寒冷地区深基坑土钉支护的环境事故及其防治技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文介绍了深基坑土钉支护工程的国内外研究现状,分析了寒冷地区深基坑施工、设计存在的问题,尤其是土钉支护设计没有考虑冻融循环后细粒土抗剪强度特性参数的变化的情况;结合具体实际工程采用信息化施工方法进行复杂环境条件下基坑支护工程的设计与施工;对有多个施工方案的深基坑支护工程进行多目标决策的方案优选;研究分析了基坑的变形现象、变形机理及相关变形的控制标准,对考虑冻融循环后基坑变形的时间效应和空间效应分别进行了分析,对基坑开挖引起地表沉降以及地表变形计算进行研究;使用FLAC3D对中天广场深基坑支护工程的开挖与支护进行了数值模拟研究。围绕寒冷地区深基坑土钉支护工程的环境事故及其防治技术为主要研究内容,主要进行了以下几方面的研究:
     (1)通过对南、北疆地区深基坑边坡的垮塌原因的调查,发现细粒土冻融作用是导致基坑边坡出现环境事故的主要原因。针对新疆地区土壤盐分较高的实际情况,选取含水率、密实度、粘粒含量和易溶盐四个影响因素,通过均匀正交试验研究细粒土边坡在四个影响因素经历不同冻融循环次数后抗剪强度特性参数C、Ф的变化,运用极差分析的方法,对试验结果进行分析,分别得出上述四个影响因素对C、Ф的影响的重要性排序,并且对试验结果的准确程度进行方差分析,验证试验数据的正确性,证明试验结果与工程实际情况基本符合,为控制深基坑环境事故的发生提供了理论上的依据。
     (2)通过参与目前西北最高楼中天广场深基坑支护工程的地质勘察、深基坑支护的设计、施工,以及基坑支护工程的变形监测四个阶段工作后,总结基坑土钉支护的设计方法,进行复杂环境条件下深基坑支护工程的土钉设计;为相邻建筑物不受深基坑开挖的影响而使其安全使用,保证已有建筑物不发生破坏,研究对原相邻建筑物基础进行基础托换并取得成功;为基坑支护工程的安全,对深基坑工程进行变形监测,由监测结果说明基坑支护是成功的。
     (3)多目标模糊综合评价是系统工程中对非定量事件作定量分析的一种简便方法,也是对人们的主观判断作客观描述的一种手段,利用多目标模糊综合评价指标的权数分配,可较大幅度地减少主观因素。研究深基坑支护施工方案的多方案优化决策选择问题时,对深基坑支护施工多方案的多层次、多目标建立评判数学模型,从而更加全面地反映了深基坑支护施工方案,使其优化更全面,更客观;针对以往多目标优化计算过程较繁锁的问题,运用模糊判断矩阵最小差法得出深基坑支护多目标优化的最佳满意解,开辟了施工方案多目标优化的新方法。
     (4)为减少基坑开挖对周围环境的影响,控制基坑开挖引起的地表沉降,本文分析了基坑的变形现象、变形机理及相关变形的控制标准;同时对基坑变形的时间效应和空间效应分别进行了分析;考虑对时空效应的被动土等效水平抗力系数Kh影响因素的分析,尤其是分析细粒土冻融循环前后抗剪强度特性参数C、Ф的计算公式,使基坑变形的时空效应考虑的因素更全面、合理;对基坑变形的预估研究,进行基坑开挖引起地表沉降以及地表变形计算,对于科学指导寒冷地区深基坑工程的设计与施工有一定的参考价值。
     (5)本文使用ITASCA公司的FLAC3D三维快速拉格朗日差分程序,对中天广场深基坑支护工程的开挖与支护进行了数值模拟研究,模拟结果显示基坑内土体沉降随着基坑开挖深度的增加而加大,基坑底部隆起位移也是随着基坑开挖深度的增加而加大,基底中部的隆起量最大,为70 mm,靠近基坑壁处较小,基坑土体水平位移同样是随着基坑开挖深度的增加而加大,基坑壁向坑内的水平位移变化趋势仍然是中间部分最大,边角处最小,而且基坑壁的长边由于开挖的范围相对较大,其变形量相对于短边也增大约19 mm,这充分体现了基坑开挖过程中的时空效应,本文的数值模拟计算结果可以为工程设计提供指导和参考。
In this paper,the deep foundation soil nailing works at home and abroad are researched,the construction and design problems of deep foundation in cold regions are analyzed,especially the shear strength characteristics of fine-grained soil changes in the parameters after freeze-thaw cycle is not considered in the design of soil nailing;Light of the specific information of the actual project construction method is used to carry out the Foundation Pit Design and Construction under complex conditions;A number of construction programs of the Deep Foundation Pit multi-goal decision-making are optimized; the situation foundation deformation, deformation mechanism and the related deformation control standards are studied and analyzed, the freeze-thaw cycle time after the deformation effect and space effect are analyzed separately, the surface subsidence caused by excavation and the surface deformation are calculated;Using FLAC3D the Deep Foundation Pit excavation and support on ZhongTian plaza are studied in the method of numerical simulation. According to the research contents of deep foundation soil nailing environmental incidents and its control technology in cold region, the research are mainly carried out from following aspects:
     (1) Through the investigate of the cause of the deep foundation pit slope collapse in Xinjiang south and northern areas, the main reason is found that freezing and thawing causing environmental incidents of pit slope. Response to higher soil salinity in Xinjiang, the moisture content, density, clay content and soluble salt are selected as four factors. Based on the uniform orthogonal pilot study at the four fine-grained soil slope factors as well as experiencing different cold financial cycles, the changes of shear strength parameters C、Фare studied. In the methods of range analysis, the test results are analyzed. The importance of influence factor of above four factors on the C、Фare obtained separately, and the accuracy of the results are analyzed in variance to verify the accuracy of test data.The test results prove that the actual situation and in line with the project, and it provides a theoretical basis for controlling the occurrence of environmental incidents of deep foundation.
     (2) Through participating in four phases works of geological reconnaissance、design、construction and deformation monitoring on the northwest highest floor, the current transit plaza deep excavation works, the foundation soil nailing design methods is summarized. And the deep excavation of the soil nailing project is designed under complex environmental conditions. For the adjacent buildings safely use without disturbed by the deep excavation and buildings without damaged, the foundation of original adjacent buildings is studied and succeed. For the safety of deep excavation works, the deformation is monitored and the monitoring results show that the excavation is successful.
     (3) Multi-objective fuzzy comprehensive evaluation is a simple method in the systems engineering to analysis the case of non-quantitative, and it can be as a means for people to judge in an objective description. Using multi-objective fuzzy comprehensive evaluation index weights distribution can greatly reduce the subjective factor. Through research on optimization decision-making problems of deep foundation pit construction programs, the multi-objective mathematical model is set up. It can reflect the deep foundation pit construction plan more fully and to optimize the plan more comprehensive and objective; For the problem of the process of previous multi-objective optimization calculation more cumbersome, the least bad method of fuzzy matrix is used to get the best satisfactory solution of deep excavation multi-objective optimization. It opens up a new way for multi-objective optimization of construction plan.
     (4) In order to reduce the impact of excavation to the surrounding environment, excavation-induced ground surface settlement is controlled. The phenomenon of deformation, deformation mechanism and the related deformation control standards of foundation are studied in this paper. At the same time, deformation time effects and spatial effects are analyzed separately. Considering the influencing factors of Kh, which is the equivalent level resistance coefficient of passive soil, especially analysis the shear strength parameters C,Фformula of fine-grained soil before and after freeze-thaw cycles, the effect of deformation of the space-time factors are considered more comprehensive and reasonable. The research of deformation estimate, and the calculation of surface settlement and deformation caused by excavation will guide the design and construction of deep foundation works in cold regions.
     (5) In this paper, three-dimensional ITASCA's Fast Lagrangian FLAC3D procedures are used to simulate transit plaza on Deep Foundation Pit excavation and support. The simulation results show that soil excavation in the settlement increase with the depth of excavation, and the uplift displacement of foundation at the bottom is also increase with the depth of excavation. In the central of basement, the uplift grows to the largest value of 70 mm, and near the pit wall is smaller. The horizontal displacement of soil excavation is also increase with the depth of excavation. The change trend of horizontal displacement from foundation pit wall to center is still the largest in the center and smallest in the corner, and because the long side of pit wall digs relatively in a large scope, and its deformation increases about 19 mm compared with the short side, which fully reflects the excavation in the process of space-time effects. The calculation results in this paper can provide guidance and reference for engineering design.
引文
[1]陈忠汉,黄书秩,程丽萍.深基坑工程[M].北京:机械工业出版社,2002
    [2]蒋国盛,李红民.基坑工程[M].武汉:冲国地质大学出版社,2000
    [3]中华人民共和国行业标准,JGJ94-94《建筑桩基础技术规范》[S].北京:中国建筑工业出版社,1994.
    [4]中华人民共和国行业标准,JGJ120-99《建筑基坑支护技术规程》[S].北京:中国建筑工业出版社,1999.
    [5]龚晓南.深基坑工程设计施工手册[M].北京:中国建筑工业出版社,1998.
    [6]张在明.对我国岩土工程规范现状的几点看法:土建结构工程的安全性与耐久性[M].北京:中国建筑工业出版社,2003.
    [7] Peck. Deep Excavation and Tunneling in Soft Ground , proc 7th ICSMFE. state of the art volume,Mexico city.1969
    [8]陈祖煜.土质边坡稳定分析—原理.方法.分析[M].北京:中国水利水电出版社,2003.
    [9]宰金珉,宰金璋.高层建筑基础分析与设计[M].北京:中国建筑工业出版社,1993.
    [10]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,1996.
    [11]孙均.城市地下工程活动的环境土工学问题(上)[J].地下工程与隧道,1999(3):2~6.
    [12]陈肇元,崔京浩.土钉支护在基坑工程中的应用[M].第二版.北京:中国建筑工业出版社,2000.
    [13]张建明,朱元林.动荷载下冻土中模型桩的沉降试验研究[J].中国科学(D辑),1999,29(S1):27~31.
    [14]谢单群,何杰.双剪统一强度理论在土压力计算中的应用[J].岩土工程学报,2003,25(3):343~345. [15刘国彬,黄院雄,侯学渊.基坑回弹的实用计算法[J].土木工程学报,2000,33(4):61~66.
    [16]董明钢,杨峰.我国深基坑工程的现状和亟待解决的问题[J].建筑技术,2004,35(5):328~331.
    [17]乾增强,鲁先龙.人工冻土蠕变的数值计算及其模拟[J].中国矿业大学学报,2004,33(3):273~275.
    [18]郑坚,龚晓南.土钉支护工作性能的现场监测分析[J].建筑技术,2004,35(5):337~339.
    [19]毛金萍,徐伟.深基坑立柱竖向位移分析[J].建筑技术,2004,35(5):342~343.
    [20]黄建平.不规则深基坑工程的经济围护[J].建筑施工,2004,26(4):296~297.
    [21]孙宗军,陈新华.土钉支护中土钉与土作用机理数值分析[J].建筑技术, 2004,35(5):344~345.
    [22]江霞,杨小军.基坑位移监测技术[J].建筑技术,2004,35(5):347~348.
    [23]陈静波,邱全波.不同土层条件下基坑支护的施工技术[J].建筑施工,2005,27(1):12~14.
    [24]焦远俊,邵化勇.位移反分析法在基坑开挖分析中的应用[J].建筑施工,2005,27(2):15~17.
    [25]龚晓南.关于基坑工程的几点思考[J].土木工程学报,2005,38(9):99~102.
    [26]上海市建设和交通委员会.上海市深基坑工程管理规定[S].2006.
    [27]卢廷浩主编.土力学[M].南京:河海大学出版社,2002.
    [28]钱家欢主编.土力学[M].南京:河海大学出版社,1997.
    [29]赵维炳,施建勇.地基处理与基础工程[M].中国水利电力出版社,2000.
    [30]刘国彬,侯学渊.软土基坑隆起变形的残余应力法[J].地下工程与隧道,1996(2):2~7
    [31]蒋洪胜,刘国彬.考虑时空效应的围护结构支撑轴力实测结果分析研究[J].山东建筑工程学院学报,1997(4):7~13
    [32]范益群.软土深基坑考虑时空效应的空间计算分析[J].地下工程与隧道,1999 (2):2~8
    [33]吴兴龙,朱碧堂.深基坑开挖坑周土体变形时空效应初探[J].土工基础,1999 (9):5~8
    [34]高文华,杨林德.软土深基坑围护结构变形的三维有限元分析[J].工程力学,2000(4):134~141
    [35]詹必秀,简浩.深基坑土钉支护性能的三维有限元分析[J].土工基础,2002(9):64~66
    [36]吴京生.高层建筑深基坑工程现状与展望[J].电力勘测,1998(9):13~19
    [37]马海龙,张永利.某深基坑工程事故分析[J].四川建筑,2002(8):63~64
    [38]陈向东,杨茂忠.信息化施工及其应用[J].北京工业大学学报,2001(3):57~60
    [39]葛增杰,李锡夔等.软士深基坑施工过程控制和土体物性参数识别方法研究[J].大连理工大学学报,2001(5):279~287
    [40]徐杨青.深基坑工程设计的优化原理与途径[J].岩石力学与工程学报,2001(3):248~251
    [41]广东省基础工程公司.深基坑开挖监测工程[J].施工技术,2002(6):42~44
    [42]贺勇.基坑工程表观监测与安全预警问题的研究[J].勘察科学技术,2003(4):29~30
    [43]李惠强,吴静.深基坑支护结构安全预警系统研究[J].华中科技大学学报,2002(3):61~64
    [44]李宏义.基坑变形灰色预测预警系统[J].勘察科学技术,2000(6):40~44
    [45]胡友健等.深基坑工程监测数据处理与预测报警系统[J].施工技术,2001(3):130~135
    [46]苏联科学院西伯利亚分院冻土研究所.普通冻土学[M],1961
    [47]吴青柏,朱元林,刘永智.工程活动下多年冻土热稳定性模型评价模型[J].冰川冻土. 2002,24(2):200~204
    [48]崔托维奇H .A.冻土力学原理[M].张长庆,朱元林译北京:科学出版社,1985
    [49]李宁,程国栋,徐学祖,朱元林.冻土力学的研究进展与思考[J].力学进展, 2001, 31(1):95~102
    [50] Jessberger H L. State of the art report—Ground freezing, mechanical properties, processes anddesign[J]. Engineering Geology,1981, 18 (1) :5~30.
    [51] Morgenstern N R.Geotechnical engineering and frontier resource development[J].Geotechnique,1981, 31 (3) : 305~365.
    [52] Fish A M. Creep and yield model of frozen soil under triaxial compression[C].In: Proceedings of the Fifth International Offshore and Polar Engineering Conference.Rotterdam, Netherlands:A.A.Balkema, 1995, 1: 473~481.
    [53] Landanyi B. Mechanical behavior of frozen soils[C]. In: Proceedings of the InternationalSymposium on the Mechanics Behavior of Structure Media. Elsevier Science, Amsterdam, 1981.205~245.
    [54] Sayles Francis H. State of the art: Mechanical properties of frozen soil , mechanical properties of frozen soil[C]. In: 5th International Symposium on Ground Freezing. Rotterdam, the Netherlands:A.A. Balkeman,1989, 1: 143~165.
    [55] Sadovsky A V, Maksimyak R V, Razbegin V N. State of the art: Mechanical properties of frozen soil[C].In: 5th International Symposium on Ground Freezing. Rotterdam, the Netherlands: A. A.Balkema, 1989, 2: 443~463.
    [56] Loch J P G. State of the art report frost action in soils[J]. Engineering Geology, 1981, 18 (1~4) : 213~224.
    [57] Kay B D, Perfect E. State of the art: Heat and mass transfer in freezing soils[C]. In: 5th International symposium on ground Freezing. Rotterdam, the Netherlands: A. A. Balkema, 1989, 1: 3~21.
    [58] Slunga E, Saarelainen Seppo. General report on frost action in soil[C]. In: 5 th International Symposium on Ground Freezing. Rotterdam, the Netherlands: A. A. Balkema, 1989, 2: 415~417.
    [59] Konrad J M, Morgenstern N R. Mechanistic theory of ice lens formation in fine grained soils[J].Canadian geotechnical Journal, 1980, 17 (4) : 473~486.
    [60] Nixon J F, Ladanyi B. Thaw consolidation[C]. In: Andersland O B, Anderson M, eds. Geotechnical Engineering for Cold Regions ( chapter 4). New York: McGraw Hill, 1978.
    [61] Eigenbrod K D. Effects of cyclic freezing and thawing on volume changes and permeabilities of soft fine grained soils[J]. Canadian Geotechnical Journal, 1996, 33 (4) : 529~537.
    [62]黑龙江省寒地建筑科学研究院.冻土地区建筑地基基础设计规范(JGJ-98)[S].北京:中国建筑工业出版社. 1999:11~14.
    [63]梁波,张贵生,刘德仁.冻融循环条件下土的融沉性质试验研究[J].岩土工程学报, 2006(10): 1213~1217.
    [64]包卫星,杨晓华,谢永利.典型天然盐渍土多次冻融循环盐胀试验研究[J].岩土工程学报,2006,28(11):1911~1915.
    [65]杨成松,何平,等.冻融作用对土体干容重和含水率影响的试验研究[J],岩石力学与工程学报,2003,22(S2):2695~2699.
    [66]何平,程国栋,朱元林.冻土融沉系数评价方法[J].冰川冻土,2003,25(6):608~613.
    [67]高树森,师永坤.碎石类土盐渍化评价初探[J].岩土工程学报,1996,18(3):96~99.
    [68]徐学祖.土体冻胀和盐胀机理[M].北京:科学出版社,1995.
    [69]卢廷浩主编,土力学(第二版)[M]河海大学出版社,2005.
    [70]方开泰,马长兴主编.正交与均匀试验设计[M].科学出版社,2001.
    [71]任露泉主编,试验优化设计与分析[M],高等教育出版社,2003:481~-505.
    [72]刘建航,侯学渊.基坑工程手册.北京:中国建筑工业出版社,1997,23~35
    [73]建设部建筑管理司.建筑业十项新技术.建筑技术,1999,(1):1~3
    [74]曾宪明等.特殊不良地质体变形破坏形态研究.见:广东省深基坑开挖工程研讨会论文集.广州:广东科技出版社,1996,84~88
    [75]中华人民共和国行业标准.基坑土钉支护技术规程(CECS96:97).北京:中国标准出版社,1997,8~20
    [76]曾宪明,曾荣生,陈德兴等.岩土深基坑喷锚网支护法原理、设计、施工指南.上海:同济大学出版社,1997,43~50
    [77]程良奎,杨志银.喷射混凝土与土钉墙.北京:中国建筑工业出版社,1998, 245~324
    [78]龚晓南,高有潮.深基坑工程设计施工手册.北京:中国建筑工业出版社,1998,305~311
    [79]秦四清,王建党等.土钉支护机理与优化设计.北京:地质出版社,1999,9~33
    [80]程良奎,杨志银,范景伦等.土钉墙技术的研究与应用-岩土锚固工程技术.北京:人民交通出版社,1996,10~20
    [81] Bruce D A, Jewell R A. Soil Nailing Application and Practice, Part l. Ground Engineering, 1986, 19(11): 10~15
    [82] ScientificCommitteeoftheFrenchNational Project CLOUTERRE.Recommendations CLOUTERRE 1991 for Designing,Calculating,Constructing and Inspecting Earth Support Systems UsingSoil Nailing(FHWA/SA-93/026). 1993, 8-17
    [83] Stocker, M. F. et al. Soil Nailing. In: Proc. Int. Conf. on Soil Reinforcement.Paris, 1979, 469-474
    [84] Elias V, Juran I. Soil Nailing for Stabilization of Highway Slopes andExcavation. FHWA/RD-89/198, 1991, (6): 868-905
    [85] Schlosser F, Unterreiner P. Soil Nailing in France: Research and Practice. In:Transportation Research Record No. 1330-Behavior of Jointed Rock Masses and Reinforced Soil Structures 1991. Washington, D. C, 1991, 72-79
    [86] Schlosser F, Unterreiner P. French National Research Program CLOUTERRE on Soil Nailing. Geotechnical Special Publication ASCE, 1992, 2(30): 739-763
    [87] Gassler G, Gudehus G. Soil Nailing-Some Aspects of a New Technique. In: Proc. ICSMEF. Washington, D. C, 1981, 75-82
    [88] Manfred F. Stocker, Georg Riedinger. The Bearing Behavior of Nailed Retaining Structures. Geotechnical Special Publication, ASCE, 1990, (25):612-628
    [89] C. K. Shen, J. S. DeNatale, L. Kulchin, et al. Field Measurement of an EarthSupport System. Journal of the Geotechnical Engineering Division, 1981,107(12): 1625-1642
    [90] C. K. Shen, L. R. Herrmann, S. Bang. Ground Movement Analysis of Earth Support System. Journal of the Geotechnical Engineering Division, 1981,107(12): 1609-1624
    [91] Bridle R. J. Soil Nailing-Analysis and Design. Ground Engineering, 1989,22(9): 52-56
    [92] Juran I, George Baudrand, Khalid Farrag, et al. Kinematical Limit Analysis forDesign of Soil-Nailed Structures. Journal of Geotechnical Engineering, ASCE,1990, 116(1): 54-72
    [93] Mauricio Ehrlich, James K. Mitchell. Working Stress Design Method forReinforced Soil Walls. Journal of Geotechnical Engineering, 1994, 120(4):625-645
    [94] Hulme T W, Potter L A C, Shirlaw J N. Singapore Mass Rapid Transit System:construction. Institution of Civil Engineers Proceedings, 1989, 86(8): 709-720
    [95] Juran I, Elias V. Ground Anchors and Soil Nails in Retaining Structures-Foundation Engingeering Handbook. Washington, D. C: Van Nostrad BeinholdPub, 1991, 890-920
    [96]冯勇.施工网络计划优化和控制研究[D] .新疆农业大学硕士论文, 2003
    [97]邓聚龙,灰理论基础[M].武汉华中科技大学出版社,2002
    [98]张显,朱若初等,灰色系统理论在大型基础设施决策中的应用研究[J].基建优化,2005(4)11~13
    [99]袁嘉祖,灰色系统理论及其应用[M].北京科技出版社,1991
    [100]徐泽水.模糊互补判断矩阵排序的最小方差法[J].系统工程理论与实践, 2001,21(10):93~96.
    [101]冯勇,李永.施工方案的多目标层次优选决策的研究[J].新疆农业大学学报,2002,25(4):7~11.
    [102]冯勇侍克斌.施工方案多目标最小方差法的优选决策的研究[J].武汉大学学报(工学版),2004(4):50~54
    [103]李云安,葛修润.基坑变形影响因素与有限元数值模拟[J].岩土工程技术,2001(2):64~68
    [104]刘长文,陈怪凡,李旭东.考虑空间效应的深基坑周围地表沉降分析[J].辽宁工程技术大学学报自然科学版,2000,19(2):145~147
    [105]高文华,杨林德.软土深基坑围护结构变形的三维有限元分析[J].工程力学,2000,17(2):134~141
    [106]邹冰.深基坑支护体系的空间变形性状分析[J].科技通报,2000,16(2):416~420
    [107]张冬霏,卢廷浩.一种土与结构接触面模型的建立及其应用[J].岩土工程学报,1998,20(6):62~66
    [108]杨雪强,刘祖德.论深基坑支护的空间效应[J].岩土工程学报,1998,20(2):74~78
    [109]李云安,钟玉芳,张鸿昌.影响基坑变形实质性状态分析[J].地质与勘探,2000,6(2):49~52
    [110]钱家欢,殷宗泽.土工原理与计算(第二版)[M].北京中国水利工业出版社,1996
    [111]杨林德,仇圣华.基坑围护结构位移量预测与稳定性预测[J].岩土力学,2001,23(3):267~270
    [112]徐超,杨林德.岩土参数的空间变异性分析[J].上海地质,1996,(4):16~19
    [113]朱百里,沈珠江等.计算土力学[M].上海上海科技大学出版社,1990
    [114]李志业,曾艳华.地下结构设计原理[M].成都西南交通大学出版社,2003
    [115]徐杨青.深基坑工程优化设计理论与动态变形控制研究[D],武汉理工大学硕士论文,1995
    [116]宰金珉.成长曲线在地基沉降预测中的应用[J].南京建筑工学院学报,2000,(2)8~13
    [117] Peck R B.Deep Excavations and Tunneling in Soft Ground, 7th ICSMFE,Stare-of-the-Art Volume 1969,225~290
    [118] Terzaghi K,Peck R B.Soil Mechanics in Engineering Practice.2nd ed,John Wiley£Sons,Inc.New York,1943
    [119]侯学渊,陈永福.深基坑开挖引起周围地基土沉陷的计算[J].岩土程师,1989
    [120]曾国熙,潘秋元,胡一峰.软粘土地基基坑开挖性状的研究[J].岩土工程学报,1998,10(3):13~22
    [121]李亚.基坑周围土体位移场的分析与动态控制[D].硕士学位论文,上海同济大学,1999
    [122]张燕凯,桂国庆,赵抚民.深基坑工程中考虑开挖深度和时间效应的土压力计算公式的探讨[J].南昌大学学报(工科版),2002,24(1):85~89
    [123]张伟,茜平一,陈晓平.流变理论在深基坑开挖中的应用探讨[J].武汉大学学报(工学版),2003,36(2):92~96
    [124]傅艳华,王旭东,宰金珉.基坑变形时间效应的有限元分析[J].南京工业大学学报,2005,27(5):32~37
    [125]覃海婴,杨晓贞.考虑卸载扰动与土流变特性的基坑性状的分析[J].福州大学学报(自然科学版),2001,29(2):78~82
    [126]张怀静,张友葩,金爱兵.深基坑支护的数值分析[J].北京建筑工程学院学报,2003,19(2):42~47
    [127]李俊才,张悼元,许强.深基坑开挖变形的三维数值模拟研究[J].南京工业大学学报,2005,27(3):1~7
    [128]赵延林,高全臣,衡朝阳.基坑开挖对近邻建筑物沉降影响的数值模拟[J].黑龙江科技学院学报,2005,15(2):106~120
    [129]丁锐,范鹏,焦苍.建筑物受深基坑开挖影响的显式差分分析[J].隧道建设,2005,25(2):4~8
    [130]王燕.某基坑土钉支护的三维数值分析[J].武汉化学院学报,2005,27(4):30-33
    [131]陈敏华,陈增新,张长生.FLAC在基坑开挖分析中的应用[J].岩土工程学报,2006,28(Supp):1437~1440
    [132]刘继国,曾亚武.FLAC3D在深基坑开挖与支护数值模拟中的应用[J].岩土力学,2006,27(3):505-508
    [133]胡斌,张悼元,黄润秋等.FLAC3D前处理程序的开发及仿真效果检验[J].岩石力学与工程学报,2002,21(9):1387-1391
    [134]王贵君.盐岩层中天然气存储洞室围岩长期变形特征[J].岩土工程学报,2003,25(4):431-435
    [135]丁秀美,黄润秋,刘光士.FLAC3D前处理程序开发及其工程应用[J].地质灾害与环境保护,2004,15(2):68一73
    [136]徐平,李云鹏,丁秀丽等.FLAC3D粘弹性模型的二次开发及其应用[J].长江科学院院报,2004,21(2):10-13
    [137]漆泰岳,陆士良,高波.FLAC锚杆单元模型的修正及其应用[J].岩石力学与工程学报,2004,23(13):2197-2220
    [138]常来山,王家臣,李慧茹.节理岩体边坡损伤力学与FLAC3D耦合分析[J].金属矿山,2004(9):16-18
    [139]褚卫江,徐卫亚,杨圣奇等.基于FLAC3D的岩石粘弹塑性流变模型二次开发研究[J].岩土力学,2006,27(11):2005-2100
    [140]徐卫亚,杨圣奇,褚卫江.岩石非线性黏弹塑性流变模型(河海模型)及其应用[J].岩石力学与工程学报,2006,25(3):433-477
    [141]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].中国水利水电出版社.2008
    [142] D.F.Malan. Time-dependent behavior of deep level tabular excavations in hard rock.Rock Mechanics and Rock Engineering,1999,32(2):123-155
    [143] Tien-Chien Chen, Rong-Her Chen, San-Shyan Lin.A nonlinear homogenized model applicable to reinforced soil analysis. Geotextiles and Geomembranes,2000(18):349-366
    [144] X.Chen, C.P.Tan,C.M.Haberfield. Numerical evaluation of the deformation behaviour of thick-walled hollow cylinders of shale.International Journal of Rock Mechanics and Mining sciences,2000(37):947-961
    [145] T.G.Sitharam,G.Madhavi Latha.Simulation of excavations in jointed rack masses using a practical equivalent continuum approach.Internation Journal of Rock,Mechanices & Mining Sciences,2002(39):517-525
    [146] Boidy E,Bouvand A,Pellet F.Back analysis of time-dependent behavior of a test gallery in claystone. Tunneling and Underground Space Technology,2002,17(4):415-424
    [147] Dragan Grgic,Francoise Homand,Dashnor Hoxha.A short-and long-term rheological model to understand the collapses of iron mine in Lorraine, France.Computers and Geotechnics,2003,30(7):557-570
    [148] Sompote Youwai,Dennes T,Bergado.Numericalanalysis of reinforced wall using rubber tire chips-sand mixtures as backfill material.Computers and Geotechnics,2004(31):103-114