电流变抛光设备开发与关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精密模具制造,工件表面的精整加工都是制造业的难题,是我国制造业发展必须突破的瓶颈。而这些问题的解决,都需要先进研抛技术的支持。本文研究了电流变抛光技术,主要用于解决非球面透镜及其硬质合金模具的精整加工问题。电流变抛光技术作为一种新兴的抛光技术,适用于加工表面形状复杂的非球面光学元件及难以加工的硬质合金模具。由于它适用面广,加工成本低,也可用于常规工件的加工,具有很高的实用价值。
     电流变抛光是一种新颖的抛光方法,但目前尚处于实验室研究阶段。本文主要在抛光工具,抛光设备方面做出了一些创新,建立了材料去除模型,做了大量的验证实验。
     本文研制了五轴电流变抛光设备,可以完成包括非球面在内各种常见面型的抛光作业。
     本文发明了一种新型抛光工具—集成电极工具,在抛光对象、抛光效率、使用方便性等方面比尖锥状工具都有很大的提高。文中研究了集成电极工具的抛光机理,计算了集成电极端部的电场分布,建立了电流变抛光的材料去除模型。指出电压、磨料浓度、抛光时间及主轴转速是影响去除深度的几大因素。通过实验,得到了各因素与去除深度的关系。
     在五轴电流变抛光设备上进行了一系列抛光实验。在抛光的适用性及工艺方面进行了较为全面的实验研究,从不同角度验证了电流变抛光是有发展前途的一种新的光整加工手段。
     课题研究工作得到了教育部新世纪优秀人才资助计划、吉林省杰出青年基金项目(20050121)及特种装备制造与先进加工技术教育部重点实验室开放基金资助项目(2009EP006)的支持。
Precision mold manufacturing and surface finishing processing of the workpiece are bottleneck that China's manufacturing industry must break through. In order to resolve these problems, we need some advanced polishing technology. This paper studies the ER fluid-assisted polishing technology that mainly be used to polish non-spherical lens and cemented carbide dies.
     Based on the research results of home and abroad, this paper analyzes the current study status of ER fluid-assisted polishing technology. This paper has made a number of innovative works mainly in the polishing equipment, polishing tool, the remove theory of polishing technology, etc. This project is supported by“Combined with the Ministry of Education New Century Excellent Talents Scheme”and“the Outstanding Youth Fund of Jilin Province”.
     The five-axis ER fluid-assisted polishing equipment, which has three linear axes and two rotary axes, is developed in this paper. It has high positioning accuracy to meet demand for polishing workpiece with free-form surface. Inverse kinematic model of the system has been established in this paper. On the case of known cutter location data, the amount of movement in each axis of the ER fluid-assisted polishing equipment can be calculated. Cutter location data come from CAM software or calculation. The experiment of polishing the Non-spherical parts was done in this paper. The experimental results show that the actual trajectory and the ideal trajectory fitting, so the inverse kinematics model is right. Using VB language, this paper has developed user program of ER fluid-assisted polishing equipment. It has capabilities of manual control, automatic control, 3D trajectory display. Some experiments for polishing different face parts show that the device, which can polish the most common face, including free-form surfaces, has high practical value.
     The control systems of ER fluid-assisted polishing equipment require of fast response, good stability and high positioning accuracy. This paper has developed a dual-mode closed-loop control system based on error compensation. In the control system, using the U.S. Delta Tau's PMAC card as controller. Three linear axes using high-precision AC servo motor-driven, two axis of rotation constituted by electric rotary tables. Using a high-precision grating ruler and the encoder feedback position information about each axes, constitutes a closed-loop control system. The principle of dual-mode control based on error compensation as follows. Firstly, using laser interferometer, detect grating ruler and screw obtain pitch error compensation tables in a state of semi-closed-loop calibration. The position control has two phases of the sub-rough control and precise control. In the rough control stage, screw run in a state of semi-closed-loop calibration until the position where after the error compensation value set. At this time amend error compensation table. Next is the precise control stage. The whole closed-loop control strategy is the self-adaptive fuzzy PID control. Paper positioning accuracy of the control system was tested. Experiment proved that each axis of the device positioning accuracy within 5 microns. The device can meet the needs of ER polished and it was explored a new path for improve the positioning accuracy of conventional equipment.
     Polishing tool is the core component of the device and has a great influence on the polishing efficiency. This paper has developed two new types of ER fluid-assisted polishing tools -integrated electrode tool. One is parallel plate electrodes tool, the other is ring-like integrated electrodes tool. Two types of integrated electrode tool polish workpiece with Polishing Head generated by the ER effect. So it can polish not only conductor but also non-conductive workpiece. while polishing workpiece, the integrated electrode tool do not need to add auxiliary electrode so is can polish the most common face, including free-form surfaces. The differences of two types of integrated electrode tool mainly reflect differences in their electric field distribution. This paper has calculating the electric field intensity distribution of the integrated electrode tool. The calculating results show that the electric field strength was saddle-shaped distribution outer ends of the parallel plate integrated electrodes tool. It is the largest close to the plate and it is smaller at center and both sides of. With the same terminal voltage, different gap parallel-plate integrated electrodes tool form a flexible polishing heads are 12mm in length. The calculating results take a guide for making the parallel-plate integrated electrodes tool. With same of the terminal voltage and polishing gap, ER fluid-assisted polishing tool with the smaller plate spacing has even higher electric field strength, a better polishing efficiency. Polish efficiency and reduce the positioning accuracy of polishing take into account, polishing suitable gap to no more than 1mm. The electric field strength of outer ends of circular ring-like polishing tools is circular ring-like distribution. It is decreasing in the direction of radius. Location centered on the largest electric field strength.
     This paper has established material removal model of ER fluid-assisted polishing. Polishing pressure is equal to the yield stress. With the Preston equation, this paper established the material removal rate model. Some material removal experiments of ER fluid-assisted polishing the cemented carbide and other metal materials has been done in this paper. The experiments results show that distribution of the removal depth and the theoretical model fitting. It is prove that the material removal model is right. This paper pointed out that the voltage, concentration of abrasive, polishing time and speed affect the removal depth of several factors. Through some experiments, the relationship various factors with the removal depth were obtained. This paper explored the mechanism of ER fluid-assisted polishing with some experiments. Through orthogonal experiment, this paper has obtained the optimal combination of various factors. Experimental results show that, on the case of using self-prepared ER fluid polishing optical glass specimen, the parameter combinations of the voltage of 2500V, spindle speed 4000r/min, polishing time of 10min, abrasive concentration of 15% has the best polish effect. Some polishing experiments about single-factor, different materials, different face, different abrasive are done in this paper. Experimental results show that the surface roughness Ra values and each parameter are inversely proportional. When the voltage or the concentration of abrasives is too large, the surface of workpiece will be damaged. Polishing carbide materials, diamond abrasive is required. The integrated electrode tool can polish different face. If raised the dwell time, it will get a better polishing effect. Silicon carbide abrasive is the best choice in three kinds of artifacts alumina, diamond, silicon carbide while the polishing of optical glass. A large number of experiments show that ER fluid-assisted polishing is promising a new finishing technology.
引文
[1]《装备制造业调整和振兴规划》,国务院,2009-05-12.
    [2]庞长涛,罗松保.非球面先进加工技术[J].航空精密制造技术,2001,37(3):1-5.
    [3]杨相利,钟伯亮,丁洪兴.非球面塑料透镜在小型变焦照相机摄影光学系统中的应用[J].照相机.2000, 1:4-7.
    [4]赵春梅等.非球面镜在光学读取头中的应用[J].激光与光电子学进展.2004, 41 (10): 6-8.
    [5] Ando Manabu,Negishi Mahito,Takimoto Masahumi.et al.Supersmooth polishing on aspherical surfaces[J].Nano-technology.1995,6(4):111-120.
    [6] Tanaka K. Recent trend of aspheric processing technology[J].Science of Machine,2002,54(3):11-20.
    [7]白佳声,章文宝.硬质合金材料的性能特点及其发展应用前景[J].上海金属, 2001, 23 (6): 10-13.
    [8]高宏刚,曹健林,陈斌.浮法抛光超光滑表面加工枝术[J].光学技术.1995,3:40-43.
    [9]张峰,张学军,余景池等.磁流变抛光数学模型的建立[J].光学技术.2000,26(3):190-192.
    [10]程灏波,王英伟,冯之敬等.电磁抛光装置的结构设计及特性分析[J].航空精密制造技术.2004,40(5):19-22.
    [11]孙希威,张飞虎,董申等.磁流变抛光去除模型及驻留时间算法[J].新技术与新工艺,2006,2: 73-75.
    [12]张峰,余景池,张学军等.对磁流变抛光技术中磁场的分析[J].仪器仪表学报.2001,22(1):42-45.
    [13]程灏波,冯之敬,王英伟.磁流变抛光光学非球面元件表面误差的评价[J].清华大学学报.2004,44(11):1497-1450.
    [14]张峰.几种参数对磁流变抛光的影响[J].光学技术.2000,26(3):220-221.
    [15]张峰,潘守甫,张学军等.磁流变抛光材料去除的研究[J].光学技术.2001,27(6):522-525.
    [16]孙希威,张飞虎,董申等.磁流变抛光光学曲面的两级差补算法[J].光电工程.2006, 33(2):61-64.
    [17]彭小强,戴一帆,李圣怡.磁流变抛光的材料去除数学模型[J].机械工程学报.2004, 40(4):67-70.
    [18] Shao-Yu Chiu, Ying-Lang Wang, Chuan-Pu Liu, et al. The application of electrochemical metrologies for investigating chemical mechanical polishing of Al with a Ti barrier layer[J]. Materials Chemistry and Physics 2003, (82):444-451.
    [19] Jian-Bin Chiu, Cheng-Ching Yu, Shih-Haur Shen. Application of soft landing to the process control of chemical mechanical polishing[J]. Microelectronic Engineering 2003, (65):345-356.
    [20] C.L. Borst, D.G. Thakurta, W.N. Gill, et al. Surface kinetics model for silk chemical mechanical polishing[J]. J.Electrochem. Soc. 2002(49):118.
    [21] C.Y. Chen, C.C. Yu, S.H. Shen, et al. Operational aspects of chemical mechanical polishing: polish pad profile optimization[J]. J. Electrochem. Soc. 2000(147):3922.
    [22] D.Z. Chen, B.S. Lee. Pattern planarization model of chemical mechanical polishing[J], J. Electrochem. Soc. 1999(146):744-748.
    [23] Tain Y. Kawata K. Development of high efficiency fine finishing process using magnetic fluid[J]. Annals of the CIRP.1984, (33): 217-220.
    [24] Niikura Y, Saito H, Oshio T, et al. Float polishing using magnetic fluid with abrasive grains[J]. Proc 6th Int. Conf Prod Eng, O saka. 1987,335-340.
    [25] SuzukiH, Kodera S, Hara S, et al. Magnetic fluid-assisted polishing: application to a curved surface[J]. Prec-Eng. 1989, (4): 197-202.
    [26] KordonskiWm I. Adaptive structures based on magnetorheological fluids[J]. Proc 3rd Int.Conf, Adaptive Structed Wada, Natori and Breitbach, San Diego, CA .1992, 13-17.
    [27]江超,王又青,胡少六.激光抛光技术的发展与展望[J].激光技术,2002, 26(6): 421-427.
    [28]方慧,郭培基,余景池.液体喷射抛光时各工艺参数对材料去除量的影响[J].光学技术. 2004, 30(4):440-442.
    [29]黄文浩,章海军,诸家如,洪义麟.超光滑表面的离子束抛光与微观形貌检测[J].仪器仪表学报, 1995(6): 202-205.
    [30] Jian-Bin Chiu, Cheng-Ching Yu, Shih- Haur Shen. Application of soft landing to the process control of chemical mechanical polishing[J].Microelectronic Engineering,2003 (65):345–356.
    [31] Jairath R1, Farkas J1, Huang C1 K1, et al. Chemical mechanical polishing process manufactur ability[J]. Solid State Technology,1994(7):71-75.
    [32]陈杨,陈建清,陈志刚.超光滑表面抛光技术[J].江苏大学学报(自然科学版). 2003, 24 (5): 5-59.
    [33]张富,赵继,曹志强,庄艳.液流悬浮加工的工艺参数研究[J].机械制造.2007,45(4):31-33.
    [34] T.Kuriyagawa, M.Saeki, K.Syoji. Electrorheological fluid-assisted ultra-precision polishing for small three-dimensional parts[J]. Int. Soc. Prec. Eng. Nanotechnol, 2002 (26): 370–380.
    [35] MA Hui ru,Guan Jian guo,Lu Guo jun.Electrorheological fluids and their application[J]. Modern Chemical Industry,2004,(5):62-64.
    [36] Xie Hongquan.Recent advances in electrorheological fluids[J].Science and Technology of Lcic.2003,21(2):89-91.
    [37]张峰,余景池,张学军等.磁流变抛光技术[J].光学精密工程.1999, 7(5):35-38.
    [38]康桂文,张飞虎,董申.磁流变技术研究及其在光学加工中的应用[J].光学技术. 2004, 30(3):354-356.
    [39]路家斌,余娟,阎秋生.磁辅助超精密加工技术[J].机械制造.2006,44(1):29-32.
    [40] Tain Y, Kawata K.Development of high efficiency fine finishing process using magnetic fluid[J].Annals of the CIRP,1984 (33):217-220.
    [41] Niikura Y, Saito H,Oshio T,Hanaoka T.Float polishing using magnetic fluid with abrasive grains[J].Proc 6th Int. Conf Prod Eng,O saka,1987,335-340.
    [42] KordonskiWm I.Adaptive structures based on magnetorheological fluids[J].Proc 3rd Int. Conf.Adaptive Structed Wada, Natori and Breitbach,13-17,San Diego,CA,1992.
    [43]温维佳,黄先祥,杨世和等.巨电流变效应及其机理[J].研究快讯,2003,32(12):777-779.
    [44] Winslow W.M. Induced fibration of suspensions[J]. Jour. Appl. Phys. 1949, 20:1137-1140.
    [45] Dubois, Jean-Marie. New prospects from potential applications of quasicrystal line materials[J]. Mater Sci Eng, 2000, 2 94-296.
    [46] Grushko B, Wittenberg R. Solidification of AICu fealloys for mingicosahedral phase. Mater Res.1996, 11:217.
    [47]吴庆,赵斌元,胡克鳌.电流变效应:机理及模型[J].材料导报,2002,16(12):1-2.
    [48] N. G. Stevens, J. L. Sproston, R. Stanway.The influence of pulsed D.C. input signals on electrorheological fluids[J]. Journal of Electrostatics, 1985, 17(2):181-191.
    [49] D. Brooksa, J. Goodwinb, C. Hjelmb, et al. Visco-elastic studies on an electro-rheological fluid[J]. Colloids and Surfaces, 1986, 18(2): 293-312.
    [50] Z. P. Shulman, B. M. Khusid, E. V. Korobko, et al. Damping of mechanical-systems oscillations by a non-Newtonian fluid with electric-field dependent parameters[J]. Journal of Non-Newtonian Fluid Mechanics, 1987, 25(3): 329-346.
    [51] Z. P. Shulman, E. V. Korobko, Yu. G. Yanovskii.The mechanism of the viscoelastic behaviour of electrorheological suspensions[J]. Journal of Non-Newtonian Fluid Mechanics. 1989, 33(2): 181-196.
    [52] Z. P. Shulman, R. G. Gorodkin, E. V. Korobko, et al.The electrorheological effect and its possible use[J]. Journal of Non-Newtonian Fluid Mechanics.1981, 8(1): 29-41.
    [53] Alice P. Gast, Charles F, Zukoskib. Electrorheological fluids as colloidal suspensions[J]. Advances in Colloid and Interface Science, 1989, 30: 153-202.
    [54]魏宸官.电流变技术─机理·材料·工程应用[M].北京理工大学出版社.2000:126-128.
    [55]龚烈航,崔占山.电流变液机理及其研究现状[J].润滑与密封,2002,(1): 66-69.
    [56]张从领,张雷,张立锋等.抛光用电流变液性能实验研究[J].吉林大学学报(工学版),2005:20-23.
    [57]刘彦菊,冷劲松,王殿富.电流变体的粘弹性材料科学与工程[J].2000,9(18):528-530.
    [58]杨岩,黄伟九,李辉.电流变液剪切应力模型的讨论[J].重庆工学院学报,2008,8,17(4):11-13.
    [59] Papadopoulos C.A. Brakes and clutches using ER fluids[J].Mechatronics, 1998 (8):719-726.
    [60] Michael E, Greena. Electrorheological effects and gating of membrane channels[J]. Journal of Theoretical Biology, 1989, 138(4): 413-428.
    [61] M.V. Gandhia, B.S. Thompsona, S.B. Choia. A proof-of-concept experimental investigation of a slider-crank mechanism featuring a smart dynamically tunable connecting rod incorporating embedded electro-rheological fluid domains [J]. Journal of Sound and Vibration. 1989, 135(3): 511-515.
    [62] W. A. Bullough, M.Sc. C.Eng, M.I.Mech.E. et al. Electrorheological fluids and the control of high-speed machines[J]. Endeavour, 1991, 15(4): 165-169.
    [63] S. Lingarda, W.A. Bulloughb, Lee Shek Hoa. Hydrodynamic pressure generation with an electrorheological fluid[J]. Wear. 1991, 142(2): 373-381.
    [64] W. A. Bullough. Electro-rheological fluids: an introduction for biomedical applications [J]. Journal of Biomedical Engineering.1991, 13(3): 234-238.
    [65] A. A. Mokeeva, E. V. Korobkob, L. G. Vedernikovaa. Structural viscosity ofelectrorheological fluids[J]. Journal of Non-Newtonian Fluid Mechanics.1992, 42(1): 213-230.
    [66] R. Stanway, J. L. Sproston. ER fluids in the squeeze-flow mode: an application to vibration isolation [J]. Journal of Electrostatics.1992, 28(1): 89-94.
    [67] Wook-Bae Kim, Sung-Jun Park, Byung-Kwon Min, et al. Surface Finishing Technique for Small Parts Using Dielectrophoretic Effects of Abrasive Particles[J]. Journal of Materials Processing Technology 2004(147):377-384.
    [68] MA Hui ru, Guan Jian guo, Lu Guo jun. Electrorheological fluids and their application[J].Modern Chemical Industry,2004,(5):62-64.
    [69] Xie Hongquan. Recent advances in electrorheological fluids[J].Science and Technology of Lcic,2003,21(2):89-91.
    [70] Xinsheng He, Lei Zhang, Heran Yang. Study on the tool system of ER fluid-assisted polishing[J]. Proceedings of the 8th International Conference on Frontiers of Design and Manufacturing, 2008, 524-527.
    [71]赵云伟.电流变抛光硬质合金模具理论与实验研究[D].吉林:吉林大学,2007.
    [72] Yoichi Akagami, Noritsugu Umehara. Development of electrically controlled polishing with dispersion type ER fluid under AC electric field[J]. Wear. 2006,260:345-350.
    [73]赵云伟,张雷,张丛领,贺新升.电流变抛光工艺研究[J].新技术新工艺,2007,(3):28-30.
    [74] Tsuyoshi Kaku, T.Kuriyagawa, Nobuhito Yoshihara. Electrorheological fluid-assisted polishing of WC micro aspherical glass molding dies[C]. 7th International Symposiumon Advancesin Technology, Bursa, TURKEY, 2004, 6: 17-19.
    [75] Takeshi TANAK. A study of basic characteristics of polishing using particle-type electrorheological fluid[J]. Key Engineering Materials.2007, 329:201-206.
    [76] W.B.Kim, S.J.Park, B.K.Min, etal. Surface finishing technique for small parts using dielectrophoretic effects of abrasive particles[J]. Journal of Materials Processing Technology.2004,147:377-384.
    [77] Li Bin, Yang Zhi chun, Zhang Kai da. Experimental studies on mechanical properties of electro-rheological fluids[J].2003,22(3):487-489.
    [78] KimWB. The electro-mechanical principle of ER fluid-assisted polishing[J]. International Journal of Machine Tools & Manufacture, 2003(43):81-88.
    [79] Kaku, Tsuyoshi, Kuriyagawa, Tsunemoto.Electrorheological fluid-assisted polishing of WC micro aspherical glass moulding dies[J].Journal of Manufacturing Technology and Management.2006,9(1-2):109-119.
    [80] Yutaka Tanaka, Akio Gofuku. Develoment and analysis of an ERF pressure control valve [J].Mechatronics, 1997, 7(4):317-335.
    [81] Min Wang, Renyuan Fei. On-line chatter detection and control in boring based on an electrorheological fluid[J].Mechatronics,2001(11):779-792.
    [82] Feng Jianhua,Yan Qiusheng,Lu Jiabin. A study of fine machining using instantaneous tiny grinding wheel based on electrorheological effect[J].Proc. Int. Conf. Integr. Commer. Micro Nanosyst.2007,B:985-988.
    [83] Lei Zhang, Tsunemoto Kuriyagawa, Tsuyoshi Kaku, et al. Investigation into electrorheological fluid-assisted polishing [J].International Journal of Machine Tools andManufacture, 2005 (13): 1461-1467.
    [84] Lei Zhang, Yun Wei Zhao, Xin Sheng He, et al. An investigation of effective area in electrorheological fluid-assisted polishing of tungsten carbide[J]. International Journal of Machine Tools and Manufacture.2008 (48): 295-306.
    [85]贺新升,张雷,杨赫然.电流变抛光微小非球面试验装置的研究[J].东北大学学报增刊. 2008,6:293-295.
    [86] W. B. KimB. K. Min S. J. Lee. Development of a padless ultraprecision polishing method using electrorheological fluid [J], Journal of Materials Processing Technology, 2004156:1293-1299.
    [87]毕非凡.电流变辅助精细加工机理研究[D].广东:广东工业大学,2005.
    [88]冯建华.电流变效应微磨头研抛加工研究及电磁流变微细加工实验装置研制[D].广东:广东工业大学,2007.
    [89]柳文杰.电流变抛光光学玻璃的研究[D].吉林:吉林大学,2007.
    [90]阎秋生.电流变效应研磨装置:中国,03274129.4[P]. 2004-09-01.
    [91]阎秋生,冯建华,路家斌等.工具电极耐磨性和液体组分对电流变加工的影响[J].中国机械工程,2007,18(21):2528-2532.
    [92] Tsuyoshi KAKU, Nobuhito YOSHIHARA, et al. Development of a resincoated micro polishing tool by plasma CVD method electrrheological fluid-assisted polishing of tungsten carbide micro aspherical molding dies[J]. Key Engineering Materials. 2007, 329:213-218.
    [93]蒋兴良,孙才新,舒立春等.正棒-板短间隙雷电冲击放电电压的海拔修正[J].重庆大学学报.2003, 26(3):77-81.
    [94] Ando Manabu, Negishi Mahito, Takimoto Masahumi. Supersmooth polishing on aspherical surfaces[J].Nano-technology.1995,6(4):111-120.
    [95] Tanaka K. Recent trend of aspheric processing technology[J]. Science of Machine, 2002,54(3):11-20.
    [96]田延岭,张大卫,闫兵.二自由度微定位平台的研制[J].光学精密工程,2006,14(1): 94-100.
    [97]孙立宁,马立,荣伟彬等.一种纳米级二维微定位工作台的设计与分析[J].光学精密工程.2006,14(3):406-412.
    [98]戴蓉,谢铁邦.新型一维位移工作台的设计及特性分析[J].光学精密工程.2006,14(3): 428-433.
    [99]周纯江.曲面高速精加工刀具规划的研究[J].机械制造.2006,44(502):57-58.
    [100]庞勇.复杂曲面的数控加工与仿真技术[J].科技咨询.2006,5:29-30.
    [101]王立松,张晶.一种摆头转台式五轴机床后处理算法研究[J].工艺与装备.2005, 11:82-83.
    [102]赵辉,张春风.五轴并联机床正解研究[J].金属加工.2006,33(5):40-42.
    [103]刘鹄然,刘全红,赵东富等.多坐标数控刀具位置数据生成[J].2006,3:18-19.
    [104]丁怀亮.CATIA V5基础教程[M].北京:机械工业出版社.2007.
    [105]朱心雄.自由曲线曲面造型技术[M].北京:科学出版社.2008.
    [106]宋明,张雪军,倪立明.五坐标数控机床后处理程序编制[J].机械工艺师.2001,3:12-13.
    [107]宋春刚,兰诗涛,王文.自由曲面的接触是测量路径规划方法研究[J].机电工程, 2003,20(5):3-5.
    [108]杜建军,高栋,王素娟等.光学自由曲面飞刀加工刀位轨迹的生成算法[J].光学技术.2006,32(1):31-33.
    [109]朱明华,王霄,蔡兰.机器人路径规划方法的研究进展与趋势[J].机床与液压. 2006,3:5-8.
    [110]吴思源,周晓军,杨辰龙等.曲面工件超声检测路径方法研究[J].传感技术学报.2006,19(2):388-392.
    [111]黄炜,孙德宝,秦元庆.基于粒子群算法的移动机器人路径规划[J].测控技术.2006,25(4):49-50.
    [112]北京钧义志成公司.PMAC用户手册.2008.
    [113]沈兴全,张清.三坐标数控机床精度检测与误差补偿[J].测试技术学报.2005, 19(3):264-268.
    [114]李玉文.数控机床定位精度自动螺距补偿功能的应用[J].新技术新工艺. 2005,12:64-67.
    [115]王春海,张增良.数控机床的螺距误差检测及补偿[J].数控技术.2006,22:228-229.
    [116]张虎,周云飞,唐小琦等.基于激光干涉仪的数控机床运动误差识别与补偿[J].中国机械工程. 2002, 13(21):1838-1841.
    [117]毛正平,李永堂,白墅洁.机械系统典型运动过程单片机控制与数字仿真[J].仪器仪表学报.2006, 27(6):1883-1884.
    [118]王平,杨沿平,邓晓.基于磨具表面抛光机器人系统的运动控制研究[J].中国机械工程.2007,18(20):2422-2424.
    [119]张健民,万淑芸.基于工控PC和Windows 98的四轴位置控制系统的设计[J].工业控制计算机.2002, 15(4):35-37.
    [120]魏志强,张咏梅.多轴运动控制器(PMAC)在直流力矩电机伺服控制中的应用[J].光电技术应用.2004, 19(6):41-43.
    [121]贺红林,朱华,赵淳生.基于模糊与自校正技术的超声电机伺服控制[J].传感器技术.2005, 24(8):18-21.
    [122]左文香,刘喜荣.目前位置控制系统控制策略的分析与研究[J].河北工业科技.2003, 20(6):29-31.
    [123]谢红,高健.加工中心的工作台和伺服进给系统设计[J].现代机械.2002,2:3-5.
    [124]张荆桥.数控机床的数字化全闭环控制[J].江西煤炭科技.2004,3;36-38.
    [125]弭洪涛,曲萍萍,张秀菊.步进电机在高精度位置控制系统中的应用[J].北华大学学报.2003, 4(3):252-254.
    [126]刘相术,杨庆东.基于PMAC的液下搅拌机器人控制系统的研究[J].机器人技术. 2006,22(2):192-194.
    [127]张晓峰,林彬.大行程纳米级分辨率超精密工作台的发展方向[J].南京航空航天大学学报. 2005, 37, 179-183.
    [128]李韶远,李辉,田立国等.位置控制系统Fuzzy-PI调节器研究[J].天津职业技术师范学院学报. 2004, 14(4):33-35.
    [129]陈书涵,严宏志,明兴祖等.六轴五联动螺旋锥齿轮磨床误差建模与分析[J].中国机械工程.2008,19(3):288-294.
    [130]王向朝.激光干涉仪与纳米精度检测[J].中国计量学院学报. 2001, 2(12):73-76.
    [131]周汉辉.英国雷尼绍先进技术与新的机床标准[J].新技术新工艺. 2001,7:17-19.
    [132]周汉辉.数控机床精度校准技术[J].计量技术. 2002, 2: 27-29.
    [133]所睿,范志军,李岩等.双频激光干涉仪技术现状与发展[J].激光与红外.2004,34(4):251-253.
    [134]刘红忠,赵万华,李涤尘等.多坐标激光干涉仪用于纳米定位系统中的研究[J].光子学报. 2002, 31(5):592-595.
    [135]宋晓东,王小椿.基于位置控制系统模糊自整定控制的Matlab仿真研究[J].机床与液压. 2006, 6:199-201.
    [136]绳红强,汪世益.基于AT89S51的数控机床光栅尺位移测量系统[J].机电工程技术.2006,35(6):47-50.
    [137]张静.Matlab在控制系统中的应用[M].北京:电子工业出版社.2007.5.
    [138]曾光奇,胡均安,王东,刘春玲等.模糊控制理论与工程应用[M].华中科技大学出版社.2006.
    [139]韩荣久,安贵生等.光学材料的浅低温抛光方法[J].航空精密制造技术.1999,35(6):1-5.
    [140] NabaY, TsuwaH. Ultra-fine of Sapphire Single Crystal[J]. Annals of CIRP.1997, 26(2): 33-35.
    [141] HaderB,WeisO.Precision measurements of material removal rate sin super polishing Sapphire[J]. SPIE.1988, 1015:114-121.
    [142]杨卫平,徐家文.用表面粗糙度测量仪测量材料微小去除量[J].工具术.2007,41(10):50-51.