超声测量骨密度及超声成像的若干方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
医学超声工程发展体现两个方面,一是应用领域的扩展,如定量超声技术测量骨密度来诊断骨质疏松。二是传统技术的改进,如超声成像技术的进步带来的成像质量的提高。定量超声技术则利用超声透射法来测量骨密度,反映骨骼的微观结构。超声成像是医学超声诊断技术最重要的技术,它是对人体软组织进行成像协助医生对组织病症进行诊断。
     本文在超声测量骨密度和超声成像两个方向进行研究,研究方法采用理论分析,仿真说明和实验验证三者结合的方式。先对传统方法存在的问题进行分析,针对这些问题提出改进的测量方法和成像算法,并进行仿真和实验,结果表明这些方法可以提高测量精度和成像质量。具体研究成果如下:
     1.研究设计基于任意波发射的超声骨密度测量系统,并利用该系统做了相关的测量实验。
     2.提出了一种新的用于骨密度测量的编码方案,它用Chirp信号调制Golay互补码,产生Golay_Chirp信号,该信号具备了Golay和Chirp共同的优点。仿真和实验表明该编码信号可以进一步的增加超声透射深度和抗干扰能力。
     3.将通信中的M序列引入到BUA测量中来,相对其他编码信号,M序列产生容易,发射简单,且码长较长,因此更加适合于骨密度测量。实验表明该编码相对传统的脉冲波,其测量精度得到有效的改善。
     4.将AR模型引入BUA的测量,并提出了针对BUA测量AR模型定阶方法,仿真和实验表明采用高阶AR模型可以平滑衰减曲线,提高测量精度。实验时采用宽带超声传感器测量BUA,发现BUA在0.4-1.8MHz区域内与频率仍具有较好的线性,从而扩展了测量带宽。
     5.在SOS测量方面,采用线性拟合法去除系统的固有延时,有效的提高SOS测量精度。
     6.对超声成像的原理进行分析,并对编码发射技术与自适应波束形成技术进行深入研究,提出一种将两种方法相互结合的超声成像方案,并采用FieldⅡ进行仿真,结果表明该方法可以提高图像的对比度和分辨率。
     超声测量骨密度和超声成像作为医学超声的诊断技术,一直是相关领域的研究热点。本文研究可以提高测量精度,改进成像质量,从而降低误诊率。这些研究不仅具有一定的理论创新,而且更具有较高的实用价值。
     这些工作得到两个国家自然基金项目(60471057和60871087)及2008年中国科学技术大学研究生创新基金的支持。
The development in medical ultrasonic engineering can be presented in the following two aspects:1. Application extension, such as quantitative ultrasound in the assessment of bone mineral density and osteoporosis; 2. Improvement in traditional techniques, such as enhancement of imaging quality owing to improved ultrasound imaging techniques. Quantitative ultrasound takes advantage of through-transmission techniques to assess bone density as well as the micro-structure of bones. Ultrasound imaging serves as the most fundamental in the field of medical ultrasound, and images of human's soft tissue can provide further assistance to doctors for making clinical diagnosis.
     This paper explores researches in quantitative ultrasound assessment of bone mineral density and ultrasound imaging in a combined way, from theoretical analysis, simulations to experimental validation. Firstly, we introduce limitation existing in current studies and propose some new measurement techniques and imaging algorithms for further improvement. Moreover, corresponding simulations and experiments are conducted and the results show that precision and high quality are improved to a great extent, which can indicate the availability of those methods. Detailed research findings are as follow:
     1. Designing the first nation-wide random-wave-emitting-based ultrasound bone mineral density measurement system, which is used to carry out experiments.
     2. Proposing a new coding scheme for measuring bone mineral density, which uses Chirp signal to modulate Golay signal,so that Golay_Chirp signal is generated. This resulted signal is equipped with advantages of both Golay and Chirp. Simulations and experiments show that this coding scheme can further strengthen the anti-noise ability and transmission depth of ultrasound signals.
     3. Introducing the principle of M series in communication to the measurement of broadband ultrasonic attenuation. Compared to other coding signals, M series can be easily generated, simply emitted and with longer code length, therefore it is more suitable in bone mineral density measurement, also improvement in precision can be displayed from experiments.
     4. Incorporating AR model in broadband ultrasonic attenuation measurement to overcome the problem of noise influence, acute ups-and-downs in the attenuation curve. Proposing the method for determining order in the application of AR model. Simulations and experiments show that. adopting high order in AR model can smooth . attenuation curve and improve measuring precision. Applying broad-band ultrasound traducer in measuring broadband ultrasonic attenuation and a linear relationship of broadband ultrasonic attenuation and frequency is found in the frequency range of 0.4-1.8MHZ. This result is instructive in its ability of further widening band width.
     5. In the speed-of-sound measurement, the inherent delay of the system is removed by linear fitting method, which improves the speed-of-sound measurement accuracy effectively.
     6.Analyzing the principles of ultrasound imaging and making in-depth exploration in the code-emitting and adaptive beamforming technique, novel imaging method with a combination of the above two is proposed and Field II is used to make simulations. An obvious improvement in contrast and resolution is observed in the results.
     As major techniques of medical ultrasound, quantitative ultrasonic assessment of BMD and ultrasonic imaging have always been the research focus in related fields. This paper explored the improvement in measuring precision and imaging quality, which can lower the rate of erroneous diagnosis. The research results introduced here is not only unique in theory innovation but also of high practical value.
     The author acknowledges the support of the National Natural Science Foundation of China (Grant Nos.60471057,60871087) and 2008 Innovation Foundation for Graduates, USTC.
引文
[1]周康源.生物医学超声工程.成都:四川教育出版社,1991.
    [2]刘华,刘曦庆.超声治疗技术原理及在生物医学领域中的应用.大众科技.2009,6:163-164
    [3]严碧歌.医学超声治疗原理及其临床应用研究.现代生物医学进展.2004,7(8):1246-1248
    [4]黄力宇.医学成像的基本原理.北京:电子工业出版社,2009
    [5]彭虎.超声成像算法导论.合肥:·中国科学技术大学出版社,2008
    [6]苏贞权.医学超声影像新技术综述.中国医疗仪器信息.2002,8(12):9-14
    [7]王威琪,汪源源等.诊断用医学超声学的现状.声学技术.2002,8(2):4-6
    [8]钱蕴秋.超声诊断学.西安:第四军医大学出版社.2002
    [9]杜春宁.超声成像数字波束形成算法研究,合肥:中国科学技术大学.2006
    [10]Jian-yu Lu.2D and 3D High Frame Rate Imaging with Limited Diffraction Beams. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.1997,44(4):839-956
    [11]韩雪梅,彭虎,杜宏伟,冯焕清.基于线性调频信号的高帧率超声成像系统.中国生物医学工程学报.2005,24(6):700-704.
    [12]彭虎,张作生.高帧率超声成像系统中一种高质量成像模式的实现.中国科学技术大学学报.2005,35(6):868-874.
    [13]彭虎,杜宏伟,韩雪梅,张作生.巴克码在高帧率超声成像系统中应用的仿真研究,北京生物医学工程.2004,23(4):251-254.
    [14]彭虎,韩雪梅,杜宏伟,王京,冯焕清.高帧率超声成像系统中一种高信噪比扇形成像模式的实现.生物医学工程学杂志,2006,23(1):25-29.
    [15]Jia Hao Cheong, Lam Y.Y.H, Liang Mong Koh,et al.Sigma-delta receive beamformer based on cascaded reconstruction for ultrasound imaging application. ICBBE.2009:1-4
    [16]Agarwal Anup, Schneider Fablo Kurt Yoo, et al. Image quality evaluation with a new phase rotation beamformer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.2008,55(9):1947-1955.
    [17]Francesco Viola and William F. Walker,Adaptive Signal Processing in Medical Ultrasound Beamforming. IEEE Ultrasonics Symposium.2005:1980-1983.
    [18]Johan-Fredrik Synnevag and Andreas Austeng.Benefits of Minimum-Variance Beamforming in Medical Ultrasound Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.2009,56(9):1868-1879
    [19]Iben Kraglund Holfort,Fredrik Gran,Arendt Jensen. Minimum Variance Beamforming for High Frame-Rate Ultrasound Imaging[C]. IEEE Ultrasonics Symposium.2007:1541-1544
    [20]Babak Mohammadzadeh Asl and Ali Mahloojifar. Minimum Variance Beamforming Combined with Adaptive Coherence Weighting Applied to Medical Ultrasound Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.2009,56(9):1923-1931
    [21]D.A.Guenther and W.F.Walker. Optimal Contrast Resolution Beamforming. IEEE Ultrasonics Symposium.2007:37-41.
    [22]Matthew O'Donnell. Coded Excitation System for Improving the Penetration of Real-Time Phased-Array Imaging Systems. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,1992,39(3):341-351
    [23]Fredrik Gran and Arendt Jensen. Spatial Encoding Using a Code Division Technique for Fast Ultrasound Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.2008,55(1):12-23
    [24]Claudia Leavens,Ross Willams and Peter Burns,et al. The use of phase codes in ultrasound imaging:SNR gain and bandwidth requirements. Applied Acoustics.2009,70:1340-1351.
    [25]Jose R. Sanchez, Darren Pocci and Michael L. Oelze. A Novel Coded Excitation Scheme to Improve Spatial and Contrast Resolution of Quantitative Ultrasound Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2009,56(10):2111-2123
    [26]Adrien Marion, Walid Aoudi, and Adrian Basarab. A comparative study of four vector velocity estimation methods applied to flow imaging. Physics Procedia.2010:225-233
    [27]Thanasis Loupas, J. T. Powers and Robert W. Gill. An Axial Velocity Estimator for Ultrasound Blood Flow Imaging, Based on a Full Evaluation of the Doppler Equation by Means of a Two-Dimensional Autocorrelation Approach. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,1995,42(4):672-688
    [28]L.N. Bohs, B.J. Geiman, M.E. Anderson, S.C. Gebhart and G.E. Trahey, Speckle tracking for multidimensional flow estimation. Ultrasonic.2000,38:369-375.
    [29]A. Basarab, H. Liebgott and F. Morestin,et al. "A method for vector displacement estimation with ultrasound imaging and its application for thyroid nodular disease," Med. Ima. Ana.2007,12:259-274
    [30]Richard Y. Chiao, Larry Y. Mo and Anne L. Hall,etc. B-Mode Blood Flow (B-Flow) Imaging. IEEE Ultrasonics Symposium,2000.1469-1472
    [31]J. Jensen. Method for in-vivo synthetic aperture B-flow imaging. Proc. SPIE.2004,5373:44-51
    [32]Claudia Leavens, Peter N. Burns, and Michael D. Sherar, Fast B-Flow Imaging:A Method for Improving Frame Rate in Golay Coded B-Flow Imaging, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.2007,54 (11):2272-2282
    [33]Muharrem Tola, Mehmet Yurdakul, and Turhan Cumhur. Combined Use of Color Duplex Ultrasonography and B-Flow Imaging for Evaluation of Patients with Carotid Artery Stenosis. AJNR Am J Neuroradiol 2004:1856-1860
    [34]Lasse, Steinar,and Ditlef Martens,etc, Blood Flow Imaging-A New Real-Time,2-D Flow Imaging Technique, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2006,53(2):289-299.
    [35]M. ODonnell. Efficient Parallel Receive Beam Forming For Phased Array Imaging Using Phase Rotation. Ultrasonics Symposium,1990,1495-1498
    [36]Bjastad T, Aase S and Torp H. Synthetic transmit beam technique in an aberrating environment. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.2007,54(2):1340-1351
    [37]Hu Peng, Jianyu Lu and XueMei Han. High frame rate ultrasonic imaging system based on the angular spectrum principle. Ultrasonic.2006;44:97-99
    [38]Peng H, Yu A. High frame rate ultrasonic imaging through Fourier transform using an arbitrary known transmission field. Computers & Electrical Engineering.2008,34(2):141-147
    [39]曹培杰和罗建.超声成像的相位偏差校正.生物医学工程学杂志.1998,15(1):84-87.
    [40]Krishnan S, Rigby K. W, O'Donnell M. Efficient parallel adaptive aberration correction. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.1998,45(3):691-703
    [41]Dos Santos Serge, Domenjoud Mathieu and Prevorovsky, Zdenek. Ultrasonic Imaging of Human Tooth using Chirp-Coded Nonlinear Time Reversal Acoustics. International Congress On Ultrasonics, Proceedings.2010,3(1):913-918
    [42]Scalerandi, M, Gliozzi, A.S and Bruno, C.L.E, et al. Nonlinear acoustic time reversal imaging using the scaling subtraction method. Journal of Physics D:Applied Physics.2008,41(21): 215404 (10pp)
    [43]Yue. Li. Phase-aberration correction using near-field signal redundancy-Part Ⅰ:Principles. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.1997,44(2):355-371.
    [44]Yue. Li, D. E. Robinson, and D. A. Carpenter. Phase aberration correction using near-field signal redundancy - Part Ⅱ:Experimental results. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.1997,44(2):372-379.
    [45]Yue. Li and B. Robinson. Implementation of the near-field signal redundancy phase-aberration correction algorithm on twodimensional arrays. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.2007,54(1):42-51.
    [46]Yue Li and Brent Robinson.The Cross Algorithm for Phase-Aberration Correction in Medical Ultrasound Images Formed with Two-Dimensional Arrays, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.2008,55(3):588-601
    [47]刘春明,张相芬和陈武凡.基于小波的医学超声图像斑点噪声抑制方法.中国医学物理学杂志.2006,23(5):364-367
    [48]林其忠,余建国,王威琪.超声图像斑点噪声限制的非线性各向异性扩散.复旦学报.2008,47(1):70-74
    [49]Yu Y, Acton S T. Speckle reducing anisotropic diffusion. IEEE Trans Image Processing, 2002,11 (11):1260-1270.
    [50]P. Mohana Shankar. Quantitative Measures of Boundary and Contrast Enhancement in Speckle Reduction in Ultrasonic B-Mode Images Using Spatial Bessel Filters. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.2009,56(10):2086-2096.
    [51]Hergum T, Langeland S, Remme EW, et al. Fast Ultrasound Imaging Simulation in K-space.IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.2009, 56(6).1159-1167
    [52]Nikolov S.I, Jensen J.A. K-space model of motion artifacts in synthetic transmit ultrasound imaging. IEEE Ultrasonics Symposium.2003:1824-1828
    [53]Ni Dong, Chui Yim Pan, Qu, Yingge. Reconstruction of volumetric ultrasound panorama based on improved 3D SIFT. Comput Med Imaging Graph.2009,33(7):559-566
    [54]李义兵,余大昆.实时全景超声成像技术及其临床应用.医疗卫生装备.2005,26(10):52-53
    [55]罗建文,白净.超声弹性成像的研究进展.中国医疗器械信息,2005,(05).23-31
    [56]Jorge Camacho, Montserrat Parrilla, and Carlos Fritsch. Phase Coherence Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2009,56(5):958-974.
    [57]http://news.66wz.com/system/2008/12/09/101001236.shtml
    [58]http://special.mz16.cn/index/OP/news/20091113/118316.html
    [59]http://www.foodqs.cn/news/gnspzs01/2009922152955664.htm
    [60]Yamamoto T and Otani H, Measurement of human trabecular bone by novel ultrasonic bone densitometry based on fast and slow waves, Osteoporos Int.2009,20:1215-1224
    [61]他得安,王威琪等.基于超声背散射信号分析松质骨中的声阻抗.中国生物医学工程学报.2007,26(4):487-492
    [62]张军,沈激等.骨质密度测量技术的进展.核电子学与探测技术.1998,18(4):310-314
    [63]温孝恒.骨密度的测定方法.中国骨质疏松杂志.1998,4(2):69-72.
    [64]Christian M. Langton and Christopher F. Njeh.The Measurement of Broadband Ultrasonic Attenuation in Cancellous Bone - A Review of the Science and Technology. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.2008,55 (7):1546-1554
    [65]Strelitzki R., Evans J A., and Clarke A. J. The influence of porosity and pore size on the ultrasonic properties of bone investigated using a phantom material. Osteoporosis Int.1997,7: 370-375.
    [66]Kang I Lee and Min Joo Choi. Phase velocity and normalized broadband ultrasonic attenuation in Polyacetal cuboid bone-mimicking phantoms. JASA Express Letters, DOI: 10.1121/1.2719046, Published Online,2007,16
    [67]M Sasso. et al. Dependence of ultrasonic attenuation on bone mass and microstructure in bovine cortical bone, Journal of Biomechanics 2008,41:347-355
    [68]M Sasso. et al. Frequency dependence of ultrasonic attenuation bovine cortical bone:An in vitro study. Ultrasound in Med & Biol.2007,33(12):1933-1942
    [69]Wear KA, Ultrasonic Scattering from Cancellous Bone:A Review. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2008,55(7):1432-1441.
    [70]S Dencks,R Barkmann. Optimization Algorithm for Improved Quantitative Ultrasound Signal Processing at the Proximal Femur. IEEE Ultrasonics Symposium,2006:25-28
    [71]Nowicki A, Litniewski J, SecomskiW, et al. Estimation of ultrasonic attenuation in a bone using coded excitation. Ultrasonics.2003,41:615-621
    [72]Magali S, Guillaume H,Yu Y. Frequency Dependence of Ultrasonic Attenuation in Bovine Cortical Bone:An In Vitro Study. Ultrasound in Med & Biol.2007,33(12):1933-1942.
    [73]Riekkinen O, Hakulinen MA, Toyras J, et al. Dual-Frequency Ultrasound-New Pulse-Echo Technique For Bone Densitometry. Ultrasound in Med.& Biol,2008,34(10):1703-1708.
    [74]Pei Jam Chen, et al. The measurements of ultrasound parameters on calcaneus by two-sided interrogation techniques. Meas. Sci. Technol.2005 (16):1349-1354
    [75]他得安,汪源源,余建国,上威琪.超声诊断骨质疏松症中松质骨的模型.应用声学.2004,22(6):34-38
    [76]他得安,汪源源,王威琪.评价松质骨状况的一种背散射频谱方法.声学技术.2007,26(3):406-410
    [77]Keith A. Wear. The effect of phase cancellation on estimates of broadband ultrasound attenuation and backscatter coefficient in human calcaneus in vitro. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.2008,55(2):384-390
    [78]Katsunori Mizuno, Mami Matsukawa, Effects of Structural Anisotropy of Cancellous Bone on Speed of Ultrasonic Fast Waves in the Bovine Femur, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.2008,55,(7):1480-1487
    [79]Marutyan KR, Anderson CC, Wear KA, et al. Parameter estimation in ultrasonic measurements on trabecular bone.27th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering.2007:329-336
    [80]Penelope Trimpou, Ingvar Bosaeus,et al. High correlation between quantitative ultrasound and DXA during 7 years of follow-up, European Journal of Radiology.2009,73(2):360-364.
    [81]Giuseppe Guglielmi and Francesca Terlizzi. Quantitative Ultrasond in the assessment of Osteoporosis. European Journal of Radiology.2009,71:425-431
    [82]Misaridis, Thanassis X and Jensen J A.Space-time encoding for high frame rate ultrasound imaging. Ultrasonics.2002,40:593-597.
    [83]Sheng Wen Huang and Pai Chi Li. Binary Code Design for High-Frequency Ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.2007,54(5).947-956
    [84]刘凯,高上凯.编码激励超声成像系统中二进制最优编码序列的研究.中国生物医学工程学报.2007,26(1):42-47
    [85]Li PaiChi, Ebbini Emad and O'Donnell Matthew. A new filter design technique for coded excitation systems. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1992,39(6):693-699.
    [86]Litniewski J, Nowicki A., Secomski, W. et al. Advantages of probing the trabecular bone with Golay coded ultrasonic excitation. IEEE Ultrasonics Symposium.2003:461-464.
    [87]项雷,高上凯.编码激励在脉冲Doppler超声血流测量中的应用.清华大学学报(自然科学版),2008,48(6):1032-1035
    [88]Misaridis Thanassis and Jensen Jrgen Arendt. Use of modulated excitation signals in medical ultrasound. Part Ⅱ:Design and performance for medical imaging applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.2005,52(2):192-206
    [89]Claudia Leavens, Ross Willams, Peter Burns.et al.The use of phase codes in ultrasound imaging:SNR gain and bandwidth requirements. Applied Acoustics 70 (2009):1340-1351.
    [90]冯宇,周兆英.松质骨定量超声检测评估骨质疏松症.医疗卫生装备.2002(03):5-8
    [91]Richard Y. Chiao and Xiaohui Hao. Coded Excitation for Diagnostic Ultrasound:A System Developer's Perspective. IEEE Ultrasonics Symposium.2003:437-448
    [92]徐家恺等.通信原理教程.北京:科学出版社.2003
    [93]杨福生,高上凯.生物医学信号处理.北京:高等教育出版社.1989.
    [94]Trebacz H, Natali A. Ultrasound velocity and attenuation in cancellous bone samples from lumbar vertebra and calcaneus. Osteoporos Int.1999,9(2):99-105.
    [95]Evans J A, Tavakoli M B. Ultrasonic attenuation and velocity in bone. Physics in Medicine Biology.1990,35 (10):1387-1396
    [96]Wear K A. Ultrasonic attenuation in human calcaneus from 0.2 to 1.7 MHz. IEEE Transactions on Ult rasonics, Ferroelectrics and Frequency Control.2001,48 (2):602-608.
    [97]Mikko A Hakulinen, Day JS, et al. Prediction of density and mechanical properties of human trabecular bone in vitro by using ultrasound transmission and backscattering measurements at 0.2-6.7 MHz frequency range. Phys. Med. Biol.2005(50):1629-1642.
    [98]Keith A. Wear, A Method for Improved Standardization of in Vivo Calcaneal Time-Domain Speed-of-Sound Measurements. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.2008,55(7):1473-1479
    [99]Francois Vignon and Michael R. Burcher. Capon Beamforming in Medical Ultrasound Imaging with Focused Beams. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.2008,55(3):619-628,
    [100]杜春宁,彭虎.一种改进的Capon波束形成算法在超声成像中的研究.中国生物医学工程学报.2007,(05):690-694.
    [101]黄承孝.超声医学影像诊断学.成都:四川科学技术出版社,1996.
    [102]王瑞玉,方铁,桂朝伟.医用超声仪原理构造和维修.北京:中国医药科技出版社,2007.
    [103]张贤达.现代信号处理.北京:清华大学出版社.2005