载流摩擦磨损试验机的研制及滑板材料摩擦磨损和载流性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以国家自然科学基金重点项目(西部特殊环境下材料损伤与防护研究50432020)和国家“973”课目(强氧化环境下材料的磨损机制2007CB607603)为依托,基于摩擦学特性不是材料所固有的特性而是系统的特性的原理,针对现有的低电流、低载荷和低滑动速度的摩擦学试验机及其在此基础上获得的摩擦学规律和结论,已经不能满足目前和将来铁路机车提速的需要的现状,为此对高速铁路滑板材料载流摩擦学特性的试验设备与滑板材料载流摩擦学性能开展系统深入的研究。本论文开展的主要研究内容和所取得的成果如下:
     1、首次开发了大电流、高速度和重载荷的载流摩擦磨损专用试验机,能够稳定提供恒定交流电流密度2.5 A/mm~2,相对滑动速度100 m/s(12000 r/min),载荷可达500 N(3.2MPa),脉动冲击载荷可达20 N,为研究提速接触网和滑板的高速载流摩擦学特性及其机理,以及开发新型高耐磨性、高载流性能滑板材料提供了先进可靠的试验手段(该机已获得一项实用新型专利,ZL 2006 2 0096036.5)。
     2、对铜基粉末冶金材料和浸金属碳材料的使用参数进行了试验研究,结果表明铜基粉末冶金材料的最佳使用参数为电流0.45 A/mm~2、载荷0.37 MPa、滑动速度40 m/s,而浸金属碳材料的最佳使用参数为电流0.45 A/mm~2、载荷0.37 MPa、滑动速度50 m/s,在此参数下,材料的耐磨性最好。这与现阶段使用铜基粉末冶金滑板和浸金属碳滑板的电力机车的最佳运行参数完全一致,这表明:铁路系统对这两种滑板材料选择的使用参数是非常正确的;同时也表明,所研制的载流高速摩擦磨损试验机具有很好的模拟性,能够满足今后研究、开发新型高耐磨性滑板材料及其配副导线材料,研究配副使用参数的优化,载流摩擦学过程和作用机理等问题的需要。
     3、对铜基粉末冶金材料和浸金属碳材料的耐磨性、减摩性、回路电流相对稳定性和摩擦系数相对稳定性及其影响参数进行了较系统的研究。结果表明:
     (1)铜基粉末冶金材料与QCr0.5配副时,电流不能超过0.45 A/mm~2,载荷不能超过0.45 MPa,滑动速度不能超过40~50 m/s,(其中电流0.3 A/mm~2,载荷0.37 MPa下,滑动速度不能超过50 m/s;电流0.45 A/mm~2,载荷0.37 MPa下,滑动速度不能超过40 m/s)否则磨损会急剧增大。
     (2)浸金属碳材料与QCr0.5配副时,电流不能超过0.45 A/mm~2,载荷不能超过0.55MPa,滑动速度不能超过50 m/s,(其中电流0.37 A/mm~2,载荷0.37 MPa下,滑动速度可以达到40 m/s;电流0.45 A/mm~2,载荷0.37 MPa下,滑动速度不能超过50 m/s;电流0.6A/mm~2,载荷0.37 MPa下,滑动速度不能超过40 m/s)否则磨损会迅速增大。
     (3)浸金属碳材料的耐磨性显著优于铜基粉末冶金材料的,其磨损率比铜基粉末冶金材料的磨损率降低了54.8%—79.8%;其次,浸金属碳材料的载流稳定性也优于铜基粉末冶金材料的。
     (4)浸金属碳材料的减摩性不如铜基粉末冶金材料的,其摩擦系数比铜基粉末冶金材料的摩擦系数大,其值分别大了14.4%—150%;同时,浸金属碳材料的摩擦稳定性也不如铜基粉末冶金材料的。
     4、研究过程中发现,载流摩擦过程比传统摩擦过程受系统参数的影响更复杂,参数对摩擦副摩擦性能的影响规律也不完全相同,如摩擦系数波动较大,为此首次提出、并考察了载流摩擦过程中的摩擦系数的稳定性、回路电流的稳定性,以评价载流摩擦过程中材料的特性。
Supported by the National Natural Science Foundation of China (No. 50432020) and theNational 973 project (2007CB607603) and due to the systematic characteristics of tribo-electficfriction pairs, great needs for researches on tribo-electric behaviors of materials of pantographstrips are becoming more and more urgently with the development of running speed and loadingelectric current of locomotives. Based on the materials used for locomotives electric supplysystem of high speed railway, the researches are carded out on following aspects in this paper.
     1, the special tribo-electdc tester with high sliding speed and electric current was developed,which mail working parameters are, current density up to 2.5 A/mm~2, the sliding speed 100 m/s,the load over 500 N (3.2 MPa) and the pulsant strike pressure within 20 N. This testersuccessfully simulates the tribological and electric properties of strip materials.
     2, By using the above tester, study on tdbological properties and carrying currentperformances of copper-base powder metallurgy material and metal impregnation carbonmaterial are carded out. The results show that the copper-base powder metallurgy materialsposses the best wear resistance under the condition of 0.45 A/mm~2, 0.37 MPa and 40 m/s and themetal impregnation carbon materials show the best wear resistance under the condition of 0.45A/mm~2, 0.37 MPa and 50 m/s which are both accordance with the running conditions of trainswhich use copper-base powder metallurgy strip and metal impregnation carbon strip.
     3, After systematical researches on wear resistance, reducing friction, stabilities of carryingcurrent and friction coefficient of copper-base powder metallurgy material and metalimpregnation carbon material, the following conclusions are obtained:
     (1), the copper-base powder metallurgy material coupled with QCr 0.5 can only be used underconditions of current less than 0.45 A/mm~2, pressure under 0.45 MPa and sliding speed less than40-60 m/s for the aim of low wear rate. The conditions in detail are that sliding speed is less 60m/s when current is 0.3 A/mm~2 and pressure is 0.37 MPa, sliding speed is less 40 m/s whencurrent is 0.45 A/mm~2 and pressure is 0.37 MPa.
     (2), the metal impregnation carbon material only can be used under conditions of current lessthan 0.45 A/mm~2, pressure under 0.55 MPa and sliding speed less than 50 m/s for the aim of lowwear rate. The conditions in detail are that sliding speed can reach 70 m/s when current is 0.3A/mm~2 and pressure is 0.37 MPa, sliding speed can reach 50 m/s when current is 0.45 A/mm~2and pressure is 0.37 MPa, sliding speed can reach 40 m/s when current is 0.6 A/mm~2 andpressure is 0.37 MPa.
     (3), wear rate of metal impregnation carbon material is lower than that of copper-base powdermetallurgy material by 54.8%-79.8% which indicates that wear resistance of former is muchbetter than that of the latter. The stability of carrying current of metal impregnation carbonmaterial is better than that of metallurgy material.
     (4), friction coefficient of metal impregnation carbon material is higher than that of copper-basepowder metallurgy material by 14.4%-150% which indicates that anti-friction property offormer is worse than that of latter. The stability of sliding contact of metal impregnation carbonmaterial is worse than that of copper-base powder metallurgy material.
     4, Due to the fact that effects of tribological parameters on the process of wear with current aremore complicated than those of common sliding process, parameters of stabilities of carryingcurrent and friction coefficient are introduced in this paper to evaluate properties of couple withcurrent.
引文
[1] 刘友梅.论电力牵引轨道交通的技术发展[J].电力机车技术,2000(3):1~7.
    [2] 赵叔东.高速列车电气设备现状及发展趋势[J].电力机车技术,1999(3):1~5.
    [3] 刘友梅.现代电力机车的技术特点[J].电力机车技术,1998(1):1~3.
    [4] 吴礼本.国外铁路高速旅客列车发展趋势[J].国外铁道车辆,2001,38(5):10~12.
    [5] 于涤.高速接触网受流的理论分析[J]。铁道学报,1998,20(5):58~64.
    [6] 刘永红,周军.接触网—受电弓系统受流质量的评价分析[J].铁道标准设计,1999,4:45-49.
    [7] 李娜,张弘,于正平.受电弓滑板与接触导线摩擦磨损机理与特性分析[J].中国铁道科学,1995,17(4),63-68.
    [8] Z. Chen, P. Liu, J.D. Verhoeven, et at. Electrotribological behavior of Cu-15 vol. % Cr in situ composites under dry sliding [J], Wear, 203-204 (1997) 28-35.
    [9] A. Bouchoucha, H. Zaidi, E.K. Kadiri, et al. Influence of electric fields on the tribological behaviour of electrodynamical copper/steel contacts [J], wear, 203-204 (1997) 434-441.
    [10] C.M. Lin, Y.C. Chiou, R.T. Lee. Pitting mechanism on lubricated surface of Babbitt alloy/bearing steel pair under ac electric field [J], wear, 249 (2001) 133-143.
    [11] S.H. Song, P. Xiao. Electrical properties of the oxide film formed on nickel during high-temperature oxidation [J], materials science of engineer A 323 (2002) 27-31.
    [12] 荣伟,涂江平,郭绍义.Cu—纳米TiB_2原位复合材料的电滑动磨损性能[J],摩擦学学报,2002,22(4):5-7.
    [13] 顾志平.导电辊用镀铜碳纤维/铜复合电刷[J],新型碳材料,1997,12(3):52-55.
    [14] 于正平,张弘,吴鸿表等.高速电气化铁路接触网—受电弓系统的研究[J].中国铁道科学,1999,20(1):69-71.
    [15] 迟春阳,周成学,王家襄等.电力机车滑板材料的发展[J],炭素,1999(4):41-43.
    [16] 潘连明,张国荣,钱中良.电力机车受电弓滑板[J],机车车辆工艺,2001(3):1-4.
    [17] 戴南山.高速受流性能探讨[J].电力机车技术,2001,24(1):17-18.
    [18] 赵明元,杨绪红,朱衡君.中、高速受电弓设计初探[J].电力机车技术,2000(2):7-9.
    [19] 付秀通,詹裴生.轮/轨-弓/网系统耦合动力学数值模拟分析与试验研究[J],铁道学报,1998,20(3):25~32.
    [20] C.R.F. Azevedo, A. Sinatora. Failure analysis of a railway copper contact strip [J], Engineering failure analysis Ⅱ (2004) 829-841.
    [21] J. Fisher, E.D. Gibson. Electrode erosion in high current [J]. Wear, 1927 (29) 48-52.
    [22] R. Holm, J. Appl. Phys, 1957, 28 (10): 1171-1179.
    [23] J.M. Casstevens. Influence of high velocities and high current densities on the friction and wear behavior of copper-graphite brushes [J], Wear 48 (1978) 121-130.
    [24] J. Fisher, K.J. Campbell, T.F.J. Quinn. American Society of Lubrication Engineer Trans [J], 1972, 15 (3): 192-198.
    [25] R. Holm, Electric contacts, Springer-verlag, 1967, p, 5.
    [26] D. Klapas, R. Hackam. Wear in a Simulated Power Collection System For Railways Electric Contacts Colloquium Digest [J], Wear 1979 (13) 81-83.
    [27] Da Hai He, Rafael R. Manory, Norm Grady. Wear of railway contact wires against current collector materials [J]. Wear 215 (1998) 145-155.
    [28] Da Hai He, Rafael R. Manory, Harry Sinkis. A sliding wear tester for overhead wires and current collectors in light rail systems [J]. Wear 239 (2000) 10-20.
    [29] Da Hai He, Rafael Manory. A novel electrical contact material with improved self-lubrication for railway current collectors [J], Wear 249 (2001) 626-636.
    [30] H. Zhao, G. C. Barber, J. Liu, Friction and wear in high speed sliding with and without electrical current [J], Wear 249 (2001) 409-414.
    [31] C.R.F. Azevedo, A. Sinatora. Failure analysis of a railway copper contact strip [J], Engineering Failure Analysis Ⅱ (2004) 829-841.
    [32] J.S. Gershman, N.A. Bushe. Thin films and self-organization during friction under the current collection conditions [J], Surface & coatings technology, 186 (2004) 405-411.
    [33] Hiroki Nagasawa, Koiji Kato. Wear mechanism of copper alloy wire sliding against iron-base strip under electric current [J], Wear 216 (1998) 179-183.
    [34] A. Senouci, J. Frene, H. Zaidi, Wear mechanism in graphite-copper electrical sliding contact [J], Wear 225-229 (1999) 949-953.
    [35] Shunichi Kubo, Koji Kato, Effect of arc discharge on wear rate of Cu-impregnated carbon strip in tmlubricated sliding against Cu trolley trader electric current [J], Wear 216 (1998) 172-178.
    [36] E. Csapo, H. Zaidi, D. Paulmier, Friction behaviour of graphite-graphite dynamic electric contact in the presence of argon [J], Wear 192 (1996) 151-156.
    [37] D. Paulmier, M. Ei Mansod, H. Zaidi, Study of magnetized or electrical sliding contact of a steel XC48/graphite couple [J], Wear 203-204 (1997) 148-154.
    [38] P. Ponthiaux, F. Wenger, D. Drees, et al. Electrochemical techniques for studying tribocorrosion processes [J], Wear 256 (2004) 459-468.
    [39] 孟永刚,蒋洪军,纪宏.电摩擦现象——电场对金属/陶瓷摩擦行为的影响[J].摩擦学学报,1999(3),34-38.
    [40] 蒋洪军,孟永刚,温诗铸.外加电压对三氧化二铝/黄铜摩擦副摩擦的主动控制试验研究[J].摩擦学学报,1999(9),36-40.
    [41] 翟文杰,山本雄二.外加电场对边界润滑条件下钢—钢摩擦副摩擦磨损性能的影响[J].摩擦学学报,2000(6),12-16.
    [42] 戴利民.滑板材料受流摩擦磨损性能的研究:[博士学位论文].北京:铁道科学研究院,2001.
    [43] 戴利民,林吉忠,丁新华.滑板材料受流摩擦时接触点瞬态温升对磨损性能的影响[J].中国铁道科学,2002,23(2):111-117.
    [44] 刘毅斌,滑动电接触的摩擦磨损机理与试验研究:[硕士学位论文].北京:北京交通大学,2005.
    [45] 徐春园,铜合金导线材料的滑动摩擦磨损性能研究:[博士学位论文].兰州:兰州理工大学,2005.
    [46] 凤仪,王文芳,王成福.电流密度对碳纤维/铜/石墨复合材料摩擦系数的影响[J].机械工程材料,2000,24(5),40-41.
    [47] 孙乐民,沈向前,张永振.载流摩擦磨损规律研究[J].润滑与密封,2004,37(7),132-133,138.
    [48] 董霖,李丰学,陈光雄等.有无电流工况下钢铝复合轨/受电靴的摩擦磨损特性[J].润滑与密封,2006,(6),36-38.
    [49] 刘佐民.M50高速钢高温摩擦磨损特性的研究[J].摩擦学学报,1997,3(1),38-44.
    [50] A.Senouci, H.zaidi, J.Frene, A.Bouchoucha. Damage of surfaces in sliding electrical contact copper/steel [J]. Applied Surface Science, 1999, 144-145, 287-291.
    [51] 张永振,邱明,上官宝等.高速干摩擦条件下铝基复合材料的摩擦磨损行为研究[J].摩擦学学报,2005,25(4):340—343.
    [52] H.zaidi, E.Csapo, H.Nery, D.Paulmier, T.Mathia. Friction coefficient variation in a graphite-graphite dynamical contact crossed by an electric current [J]. Surface and Coatings Technology, 1993, 62, 388-392.
    [53] H.Zaidi, K.J.Chin, J.Frene. Analysis of surface and subsurface of sliding electrical contact steel/steel in magnetic field [J]. Surface and Coatings Technology, 2001, 148, 241-250.
    [54] V. V. Konchits, C. K. Kim, Electric current passage and interface heating [J], Wear 232 (1999) 31-40.
    [55] JIA Shu-guo, LIU Ping, F.Z. Ren, B.T. Hong, M.S. Zheng, G.S. Zhou, Sliding wear behavior of copper alloy contact wire against copper-based strip for high-speed electrified railways [J], Wear 262 (2007) 772-777.
    [56] Alan Lawley, Thomas F. Murphy, Metallury of powder metallurgy materials [J], Materials characterization, 2003, 51, 315-327.
    [57] Jeng Haur Homg. Studies of tribological behavior and separation between surfaces at initial boundary luvrication [J]. Wear 216 (1998) 8-14.
    [58] Shoukai Wang, Zben Mei, D.D.L. Chung. Interlaminar damage in carbon fiber polymer- matrix composites studied by electrical resistance measurement [J]. International Journal of Adhesion & Adhesives 21 (2001) 465-471.
    [59] H. Zaidi, K.J. Chin, J. Frene. Analysis of surface and subsurface of sliding electrical contact steelysteel in magnetic field [J]. Surface and coatings technology 148 (2001) 241-250.
    [60] Xiangcheng Luo, D.D.L Chung. Graphite-graphite electrical contact under dynamic mechanical loading [J]. Carbon 39 (2001) 615-628.
    [61] M. El Mansori, D. Paulmier, J. Ginsztler, M. Horvath. Lubrication mechanisms of a sliding contact by simultaneous action of electric current and magnetic field [J]. Wear 225-229 (1999) 1011-1016.
    [62] Hsiao Yeh Chu, Jen Fin Lin. Experimental analysis of the tribological behavior of electroless nickel-coated graphite particles in aluminum matrix composites under reciprocating motion [J]. Wear 239 (2000) 126-142.
    [63] J.B. Yang, C.B. Lin, T.C. Wang, H.Y. Chu. The tribological characteristics of A356.2 Al alloy/Gr(p) composites [J]. Wear 257 (2004) 941-952.
    [64] 凤仪,张敏,许屹.外加载荷对碳纳米管—银—石墨符合材料电磨损性能的研究[J].中国有色金属学报,2005(10):1483—1488.
    [65] 车建明.碳纤维增强铜基复合材料摩擦磨损性能同其磨损表面形貌相关性研究[J].摩擦学学报,2004,24(2):144—147.
    [66] S. Wilson, A.T. Alpas. Thermal effects on mild wear transitions in dry sliding of an aluminum alloy [J]. Wear 225-229 (1999) 440-449.
    [67] 荣伟,涂江平,郭绍义.Cu—纳米TiB_2原位复合材料的电滑动磨损性能[J].摩擦学学报,2002,22(4):5—7.
    [68] 张思成,徐春园,张君.铜的电接触磨损性能研究[J].甘肃科技,2006,22(7):73—74.
    [69] 丁雨田,郭美华,许广济,史荣彬.单晶铜线材载流摩擦磨损行为研究[J].铸造技术,2006,27(12):390—394.
    [70] Arup Gangopadhyay, Gary Barber, Han Zhao. Tool wear reduction through an externally applied electric current [J]. Wear 260 (2006) 549-553.
    [71] 机械设计手册[M],机械工业出版社,1992.
    [72] 蔡成标,翟婉明.高速铁路受电弓-接触网系统动态性能仿真研究[J].铁道学报,1997,19(5):38~43.
    [73] 翟婉明,蔡成标.机车—轨道耦合振动对受电弓-接触网系统动力学的影响[J].铁道学报,1998,20(1):32~38.
    [74] 李丰良,唐松花.受电弓的力学分析示例[J].铁道学报,2000,22(5):21~23.
    [75] 张卫华.准高速接触网动态性能的研究[J].西南交通大学学报,1997,32(2):187—192.
    [76] “载流高速摩擦磨损试验机的研制”鉴定文件,2006.04.
    [77] 刘先曙.电接触材料的应用[M].北京:国防工业出版社,1999.
    [78] 高飞,杜素强,符蓉,宋宝韫.不同速度下石墨含量对铜基摩擦材料性能的影响[J].矿冶工程,2005,25(4):80-82.
    [79] 黄汉忠,李木林.固体润滑材料在受电弓滑板上的应用[J].粉末冶金技术,1997,15(1):43-45.
    [80] 朱润生,池长青,张建斌.电摩擦效应的机理研究[J].北京航空航天大学学报,2001,27(2):206-208.
    [81] Haijun Zhao , Lei Liu, Yating Wu, Wenbin Hu. Investigation on wear and corrosion behavior of Cu-graphite composites prepared by electroforming [J]. Composites science and technology 67 (2007) 1210-1217.
    [82] 丁雨田,郭美华,许广济,史荣彬.单晶铜线材载流摩擦磨损行为研究[J].铸造技术,2006,27(12):1390-1394.
    [83] 陈广志,田玉清,邓陈虹.电力机车受电弓滑板的研制[J].新技术新工艺,2003,4:39-41.
    [84] 久保俊一等.碳系受电弓滑板的开发[J].国外机车车辆工艺,2000,5:4-6.
    [85] 鹤木等.受电弓滑板用碳/金属纤维复合材料[J].国外机车车辆工艺,1994,6:11-13
    [86] S. Kubo. Wear properties of metal/carbon composite pantograph sliders for conventional electric vehicles [J], QR of RTRI, 1997, 38(1): 25-30.
    [87] S. Kubo. Development of metal/carbon composite pantograph contact strips for the shinkasen electric vehickes [J], QR of RTRI, 1997, 38(2): 76-81.
    [88] 高春明,凌跃成,钱振华,刘春.减磨型碳纤维复合材料受电弓滑板的研制[J].电力机车与城轨车辆,2004,27(4):31-33.
    [89] 李恒政,童文俊,杨志懋,丁秉钧.炭滑板的石墨化度对电弧烧蚀速率的影响[J].炭素,2006,125(1):23-27.
    [90] 戴振东,薛群基,王珉.摩擦问题的热力学研究[J].摩擦学进展.1997,2(3):1-9.
    [91] S. Wilson, A.T. Alpas. Thermal effects on mild wear transitions in dry sliding of an aluminum [J]. Wear, 225-229 (1999): 440-449.
    [92] 张永振,沈百令.蠕墨铸铁的干摩擦[M].北京:科学出版社,1995.
    [93] 赵源,高万振,李健.磨损研究及其方向[C].第二届全国工业摩擦学大会论文集,2004,福州.
    [94] 赵源.摩擦、磨损讲义[M].武汉材料保护研究所,2005.
    [95] 熊腊森.焊接工程基础[M].北京:机械工业出版社,2002.
    [96] 荣命哲.电接触理论[M].北京:机械工业出版社,2004.
    [97] 松山晋作,李春阳.受电弓的受流摩擦学[J].电力牵引快报.1997,(1):81-83.
    [98] 金永平,郭宾等.铜基滑板试件电阻率和磨损性能研究[J].哈尔滨工业大学学报,2003,(4):35-38.
    [99] Tung SC, Wang SS. In-situ electro-charging for friction reduction and wear resistant film formation [J].Tribology Transaction .1991, 34 (4): 478-488.
    [100] Shunichi Kubo, Koji Kato. Effect of arc discharge on the wear rate and wear mode transition of a copper-impregnated metallized carbon contact strip sliding against a copper disk [J]. Tribology International, 32 (1999): 367-378.
    [101] S. Philippon, G. Sutter, A. Molinari. An experimental study of friction at high sliding velocities [J]. Wear, 257 (2004): 777-784.
    [102] 刘平,刘勇,田保红,李伟.Cu-Cr-Zr合金电滑动磨损行为研究[J].功能材料,2006,37(2):213-215.
    [103] 马行驰.Cu-Ag-Zr-Ce合金时效性能和电磨损性能的研究[J].金属热处理,2005,30:188-191.
    [104] 刘勇,刘平,田保红,李伟.Cu-Cr-Zr合金电滑动磨损微观形貌分析[J].金属热处理,2006,31(3):85-87.
    [105] 杨连威,姚广春,陆阳.新型铜?碳复合受电弓滑板的制备[J].过程工程学报,2005,5(4):460-463.