions for MR molecular image probes and can be used for MR molecular imaging.
     Part Ⅱ:In vivo study of Tf-SPION for MR molecular imaging in a rat liver cancer model
     Objective:To investigate the characteristic of Tf-SPION for molecular imaging in a rat hepatic tumor model via artery or vein route. Materials and methods:Fourty Spraque-Dawley(SD) rats implanted with Walker-256tumors in the hepatic left lateral lobes were randomly divided into five groups (A, B, C, D and E) with8rats each. Retrograde gastroduodenal arterial catheterization with polyethylene microcatheter was performed under the surgical microscope in the group D and E.0.2ml Tf-SPION and0.2ml SPION was injected into hepatic artery in the group D and group E respectively.0.2ml saline,0.2ml SPION and0.2ml Tf-SPION was injected into tail vein in the group A, B and group C respectively. Abdominal MRI was performed at1hour,4hours,1day and4days after the injection of Tf-SPION or SPIO in each group. T2signal intensity of the tumor and the back muscle tissue was measured in the maximum tumor diameter section, and the relative signal intensity ratio(RR) was calculated. Four rats were sacrified at1hour and4days after MRI in each group, iron particles in the liver were tested by Prussian blue staining.
     Results:The rat liver cancer model was established successfully. There was no significant difference of RR between group A and group B (P<0.01). And there was significant difference of RR between group C and group B (P<0.01) at each timepoint after intervention, and the same difference between group D and group C(P<0.01). The statistics difference was found between group D and group E at the first timepoint (P<0.01). Group D showed the most efficient hepatic tumor uptake of iron particles compared with other groups by Prussian blue staining. Conclusion:The results suggested Tf-SPION as a potential MR imaging probe for cell tracking. Introduction of Tf-SPION via artery may be used as a new novel method for the diagnosis evaluation of hepatic tumor.
引文
[1]Kearney SL, Nemeth E, Neufeld EJ, et al. Urinary hepcidin in congenital chronic anemias[J]. Pediatr Blood Cancer,2007,48(1):57-63.
    [2]Hogemann-Save llano D, Bos E, Blondet C, et al. The transferrin receptor: a potential molecular imaging marker for human cancer[J]. Neoplasia, 2003,5(6):495-506
    [3]Degen CL, P oggio M, Mamin HJ, Rettner CT, Rugar D. Nanoscale magnetic resonance imaging[J]. Proc Natl Acad Sci USA,2009,106(5):1313-1317
    [4]Weissleder R, P ittet MJ. Imaging in the era of molecular oncology[J]. Nature,2008,452(7187):580-589
    [5]Sun C, Lee JS H, Zhang MQ. Magnetic nanoparticles in MR imaging and drug delivery [J]. Adv Drug Deli v Rev,2008,60(11):1252-1265
    [6]Jun YW, Lee JH, Cheon J. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging [J]. Angew Chem Int Ed,2008, 47 (28):5122-5135
    [7]Qiao RR, Yang CH, Gao MY. S uperparamagnetic iron oxide nanoparticles: From preparations to in vivo MRI applications [J]. J Mater Chem,2009, 19(35):6274-6293
    [8]Daldrup-Link HE, Rudelius M, Oostendorp RA, et al. Targeting of hematopoietic progenitor cells with MR contrast agents[J]. Radiology, 2003,228(3):760-767
    [9]Weissleder R, Mahmood U. Molecular Imaging[J]. Radiology,2001, 219(2):316-333.
    [10]Wickline SA, Lanza GM. Molecular imaging, targeted therapeutics, nanoscience[J]. J Cell Biochem,2002,39(Suppl):90-97.
    [1]Weissleder R. Moleeular imaging:exploring the next frontier[J]. Radiology,1999,212(3):609-14.
    [2]Massoud TF, Gambhir S. Molecular imaging in living subjects:seeing fundamental biological processes in anew light[J]. Genes Dev,2003,17(5): 545-580.
    [3]Thakur M, Lentle BC.Report of a summit on molecular imaging[J]. Radiology,2005,236(3):753-755.
    [4]Edinger M, Sweeney TJ, Tucker AA, et al. Nonivasive assessment of tumor cell proliferation in animal models[J]. Neoplasia,1999,1(4):303-310.
    [5]Hogemann D, Josephson L, Weissleder R, et al. Improvement of MRI probes to allow efficient detection of gene expression[J]. Bioconjug Chem,2000,11 (6):941-946.
    [6]Paul J, Endre S, Keith W,et al.Cell-Permeable MR Contrast Agents with Increased Intracellular Retention[J]. Bioconjugate Chem,2008,19, 2049-2059.
    [7]Tweedle MF. Stability of gadolinium chelates(letter to theEditor) [J].Br J Radiol,2007.
    [8]Furong Ye, Jeong EK. A peptide targeted contrast agent specific to fibrin-fibronectin complexes for cancer molecular imaging with MRI[J]. Bioconjugate Chem,2008,19:2300-2303.
    [9]Islam T, Wolf G. The pharmacokinetics of the lymphotropic nanoparticle MRI contrast agent ferumoxtran-10 [J]. Cancer Biomark,2009,5(2): 69-73.
    [10]Bonnemain B. Nanoparticles:the industrial viewpoint. Applications in diagnostic imaging [J]. Ann Pharm Fr,2008,66(5/6):263-267.
    [11]Jarzyna PA,Skajaa T,Gianella A, et al.Iron oxide core oil-in-water emulsions as a multifunctional nanoparticle platform for tumor targeting and imaging[J].Biomaterials.2009; 30(36):6947-6954.
    [12]Ailles LE, Weissman IL. Cancer stem cells in solid tumors [J]. Curr Opin Biotechnol,2007,18:460-466.
    [13]Weissleder R, Moore A, Mahmood U, et al. In vivo magnetic resonance imaging of transgene expression[J].Nat Med,2000,6(3):351-355.
    [14]Moore A, Basilion JP, Chiocca EA, et al. Measuring transferrin receptor gene expression by NMR imaging[J]. Biochim Biophys Acta,1998, 1402(3),239-249.
    [15]Okamoto OK,Perez JF. Targeting cancer stem cell with monoclonal antibodies:a new perspective in cancer therapy and diagnosis[J]. Expert Rev Mol Diagn,2008,8:387-393.
    [16]Yang L,Peng XH, Wang YA, et al. Receptor-targeted nanoparticles for in vivo imaging of breast cancer. Clin Cancer Res[J].2009;15(14): 4722-4732.
    [1]常旭,主编.原发性肝癌的治疗.郑州:河南医科大学出版社,1999.1.
    [2]Medarova Z. Multiparametric monitoring of tumor response to chemotherapy by noninvasive imaging [J]. Cancer Res,2009,69(3):1-8.
    [3]Furong Ye, Jeong EK. A peptide targeted contrast agent specific to fibrin-fibronectin complexes for cancer molecular imaging with MRI[J].Bioconjugate Chem,2008,19:2300-03.
    [4]钱骏,冯敢生,Trubenbach J,等.同种移植大鼠肝细胞癌模型的建立及其磁共振表现[J].中华放射学杂志,2002,36:455-58.
    [5]Yang R, Rescorla FJ, Reilly CR, et al. A reproducible rat liver cancer model for experimental therapy:introducing a technique of intrahepatic tumor implantation[J].J Surg Res,1992,52:193-98.
    [6]钱骏,Truebenbach J, Eul T,等.ACI大鼠肝细胞癌模型在介入治疗实验中的初步应用[J].中华放射学杂志,2003,37(1):16-19.
    [7]Kamphorst EJ, Bodeker H, Koroma S, et al. New technique for superselective arterial (chemo-)embolization of the rat liver[J].Lab Anim Sci,1999, 49:216-19.
    [8]王敏康,王晓燕,张田,等.一种用于大鼠的无麻醉可连续的采血技术[J].解剖学杂志,1999,22(1):94-95.
    [9]Smith TA, Perkins AC, Walton PH.99mTc-labelled human serumtransferrin for tumour imaging:an in vitro and in vivo study of the complex [J]. NuclMed Commun,2004,25:387-91.
    [10]Ryschich E, HusztyG, KnaebelHP, et al. Transferrin receptor is a marker of malignant phenotype in human pancreatic cancer and in neuroendocrine carcinoma of the pancreas[J]. Eur J Cancer,2004,40:1418-22.
    [11]Daniels TR, Delgado, T, Rodriguez, JA, et al. The transferrin receptor part I:biology and targeting with cytotoxic antibodies for the treatment of cancer[J].Clin Immunol,2006,121:144-158.
    [12]Prutki M, Poljak-Blazi M, Jakopovic, M, et al. Altered iron metabolism, transferrin receptor 1 and ferritin in patients with colon cancer[J]. Cancer Lett,2006,238:188-195.
    [13]Daniels TR, Delgado T, Helguera G, et al.The transferrin receptor part II:targeted delivery of therap euticagentsin to cancer cells[J]. Clin Immunol,2006,121:159-176.
    [14]杨继金,朱永法,左长京,等.大白鼠转移性肝癌模型的制作[J].中华放射学杂志,1993,27:122.
    [15]Li X, Zheng CS, Feng GS, et al.An Implantable Rat Liver Tumor Model for Experimental Transarterial Chemoembolization Therapy and Its Imaging Features[J]. World J Gastroenterol,2002,8(6):1035-1039.
    [16]Acco A, Silva MH, Batista M R, et al. Action of celecoxib on hepatic metabolic changes induced by the Walker-256 tumour in rats[J]. Basic Clin Pharmacol Toxicol,2007,101(5):294-300.
    [17]Kalinowski DS, Richardson DR. The Evolution of Iron Chelators for the Treatmentof Iron Overload Disease and Cancer[J]. Pharmacol Rev,2005,57 (4):547-83.
    [18]Ye SN, Yang SH,Wu Q, et al.Transferrin-polyethylenimine as a tumor-targeting vector for gene transfer tomurine osteosarcoma[J]. Tumor,2005,25 (4):321-24.
    [19]Nakase M, Inui M, Okumura K, et al. p53 gene therapy of human osteosarcoma using a transferrin-modified cationic liposome[J]. Mol Cancer Ther,2005,4 (4):625-31.
    [20]Neves S, Faneca H, Bertin S, et al. Transferrin lipoplex-mediated suicide gene therapy of oral squamous cell carcinoma in an immunocompetentmurine model andmechanisms involved in the antitumoral response [J]. CancerGene Ther,2009,16(1):91-101.
    [21]Islam T, Josepphson L. Current stste and future application of active targeting in malignancies using superparamagnetic iron oxide nanoparticles. Cancer Biomark,2009,5(2):99-107.
    [22]Veiseh CS, Gunn JN, Kohler PG, et al. Optical and MRI multifunctional nanoprobe for targeting gliomas[J]. Nano Letters 2005,5:1003-1008.
    [23]Harisinghani JB, Hahn PF, Deserno WM, et al. Noninvasive detection of clinically occult lymph-node metastases in pros tate cancer [J]. New Engl J Med,2003,348:2491-99.
    [24]Veiseh PG, Bahrami SB, Veiseh O,et al. Tumor paint:a chlorotoxin:Cy5.5 bioconjugate for intraoperati ve visualization of cancer foci[J]. Cancer Res,2007,67:6882-88.
    [25]Kachra EB, Delbecchi L, Mousseau N, et al. Expression of matrix metalloproteinases and their inhibitors in human brain tumors[J]. Clinical and Experimental Metastasis,1999,17:555-566.
    [26]Jenny J, Yang JY. Rational design of protein-based MRI contrast agents [J]. J Am Chem Soc,2008,130:9260-9267.
    [27]Winter PM, Caruthers SD, Kassner A, et al. Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel alpha(nu)beta3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging[J]. Cancer Res,2003,63:5838-5843.
    [28]Weissleder R, Moore A, Mahmood U, et al. In vivo magnetic resonance imaging of transgene expression[J]. Nat Med,2000,6:351-355.
    [29]Podzus PE, Daraio ME, Jacobo SE. Chitosan magnetic microspheres for technological applications:Preparation and characterization [J]. Physica B,2009,404:2710-2712.
    [30]Zhang W, Shen H, Xie MQ, et al. Synthesis of carboxymethyl-chitosan-bound magnetic nanoparticles by the spraying co-precipitation method [J]. Scripta Materialia,2008,59:211-214.
    [31]Feng B, Tomizawa K, Michiue H, et al. Delivery of sodium borocaptate to glioma cells using immunoliposome conjugated with anti-EGFR antibodies by ZZ-His [J]. Biomaterials,2009,30(9):1746-55.
    [32]Dobson J. Gene therapy progress and prospects:magnetic nanoparticle-based gene delivery[J]. Gene Ther,2006,13(4):283-87.
    [33]Xia CQ, Shen WC. Tyrphostin-8 enhances transferring receptor-mediated transcytosis in caco-2 cell and increases hypoglycemic effect of orally administered insulin-transferrin conjugate in diabetic rats[J]. Pharmaceutical Research,2001,18(2):191-95.
    [34]Tanaka T, Fujishima Y, Kaneo Y. Receptormediated endocytosis and cytotoxicity of transferrin-mitomycin C conjugate in the HepG2 cell and primary cultured rat hepatocyte[J]. Biol Pharm Bull,2001,24(3):268-273.
    [35]Li H, Sun H, Qian ZM. The role of the transferrin-transferrin-receptor system in drug delivery and targeting[J]. Trends Pharmacol Sci,2002,23 (5):206-209.
    [36]Singn M, Atwal H, Micetich R. Transferrin directed delivery of adriamycin to human cells[J].Anticancer Res,1998,18(3A):1423-1427.
    [37]Jiang YY, Liu C, Hong MH, et al. Tumor cell targeting of transferrin-PEG-TNF-alpha conjugate via a receptor-mediated delivery system:design, synthesis, and biological evaluation[J]. Bioconjug Chem,2007,18(1):41-49.
    [38]Yamasaki T, Terai S, Sakaida. Deferoxamine for Advanced Hepatocellular Carcinoma[J].N Engl J Med,2011,365:576-578.
    [39]Shi M, Chen JA, LinXJ, eta.1 Transarterial chemoembolization as initial treatment for unresectable hepatocellular carcinoma in southern China[J]. World J Gastroenterol,2010,16:264.
    [40]Sun X, JiangH, Jiang X, et al. Antisense hypoxia-inducible factor lalpha augments transcatheter arterial embolization in the treatment of hepatocellular carcinomas in rats[J].Hum Gene Ther,2009,20:314.
    [41]Xiao EH, GuoD, Bian DJ. Effect of preoperative transcatheter arterial chemoembolization on angiogenesis of hepatocellular carcinoma cells[J]. World J Gastroenterol,2009,15:4582.
    [1]魏玮,何俊明,王理伟,等.肿瘤相关性贫血铁代谢状况与生活质量的相关性研究[J].临床肿瘤学杂志,2009,14(4):350-53.
    [2]Sun H, Li H, Sadler PJ.Transferrin as a metal ion mediator. Chem Rev 1999,99:2817-42.
    [3]Parkkinen J, Bonsdorff LV, Ebeling F, et al. Function and therapeutic development of apotransferrin[J]. Vox Sang,2002,83(Suppl.1):321-26.
    [4]Mason AB, Tam BM, Woodworth RC, et al. Receptor recognition sites reside in both lobes of human serum transferrin. Biochem J,1997,326:77-85.
    [5]Moore A, Josephson L, Bhorade RM, et al. Human transferrin receptor gene as a marker gene for MR imaging[J]. Radiology,2001,221(1):244-50.
    [6]Smith TA, Perkins AC, Walton PH.99mTc-labelled human serumtransferrin for tumour imaging:an in vitro and in vivo study of the complex[J]. NuclMed Commun,2004,25:387-91.
    [7]Qian ZM, Pu YM, Tang PL, et al. Transferrin-bound iron uptake by the cultured cerebellar granule cells[J]. Neurosci Lett,1998,251(1):9-12.
    [8]Daniels TR, Delgado T,Helguera G, et al.The transferrin receptor part I:biology and targeting with cytotoxic antibodies for the treatment of cancer[J].Clin Immunol,2006,121(2):144-58.
    [9]沈听,刑薇,何峰容,等.抗人转铁蛋白受体单克隆抗体体外抗瘤效应研究[J].细胞与分子免疫学杂志,2008,24:144-46.
    [10]Kalinowski DS, Richardson DR. The Evolution of Iron Chelators for the Treatmentof Iron Overload Disease and Cancer [J]. Pharmacol Rev,2005,57(4): 547-83.
    [11]Calzolari A, Oliviero I, Deaglio S, et al. Transferrin receptor 2 is frequently expressed in human cancer cell lines[J]. Blood Cells MolDis,2007,39(1):82-91.
    [12]Hanninen MM, Haapasalo J, Haapasalo H, et al. Expression of iron-related genes in human brain and brain tumors[J]. BMC Neurosci,2009,10:36-45.
    [13]Boult J, Roberts K, Brookes MJ, et al. Overexpression of cellular iron import proteins is associated with malignant progression of esophageal adenocarcinoma[J].Clin Cancer Res,2008,14(2):379-87.
    [14]Ortiz-Sanchez E, Daniels TR, HelgueraG, et al. Enhanced cytotoxicity of an anti-transferrin receptor IgG3-avidin fusion protein in combination with gambogic acid against human malignant hematopoietic cells: functional relevance of iron, the receptor, and reactive oxygen species. Leukemia,2009;23(1):59-70
    [15]Nikanjam M, Gibbs AR, Hunt CA, et al. Synthetic nano-LDL with paclitaxel oleate as a targeted drug delivery vehicle for glioblastoma multiforme [J].J Control Release,2007,124:163-71.
    [16]Lepelletier Y, Camara-Clayette V, Jin H, et al. Prevention ofmantle lymphoma tumor establishment by routing transferrin receptor toward lysosomal compartments[J]. CancerRes,2007,67(3):1145-54.
    [17]Sanchez M, Galy B, Dandekar T, et al. Iron regulation and the cell cycle: identification of an iron-responsive element in the 3-untranslated region of human cell division cycle 14A mRNA by a refined microarray-based screening strategy[J]. J BiolChem,2006,281 (32):22865-74.
    [18]Huang X. Iron overload and its association with cancer risk in humans: evidence for iron as a carcinogenic metal [J]. Mutat Res,2003,533(1-2): 153-71.
    [19]Feelders RA, Kuiper-Kramer EP, van-Eijk HG. Structure, function and clinical significance of transferrin receptors. ClinChem Lab Med,1999, 37(1):1-10
    [20]Bulte JW, Zhang S, van-Gelderen P, et al. Neurotransplantation of magnetically labeled oligodendrocyte progenitors:magnetic resonance tracking of cell migration and myelination[J]. Proc Natl Acad Sci USA,1999,96(26):15256-61
    [21]Kreitman RJ, Pastan I.Recombinant toxins containing human granulocyte macrophage colony-stimulating factor and either pseudomonas exotoxin or diphtheria toxin kill gastrointestinal cancer and leukemia cells[J]. Blood,1997,90(1):252-59.
    [22]Daniels TR, Delgado T, Helguera G, et al.The transferrin receptor part II:targeted delivery of therapeutic agents into cancer cells[J]. Clin Immunol,2006,121(2):159-76.
    [23]Islam T, Josepphson L. Current stste and future application of active targeting in malignancies using superparamagnetic iron oxide nanoparticles. Cancer Biomark,2009,5(2):99-107.
    [24]Yang L, Mao H, Cao Z, et al, Molecular imaging of pancreatic cancer in an animal model using targeted multifunctional nanoparticles. Gastroenterology,2009,136(5):1514-25.
    [25]Moore A, Basilion JP, Chiocca EA, et al. Measuring transferrin receptor gene expression by NMR imaging [J]. Biochim Biophys Acta,1998,1402(3):239-49.
    [26]Shen T, Weissleder R, Papisov M, et al. Monocrystalline iron oxide nanocompounds (MION):physicochemical properties[J]. Magn Reson Med,1993, 29(5):599-601.
    [27]Weissleder R, Mahmood U. Molecular imaging [J]. Radiology,2001,219(2): 316-33.
    [28]Jarrett BR, Frendo M, Vogan J, et al. Size-controlled synthesis of dextran sulfate coated iron oxide nanoparticles for magnetic resonance imaging[J]. Nanotechnology,2007,18(3):35603-07.
    [29]Yamasaki T, Terai S, Sakaida. Deferoxamine for Advanced Hepatocellular Carcinoma[J].N Engl J Med,2011,365:576-578.
    [30]Zhang LY,Gu HC, Wang XM.Magnetite ferrofluid with high specific absorption rate for application in hypertheermia [J]. J Mag Mag Mat,2007,311:228-233.
    [31]Wust P, Hikdebrandt B,Sreenivasa G, et al. Hyperthermia in combined treatment of cancer[J]. The Lancet Oncology,2002,3(8):487-97.
    [32]Jafari A, Tynjala T, Mousavi SM, et al. Simulation of heat transfer in a ferrofluid using computational fluid dynamics technique [J]. International Journal of Heat and Fluid Flow,2008,29:1197-202.
    [33]Gilchrist RK. Medal R. Shorey SD, et al. Selective inductive heating of lymph nodes[J]. Ann Surg,1957,146(5):596-606.
    [34]Floren MG, Gunther RW, Schmitz-Rode T. Noninvasive inductive stent heating: Alternative approach to prevent instent restenosis?[J]. Investigative Radio,2004,39 (5):264-70.
    [35]Podzus PE, Daraio ME, Jacobo SE. Chitosan magnetic microspheres for technological applications Preparation and characterization [J]. Physica B,2009,404:2710-12.
    [36]Zhang W, Shen H, Xie MQ, et al. Synthesis of carboxymethyl-chitosan-bound magnetic nanoparticles by the spraying co-precipitation method [J]. Scripta Materialia,2008,59:211-14.
    [37]Deger S, Taymoorian K, Boehmer D, et al. Thermoradiotherapy using interstitial self-regulating thermoseeds:An intermediate analysis of a phase II trial[J]. Eur Urology,2004,45:574-80.
    [38]Gupta A K, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications [J]. Biomaterials,2005, 26:3995-4021.
    [39]Ge YQ, Zhang Y, Xia J, et al. Effect of surface charge and agglomeratedegree of magnetic iron oxide nanoparticles on KB cellular uptake in vitro[J]. Colloids Surf B Biointerfaces,2009,73(2):294-301.
    [40]Takamatsu S, Matsui TG, Kobayashi S, et al. Selective induction hyperthermia following transcatheter arterial embolization with a mixture of nano-sized magnetic particles (ferucarbotran) and embolic materialsrfeasibility study in rabbits [J]. Radiat Med,2008,26:179-87.
    [41]Moroz P, Pardoe H, Jones S K,et al. Arterial embolization hyperthermia:Hepatic iron particle distribution and its potential determination by magnetic resonance imaging[J]. Phys Med Biol,2002,47 (10):1591-602.
    [42]Moroz P, Jones SK, Gray BN. The effect of tumor size on ferromagnetic embolization hyperthermia in a rabbit tumor model [J]. Int J Hyperthermia, 2002,18(2):129-40.
    [43]Moroz P, Jones SK, Metcalf C, et al. Hepatic clearance of arterially ferromagnetic particles[J]. Int J Hyperthermia,2003,19(1):23-24.
    [44]FOX JL. Gene therapy safety issues come to fore[J]. Nat Biotech,1999,17(12):1153-57.
    [45]Williams DA. Gene therapy advances but struggles to interpret safety data in small animalmodels[J].Mol Ther,2006,13(6):1027-28.
    [46]Tandia BM, Lonez C, Vandenbranden M, et al. Lipid mixing between lipoplexes and plasma lipoproteins is a major barrier for intravenous transfection mediated by cationic lipids[J].J Biol Chem,2005,280(13):12255-61.
    [47]Dobson J. Gene therapy progress and prospects:magnetic nanoparticle-based gene delivery[J]. Gene Ther,2006,13(4):283-87.
    [48]Kim JS, Yoon TJ, Yu KN, et al. Cellular uptake of magnetic nanoparticle is mediated through energy-dependent endocytosis in A549 cells[J].J Vet Sci,2006,7(4):321-26.
    [49]周东波,胡成平,李瑛,等.氧化铁纳米颗粒作为p53基因载体并转染肺癌细胞的可行性研究[J].肿瘤,2007,27(11):882-85.
    [50]叶树楠,杨述华,吴强,等.Tf-多聚乙烯亚胺体外转染小鼠骨肉瘤细胞的实验研究[J].肿瘤,2005,25(4):321-24.
    [51]Nakase M, Inui M, Okumura K, et al. p53 gene therapy of human osteosarcoma using a transferrin-modified cationic liposome[J].Mol Cancer Ther,2005,4(4):625-31.
    [52]Neves S, Faneca H, Bertin S, et al. Transferrin lipoplex-mediated suicide gene therapy of oral squamous cell carcinoma in an immunocompetent murine model and mechanisms involved in the antitumoral response [J]. Cancer Gene Ther,2009,16(1):91-101.
    [53]Jiang YY, Liu C, Hong MH,et al. Tumor cell targeting of transferrin-PEG-TNF-alpha conjugate via a receptor-mediated delivery system:design, synthesis,and biological evaluation[J]. Bioconjug Chem,2007,18(1):41-49.
    [54]Tanaka T, Fujishima Y, Kaneo Y. Receptor mediated endocytosis and cytotoxicity of transferrin-mitomycin C conjugate in the HepG2 cell and primary cultured rat hepatocyte[J]. Biol Pharm Bull,2001,24(3):268-73.
    [55]Weaver M, Laske DW. Transferrin receptor ligand-targeted toxin conjugate (Tf-CRM107) for therapy of malignant gliomas[J].J Neuro-oncology, 2003,65(1):3-13.
    [56]Singn M, Atwal H, Micetich R. Transferrin directed delivery of adriamycin to human cells[J]. Anticancer Res,1998,18(3A):1423-27.
    [57]Singn M. Transferrin as a targeting ligand for liposomes and anticancer drugs[J]. Curr Pharm Des,1999,5(6):443-51.
    [58]Schiffelers RM, Storm G. Liposomal nanomedicines as anticancer therapeutics:beyond targeting tumor cells [J]. International Journal of Pharmaceutics,2008,364(2):258-64.
    [59]Feng B, Tomizawa K, Michiue H, et al. Delivery of sodium borocaptate to glioma cells using immunoliposome conjugated with anti-EGFR antibodies by ZZ-His [J]. Biomaterials,2009,30(9):1746-1755.
    [60]Hong MH, Zhu SJ, Jiang YY, et al. Novel anti-tumor strategy: PEG-hydroxycamptothecin conjugate loaded transferrin-PEG-nanoparticles [J].JControlRelease,2010,141 (1):22-29.
    [61]Gabizon A, Tzemach D, Gorin J, et al. Improved therapeutic activity of folate-targeted liposomal doxorubicin in folate receptor-expressing tumor models [J]. Cancer Chemother Pharmacol,2010,66:43-52.
    [62]Qu JM, Liu G, Wang YM, et al. Preparation of Fe304-chitosan nanoparticles used for hyperthermia [J], Advanced Powder Technology,2010,21:461-67.