尿毒症高转化骨病大鼠BM-MSC培养鉴定及增殖分化的信号转导机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的:尿毒症高转化骨病与尿毒症状态下成骨细胞数量及功能的异常增加有密切关系,其确切机制目前尚未明确。骨髓间充质干细胞(BM-MSC)增殖并向成骨细胞分化是骨形成的细胞生物学基础,但目前尚无尿毒症高转化骨病大鼠BM-MSC体外培养及增殖、分化的报道。我们最近首次发现尿毒症高转化骨病大鼠骨髓基质细胞向成骨细胞分化的能力增加。本研究通过体外培养、鉴定尿毒症高转化骨病大鼠BM-MSC,观察其增殖、分化行为特征及相关的信号转导机制改变。
     方法:取180-200g Sprague-Dawley雄性大鼠,制做5/6肾切除并高磷饮食(磷1.2%,钙1.0%)喂养的尿毒症高转化骨病组模型大鼠。以正常磷饮食(0.9%,钙1.0%)喂养的相同体重雄性大鼠作为对照组。12周后处死大鼠,取股骨和胫骨骨干,利用骨片贴壁分离筛选法原代培养BM-MSC.取第3代细胞,进行流式细胞仪鉴定BM-MSC分子标志(CD90+/CD34-/CD44+/CD45-)。采用MTT法观察尿毒症高转化骨病组大鼠与对照组大鼠BM-MSC细胞增殖行为改变,并应用流式细胞仪法检测BM-MSC中DNA含量,分析两组细胞之间细胞周期的差异。免疫组化及免疫印迹法(western-blot)检测两组细胞之间增殖相关信号通路分子表达的差异。在含有磷酸甘油及地塞米松的成骨培养基中,诱导BM-MSC分化为成骨细胞,采用免疫组化法,分析比较尿毒症高转化骨病组与对照组BM-MSC分化的成骨细胞表达碱性磷酸酶(ALP)、骨桥蛋白(OPN)的差异,采用von Kossa染色观察两组细胞内外磷酸钙沉积及骨结节形成数目(HE染色)等成骨细胞特征性标志物的差异。
     结果:(1)利用骨片贴壁分离筛选法可成功分离、培养尿毒症高转化骨病组大鼠及对照组大鼠的原代BM-MSC。取第3代培养细胞,经流式细胞术鉴定为CD90+/CD34-/CD44+/CD45-细胞,符合BM-MSC的分子标志特征。(2)流式细胞术对DNA的分析发现,尿毒症高转化骨病组大鼠BM-MSC中G1期、S期、G2/M期、细胞比例分别为79.55±3.66%、20.12±1.96%、0.33±0.10%,对照组分别为84.62±3.10%、15.13±0.87%、0.25±0.11%,尿毒症高转化骨病组S期细胞比例明显增加(P<0.05),此结果与MTT法的细胞增殖分析结果一致。(3)免疫组化结果显示,培养的BM-MSC中,ERK1/2信号通路明显激活,表现为p-ERK1/2与总ERK1/2的比值显著增加(P<0.05)。Western-blot分析显示,对照组BM-MSC细胞ERK1/2信号通路的激活从72h开始,并在其后的24h内维持于较高水平;而尿毒症高转化骨病组细胞ERK1/2信号通路激活从48h即已开始,并在其后的48h内一直维持于较高水平;在48h-96h内的各时间点,尿毒症高转化骨病组ERK1/2信号通路的激活水平均高于对照组(P<0.05)。流式细胞术分析发现,使用ERK1/2信号通路阻断剂后,两组细胞增殖能力均显著下降,尿毒症高转化骨病组S期细胞比例的下降程度较对照组更为显著(P<0.05),此结果与MTT法分析结果一致。(4)免疫组化法显示,大鼠BM-MSC于体外向成骨细胞诱导分化后1周,细胞碱性磷酸酶(ALP)表达明显增强;分化后2周,骨桥蛋白(OPN)表达明显增强(P<0.05),von Kossa染色显示,细胞内外基质磷酸钙沉积较对照组显著增多(P<0.05);分化后3周,骨结节形成数目有明显增加(P<0.05)。
     结论:尿毒症高转化骨病大鼠BM-MSC可在体外培养条件下存活,其增殖、分化能力较正常大鼠BM-MSC明显增强,ERK1/2信号通路的激活在其中发挥了重要的促进作用,这对临床防治尿毒症高转化骨病有重要意义。
Background and objectives:The mechanism of high-turnover renal osteodystrophy (ROD) has not been fully clear to date. The differentiation from bone marrow mesenchymal stem cells (BM-MSC) to osteoblast is the biological foundation of bone transformation, which was enhanced in high-turnover ROD uremic rat. In the present study, we cultured primarily BM-MSC from high-turnover ROD uremic rat in vitro and and identified the characteristics and the signaling pathways involved in its proliferation and differentiation.
     Method:High-turnover ROD uremic models were made with male Sprague-Dawley rats (body weight180-200g) by5/6nephrectomy fed a high phosphate diet (1.2%phosphorus and1.0%calcium). Male body-weight-matched rats were fed with normal phosphorus diet (0.9%phosphorus and1.0%calcium) as control group. After12weeks feeding, all rats were executed and BM-MSC was isolated from femur and tibia bone and cultured primarily by adherence method. The3rd passage cells were identified for BM-MSC molecular markers (CD90+/CD34-/CD44+/CD45-) by flow cytometry. The cell viability was investigated by MTT assay, and the proliferation level was measured by propidium iodide DNA staining by flow cytometry. The signaling pathway involved was detected by immunohistochemistry and western blot. Then BM-MSC was induced to differentiate to osteoblast in culture medium containing glycerin and dexamethasone phosphate. The differences in the level of cell proliferation, the degree of ERK1/2protein phosphorylation, and the expression of specific osteoblast markers alkaline phosphatase (ALP), osteopontin (OPN), the calcium phosphate deposits (von Kossa staining) and the number of bone nodule (HE staining) were investigated between high-turnover ROD uremic group and the control group.
     Results:(1) BM-MSC from the high-turnover ROD rats was separated and cultured by adherence method. The3rd passage cells were identified as CD90+/CD34-/CD44+/CD45-cells by flow cytometry. Flow cytometry analysis of DNA showed the proportion of G1phase, S phase and G2/M phase cells in the BM-MSC from uremic group was79.55±3.66%,20.12±1.96%and0.33±0.10%, respectively, while84.62±3.10%,15.13±0.87%and0.25±0.11%in the BM-MSC from control group, respectively. The proportion of S phase cells was significantly higher in uremic group than that in control group (P<0.05), which were consistent with the results of MTT assays.(2) ERK1/2signaling pathway of the cultured BM-MSC was activated obviously, characterized by p-ERK1/2increased significantly (p<0.05). Western blot showed that the ERK1/2pathway of control group was activated at the72h point and was maintained behind for24h, whereas the activation in uremic group began at the48h point and was maintained behind for as long as48h. The p-ERK1/2level in uremic group was higher than that in control group at all time points from48h to96h (P<0.05). Flow cytometry and MTT assay showed that BM-MSC proliferation in both groups decreased significantly after adding of ERK1/2blockers, and the proportion of S phase cells decreased more significantly in uremic group than in control group (P<0.05).(3) Compared with BM-MSC from control group, BM-MSC from uremic group expressed ALP more significantly1week after differentiation to osteoblast, similarly, for OPN (P<0.05) and calcium phosphate deposits (P<0.05) after2weeks, and for the formation of bone nodule after3weeks (P<0.05).
     Conclusions:BM-MSC from uremic rat with high-turnover ROD survives in vitro, with an enhanced proliferation and differentiation ability in which the activation of ERK1/2might involed. This study might be valuable for preventing and treating uremia with high-turnover ROD.
引文
[1]Ma X, Zhang Q, Yang X, Tian J. Development of new technologies for stem cell research.J Biomed Biotechnol.2012;2012:741416. doi:10.1155/2012/741416.
    [2]Szoke K, Brinchmann JE. Concise review:therapeutic potential of adipose tissue-derived angiogenic cells. Stem Cells Transl Med.2012 Sep;1(9):658-67.
    [3]Steinert AF, Rackwitz L, Gilbert F, Noth U, Tuan RS. Concise review:the clinical application of mesenchymal stem cells for musculoskeletal regeneration: current status and perspectives.Stem Cells Transl Med.2012 Mar;1(3):237-47.
    [4]Gentile P, Orlandi A, Scioli MG, Di Pasquali C, Bocchini I, Cervelli V. Concise review:adipose-derived stromal vascular fraction cells and platelet-rich plasma: basic and clinical implications for tissue engineering therapies in regenerative surgery. Stem Cells Transl Med.2012 Mar;1(3):230-6.
    [5]Ge S, Mrozik KM, Menicanin D, Gronthos S, Bartold PM. Isolation and characterization of mesenchymal stem cell-like cells from healthy and inflamed gingival tissue:potential use for clinical therapy. Regen Med.2012 Nov;7(6):819-32.
    [6]Ting AE, Sherman W. Allogeneic stem cell transplantation for ischemic myocardial dysfunction. Curr Opin Organ Transplant.2012 Dec;17(6):675-80.
    [7]Chao YH, Wu HP, Chan CK, Tsai C, Peng CT, Wu KH. Umbilical cord-derived mesenchymal stem cells for hematopoietic stem cell transplantation. J Biomed Biotechnol.2012;2012:759503. doi:10.1155/2012/759503.
    [8]Seo JH, Cho SR. Neurorestoration induced by mesenchymal stem cells:potential therapeutic mechanisms for clinical trials. Yonsei Med J.2012 Nov 1;53(6):1059-67.
    [9]de Faria CA, de las Heras Kozma R, Stessuk T, Ribeiro-Paes JT. Experimental basis and new insights for cell therapy in Chronic Obstructive Pulmonary Disease. Stem Cell Rev.2012 Dec;8(4):1236-44.
    [10]Wu L, Cai X, Zhang S, Karperien M, Lin Y. Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells:perspectives from stem cell biology and molecular medicine. J Cell Physiol.2013 May;228(5):938-44.
    [11]Greco SJ, Rameshwar P. Mesenchymal stem cells in drug/gene delivery: implications for cell therapy. Ther Deliv.2012 Aug;3(8):997-1004.
    [12]Greco SJ, Rameshwar P. Stem cells in drug/gene delivery:implications for cell therapy. Ther Deliv.2012 Aug;3(8):997-1004.
    [13]Assis AC, Carvalho JL, Jacoby, B. A., Ferreira, R. L., Castanheira, P., Diniz, S. O., Cardoso, V. N., Goes, A. M. & Ferreira, A. J. (2010). Time-dependent migration of systemically delivered bone marrow mesenchymal stem cells to the infarcted heart. Cell Transplant,19,219-30
    [14]Noordzij M, Korevaar JC, Boeschoten EW et al. The Kidney Disease Outcomes Quality Initiative (K/DOQI) Guideline for Bone Metabolism and Disease in CKD: association with mortality in dialysis patients. Am J Kidney Dis 2005; 46: 925-932.
    [15]Moe S, Drueke T, Cunningham J, Goodman W, Martin K, Olgaard K, Ott S, Sprague S, Lameire N, Eknoyan G; Kidney Disease:Improving Global Outcomes (KDIGO). Definition, evaluation, and classification of renal osteodystrophy:a position statement from Kidney Disease:Improving Global Outcomes (KDIGO). Kidney Int.2006 Jun;69(11):1945-53.
    [16]Noori N, Kalantar-Zadeh K, Kovesdy CP, et al. Association of dietary phosphorus intake and phosphorus to protein ratio with mortality in hemodialysis patients. Clin J Am Soc Nephrol 2010;5:683-692.
    [17]Block GA, Marin KJ, de Francisco ALM, et al. Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. New Engl J Med 2004; 350:1516-1525.
    [18]Block GA, Klassen PS, Lazarus JM, et al. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol 2004;15:2208-2218.
    [19]Kalantar-Zadeh K, Kuwae N, Regidor DL et al. Survival predictability of time-varying indicators of bone disease in maintenance hemodialysis patients. Kidney Int 2006;70:771-780.
    [20]Guideline Working Group, Japanese Society for Dialysis Therapy. Clinical practice guideline for the management of secondary hyperparathyroidism in chronic dialysis patients. Ther Apher Dial 2008;12:514-525.
    [21]Kidney Disease:Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl.2009 Aug;(113):S1-130.
    [22]Christov M, Pereira R, Wesseling-Perry K. Bone biopsy in renal osteodystrophy: continued insights into a complex disease. Curr Opin Nephrol Hypertens.2013 Mar;22(2):210-5.
    [23]Spasovski GB, Sikole A, Gelev S et al. Evolution of bone and plasma concentration of lanthanum in dialysis patients before, during 1 year of treatment with lanthanum carbonate and after 2 years of follow-up. Nephrol Dial Transplant 2006; 21:2217-2224.
    [24]Joffe P, Heaf JG, Hyldstrup L. Osteocalcin:a non-invasive index of metabolic bone disease in patients treated by CAPD. Kidney Int 1994; 46:838-846.
    [25]Sanchez C, Lopez-Barea F, Sanchez-Cabezudo J et al. Low vs standard calcium dialysate in peritoneal dialysis:differences in treatment, biochemistry and bone histomorphometry. A randomized multicentre study. Nephrol Dial Transplant 2004;19:1587-1593.
    [26]Malluche HH, Siami GA, Swanepoel C et al. Improvements in renal osteodystrophy in patients treated with lanthanum carbonate for two years. Clin Nephrol 2008;70:284-295.
    [27]Ferreira A, Frazao JM, Monier-Faugere MC et al. Effects of sevelamer hydrochloride and calcium carbonate on renal osteodystrophy in hemodialysis patients. J Am Soc Nephrol 2008;19:405-412.
    [28]Freemont AJ, Hoyland JA, Denton J. The effects of lanthanum carbonate and calcium carbonate on bone abnormalities in patients with end-stage renal disease. Clin Nephrol 2005;64:428-437.
    [29]Elsurer R, Afsar B, Mercanoglu E. Bone pain assessment and relationship with parathyroid hormone and health-related quality of life in hemodialysis. Ren Fail. 2013;35(5):667-72.
    [30]Bacchetta J, Wesseling-Perry K, Kuizon B, Pereira RC, Gales B, Wang HJ, Elashoff R, Salusky IB. The skeletal consequences of growth hormone therapy in dialyzed children:a randomized trial. Clin J Am Soc Nephrol.2013 May;8(5):824-32.
    [31]Mac Way F, Lessard M, Lafage-Proust MH. Pathophysiology of chronic kidney disease-mineral and bone disorder. Joint Bone Spine.2012 Dec;79(6):544-9.
    [32]季大玺,谢红浪.维持性血液透析患者肾性骨病的相关因素分析.肾脏病与透析肾移植杂志,2000,9(2):113-116.
    [33]朱萍,吴佳珺,汪关煜,钱莹,齐进,顾志冬,谢静远,陈楠.肾性骨营养不良的组织学检查及非侵入性检测的临床意义.中华肾脏病杂志,2008,24(5):309-314.
    [34]Iwasaki Y, Yamato H, Fukagawa M. Treatment with pravastatin attenuates oxidative stress and protects osteoblast cell viability from indoxyl sulfate. Ther Apher Dial.2011 Apr;15(2):151-5.
    [35]Miyamoto Y, Watanabe H, Otagiri M, Maruyama T. New insight into the redox properties of uremic solute indoxyl sulfate as a pro-and anti-oxidant. Ther Apher Dial.2011 Apr; 15(2):129-31.
    [36]Shalhoub V, Shatzen EM, Ward SC, Young JI, Boedigheimer M, Twehues L, McNinch J, Scully S, Twomey B, Baker D, Kiaei P, Damore MA, Pan Z, Haas K, Martin D. Chondro/osteoblastic and cardiovascular gene modulation in human artery smooth muscle cells that calcify in the presence of phosphate and calcitriol or paricalcitol. J Cell Biochem.2010 Nov 1;111(4):911-21.
    [37]Neven E, Persy V, Dauwe S, De Schutter T, De Broe ME, D'Haese PC. Chondrocyte rather than osteoblast conversion of vascular cells underlies medial calcification in uremic rats. Arterioscler Thromb Vasc Biol.2010 Sep;30(9):1741-50.
    [38]Aubia J, Serrano S, Marinoso L, Hojman L, Diez A, Lloveras J, Masramon J. Osteodystrophy of diabetics in chronic dialysis:a histomorphometric study. Calcif Tissue Int.1988 May;42(5):297-301.
    [39]Bonucci E, Gherardi G, Faraggiana T. Bone changes in hemodialyzed uremic subjects. Comparative light and electron microscope investigations. Virchows Arch A Pathol Anat Histol.1976 Sep 21;371(3):183-98.
    [40]Xiao ZS, Quarles LD, Chen QQ, Yu YH, Qu XP, Jiang CH, Deng HW, Li YJ, Zhou HH. Effect of asymmetric dimethylarginine on osteoblastic differentiation. Kidney Int.2001 Nov;60(5):1699-704.
    [41]Wagner MS, Stracke S, Jehle PM, Keller F, Zellner D, Baylink DJ, Mohan S. Evaluation of IGF system component levels and mitogenic activity of uremic serum on normal human osteoblasts. Nephron.2000 Feb;84(2):158-66.
    [42]Bushinsky DA, Nilsson EL. Additive effects of acidosis and parathyroid hormone on mouse osteoblastic and osteoclastic function. Am J Physiol.1995 Dec;269(6 Pt 1):C1364-70.
    [43]Lieuallen WG, Weisbrode SE. Effects of systemic aluminum on the resolution of a uremic and dietary phosphorus-dependent model of uremic osteomalacia in rats. J Bone Miner Res.1991 Jul;6(7):751-7.
    [44]Andress DL, Howard GA, Birnbaum RS. Identification of a low molecular weight inhibitor of osteoblast mitogenesis in uremic plasma. Kidney Int.1991 May;39(5):942-5.
    [45]Disthabanchong S, Hassan H, McConkey CL, Martin KJ, Gonzalez EA. Regulation of PTH1 receptor expression by uremic ultrafiltrate in UMR 106-01 osteoblast-like cells. Kidney Int.2004 Mar;65(3):897-903.
    [46]Moe SM, Duan D, Doehle BP, O'Neill KD, Chen NX. Uremia induces the osteoblast differentiation factor Cbfal in human blood vessels. Kidney Int.2003 Mar;63(3):1003-11.
    [47]Pahl MV, Vaziri ND, Yuan J, Adler SG. Upregulation of monocyte/macrophage HGFIN (Gpnmb/Osteoactivin) expression in end-stage renal disease. Clin J Am Soc Nephrol.2010 Jan;5(1):56-61.
    [48]Hoffman MD, Benoit DS. Agonism of Wnt-P-catenin signalling promotes mesenchymal stem cell (MSC) expansion. J Tissue Eng Regen Med.2013 Apr 1. doi:10.1002/term.1736.
    [49]Yu S, Zhu K, Lai Y, Zhao Z, Fan J, Im HJ, Chen D, Xiao G. atf4 promotes β-catenin expression and osteoblastic differentiation of bone marrow mesenchymal stem cells. Int J Biol Sci.2013;9(3):256-66.
    [50]Sonomoto K, Yamaoka K, Oshita K, Fukuyo S, Zhang X, Nakano K, Okada Y, Tanaka Y. Interleukin-1β induces differentiation of human mesenchymal stem cells into osteoblasts via the Wnt-5a/receptor tyrosine kinase-like orphan receptor 2 pathway. Arthritis Rheum.2012 Oct;64(10):3355-63.
    [51]Kwon HS, Johnson TV, Tomarev SI. Myocilin stimulates osteogenic differentiation of mesenchymal stem cells through MAPK signaling. J Biol Chem. 2013 Apr 29. [Epub ahead of print] PMID:23629661.
    [52]Lin GL, Hankenson KD. Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J Cell Biochem.2011 Dec;112(12):3491-501.
    [53]Viccica G, Francucci CM, Marcocci C. The role of PPARγ for the osteoblastic differentiation. J Endocrinol Invest.2010;33(7 Suppl):9-12.
    [54]Jia J, Lin S, Yan Y, Shang W, Wei L, Pang J, Zhu Z, Li H, Yu Y, Yao Y, Yuan L. Phenotype changes in uremic rat bone marrow mesenchymal stem cells. Am J Physiol renal Physiol.2013. Received.
    [55]Jones E, McGonagle D. Human bone marrow mesenchymal stem cells in vivo. Rheumatology (Oxford).2008 Feb;47(2):126-31.
    [56]Han W, Yu Y, Liu XY. Local signals in stem cell-based bone marrow regeneration. Cell Res.2006 Feb;16(2):189-95.
    [57]Wang J, Liao L, Tan J. Mesenchymal-stem-cell-based experimental and clinical trials:current status and open questions. Expert Opin Biol Ther.2011 Jul;11(7):893-909.
    [58]Sivasubramaniyan K, Lehnen D, Ghazanfari R, Sobiesiak M, Harichandan A, Mortha E, Petkova N, Grimm S, Cerabona F, de Zwart P, Abele H, Aicher WK, Faul C, Kanz L, Buhring HJ. Phenotypic and functional heterogeneity of human bone marrow- and amnion-derived MSC subsets. Ann N Y Acad Sci.2012 Aug; 1266:94-106.
    [59]Scott MA, Nguyen VT, Levi B, James AW. Current methods of adipogenic differentiation of mesenchymal stem cells. Stem Cells Dev.2011 Oct;20(10):1793-804.
    [60]Bernardo ME, Cometa AM, Pagliara D, Vinti L, Rossi F, Cristantielli R, Palumbo G, Locatelli F. Ex vivo expansion of mesenchymal stromal cells. Best Pract Res Clin Haematol.2011 Mar;24(1):73-81.
    [61]Mathieu PS, Loboa EG. Cytoskeletal and focal adhesion influences on mesenchymal stem cell shape, mechanical properties, and differentiation down osteogenic, adipogenic, and chondrogenic pathways. Tissue Eng Part B Rev. 2012 Dec;18(6):436-44.
    [62]祝再然,林珊,贾俊亚等.长期接受不同饮食磷水平的慢性肾衰竭大鼠骨组织形态学特征改变.北京医学,2011;(3):167-169.
    [63]袁鲁晓,林珊,贾俊亚,闫铁昆,姚瑶,商文雅,韦丽,祝再然.饮食磷摄入水平对慢性肾衰竭大鼠甲状旁腺结构与功能的影响.中华医学会肾脏病学会2011年年会(南京),口头报告.
    [64]Zhang L, Peng LP, Wu N, Li LP. Development of bone marrow mesenchymal stem cell culture in vitro. Chin Med J (Engl).2012 May; 125(9):1650-5.
    [65]Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J. Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev.2012 Sep 20;21(14):2724-52.
    [66]Seong JM, Kim BC, Park JH, Kwon IK, Mantalaris A, Hwang YS. Stem cells in bone tissue engineering. Biomed Mater.2010 Dec;5(6):062001.
    [67]Anzalone R, Lo Iacono M, Corrao S, Magno F, Loria T, Cappello F, Zummo G, Farina F, La Rocca G. New emerging potentials for human Wharton's jelly mesenchymal stem cells:immunological features and hepatocyte-like differentiative capacity. Stem Cells Dev.2010 Apr;19(4):423-38.
    [68]Ren G, Chen X, Dong F, Li W, Ren X, Zhang Y, Shi Y. Concise review: mesenchymal stem cells and translational medicine:emerging issues. Stem Cells Transl Med.2012 Jan;1(1):51-8.
    [69]Gola M, Czajkowski R, Bajek A, Dura A, Drewa T. Melanocyte stem cells: biology and current aspects. Med Sci Monit.2012 Oct;18(10):RA 155-9.
    [70]Bassi G, Pacelli L, Carusone R, Zanoncello J, Krampera M. Adipose-derived stromal cells (ASCs). Transfus Apher Sci.2012 Oct;47(2):193-8.
    [71]Phenotypic and functional heterogeneity of human bone marrow- and amnion-derived MSC subsets.
    [72]Mortha E, Petkova N, Grimm S, Cerabona F, de Zwart P, Abele H, Aicher WK, Faul C, Kanz L, Buhring HJ. Sivasubramaniyan K, Lehnen D, Ghazanfari R, Sobiesiak M, Harichandan A, Ann N Y Acad Sci.2012 Aug; 1266:94-106.
    [73]Mathieu PS, Loboa EG. Cytoskeletal and focal adhesion influences on mesenchymal stem cell shape, mechanical properties, and differentiation down osteogenic, adipogenic, and chondrogenic pathways. Tissue Eng Part B Rev. 2012 Dec;18(6):436-44.
    [74]Hematti P. Mesenchymal stromal cells and fibroblasts:a case of mistaken identity? Cytotherapy.2012 May; 14(5):516-21.
    [75]Lin GL, Hankenson KD. Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J Cell Biochem.2011 Dec;112(12):3491-501.
    [76]Kupisiewicz K. Biological aspects of altered bone remodeling in multiple myeloma and possibilities of pharmacological intervention. Dan Med Bull.2011 May;58(5):B4277.
    [77]Augello A, De Bari C. The regulation of differentiation in mesenchymal stem cells. Hum Gene Ther.2010 Oct;21(10):1226-38.
    [78]Castillo AB, Jacobs CR. Mesenchymal stem cell mechanobiology. Curr Osteoporos Rep.2010 Jun;8(2):98-104.
    [79]Takada I, Kouzmenko AP, Kato S. Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol.2009 Aug;5(8):442-7.
    [80]Takada I, Kouzmenko AP, Kato S. Molecular switching of osteoblastogenesis versus adipogenesis:implications for targeted therapies. Expert Opin Ther Targets.2009 May;13(5):593-603.
    [81]Yang Y. Growth and patterning in the limb:signaling gradients make the decision. Sci Signal.2009 Jan 13;2(53):pe3.
    [82]Ling L, Nurcombe V, Cool SM. Wnt signaling controls the fate of mesenchymal stem cells. Gene.2009 Mar 15;433(1-2):1-7.
    [83]Day TF, Yang Y. Wnt and hedgehog signaling pathways in bone development. J Bone Joint Surg Am.2008 Feb;90 Suppl 1:19-24.
    [84]Satija NK, Gurudutta GU, Sharma S, Afrin F, Gupta P, Verma YK, Singh VK, Tripathi RP. Mesenchymal stem cells:molecular targets for tissue engineering. Stem Cells Dev.2007 Feb;16(1):7-23.
    [85]Roskoski R Jr. ERK1/2 MAP kinases:structure, function, and regulation. Pharmacol Res.2012 Aug;66(2):105-43.
    [86]Santarpia L, Lippman SM, El-Naggar AK. Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin Ther Targets.2012 Jan;16(1):103-19.
    [87]Kohno M, Tanimura S, Ozaki K. Targeting the extracellular signal-regulated kinase pathway in cancer therapy. Biol Pharm Bull.2011;34(12):1781-4.
    [88]Ren G, Chen X, Dong F, Li W, Ren X, Zhang Y, Shi Y. Concise review: mesenchymal stem cells and translational medicine:emerging issues. Stem Cells Transl Med.2012 Jan;1(1):51-8.
    [89]Gola M, Czajkowski R, Bajek A, Dura A, Drewa T. Melanocyte stem cells: biology and current aspects. Med Sci Monit.2012 Oct;l 8(10):RA155-9.
    [90]Sivasubramaniyan K, Lehnen D, Ghazanfari R, Sobiesiak M, Harichandan A, Mortha E, Petkova N, Grimm S, Cerabona F, de Zwart P, Abele H, Aicher WK, Faul C, Kanz L, Buhring HJ. Phenotypic and functional heterogeneity of human bone marrow- and amnion-derived MSC subsets. Ann N Y Acad Sci.2012 Aug; 1266:94-106.
    [91]Keating A. Mesenchymal stromal cells:new directions. Cell Stem Cell.2012 Jun 14;10(6):709-16.
    [92]Diaz-Flores L Jr, Gutierrez R, Madrid JF, Acosta E, Avila J, Diaz-Flores L, Martin-Vasallo P. Cell sources for cartilage repair; contribution of the mesenchymal perivascular niche. Front Biosci (Schol Ed).2012 Jun 1;4:1275-94.
    [93]Phinney DG. Functional heterogeneity of mesenchymal stem cells:implications for cell therapy. J Cell Biochem.2012 Sep;113(9):2806-12.
    [94]Laine SK, Hentunen T, Laitala-Leinonen T. Do microRNAs regulate bone marrow stem cell niche physiology? Gene.2012 Apr 10;497(1):1-9.
    [95]Alfaro MP, Saraswati S, Young PP. Molecular mediators of mesenchymal stem cell biology. Vitam Horm.2011;87:39-59.
    [96]Pinzone JJ, Hall BM, Thudi NK, Vonau M, Qiang YW, Rosol TJ, Shaughnessy JD Jr. The role of Dickkopf-1 in bone development, homeostasis, and disease. Blood.2009 Jan 15;113(3):517-25.
    [97]Lin GL, Hankenson KD. Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J Cell Biochem.2011 Dec;112(12):3491-501.
    [98]Takada I, Kouzmenko AP, Kato S. Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol.2009 Aug;5(8):442-7.
    [99]Ling L, Nurcombe V, Cool SM. Wnt signaling controls the fate of mesenchymal stem cells. Gene.2009 Mar 15;433(1-2):1-7.
    [100]Pinzone JJ, Hall BM, Thudi NK, Vonau M, Qiang YW, Rosol TJ, Shaughnessy JD Jr. The role of Dickkopf-1 in bone development, homeostasis, and disease. Blood.2009 Jan 15;113(3):517-25.
    [101]Quenet D, Dalal Y. The CENP-A nucleosome:a dynamic structure and role at the centromere. Chromosome Res.2012 Jul;20(5):465-79.
    [102]Schrump DS. Targeting epigenetic mediators of gene expression in thoracic malignancies. Biochim Biophys Acta.2012 Jul;1819(7):836-45.
    [103]Ross SA. Evidence for the relationship between diet and cancer. Exp Oncol. 2010 Sep;32(3):137-42.
    [104]Kastrinaki MC, Pontikoglou C, Klaus M, Stavroulaki E, Pavlaki K, Papadaki HA. Biologic characteristics of bone marrow mesenchymal stem cells in myelodysplastic syndromes. Curr Stem Cell Res Ther.2011 Jun;6(2):122-30.
    [105]Kelly DJ, Jacobs CR. The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth Defects Res C Embryo Today.2010 Mar;90(1):75-85.
    [106]Lakshmipathy U, Hart RP. Concise review:MicroRNA expression in multipotent mesenchymal stromal cells. Stem Cells.2008 Feb;26(2):356-63.
    [107]Schrump DS, Nguyen DM. Targeting the epigenome for the treatment of thoracic malignancies. Thorac Surg Clin.2006 Nov;16(4):367-77,
    [108]Hermann A, Maisel M, Storch A. Epigenetic conversion of human adult bone mesodermal stromal cells into neuroectodermal cell types for replacement therapy of neurodegenerative disorders. Expert Opin Biol Ther.2006 Jul;6(7):653-70.
    [109]Steele VE, Kelloff GJ. Development of cancer chemopreventive drugs based on mechanistic approaches. Mutat Res.2005 Dec 11;591(1-2):16-23.
    [110]Edwards RG. Stem cells today:B1. Bone marrow stem cells. Reprod Biomed Online.2004 Nov;9(5):541-83.
    [111]Davis CD, Milner J. Frontiers in nutrigenomics, proteomics, metabolomics and cancer prevention. Mutat Res.2004 Jul 13;551(1-2):51-64.
    [112]Popescu NC, Zimonjic DB. Chromosome-mediated alterations of the MYC gene in human cancer. J Cell Mol Med.2002 Apr-Jun;6(2):151-9.
    [113]McGinty JF, Whitfield TW Jr, Berglind WJ. Brain-derived neurotrophic factor and cocaine addiction. Brain Res.2010 Feb 16;1314:183-93.
    [114]Zhang Z, Li S, Cui M, Gao X, Sun D, Qin X, Narsinh K, Li C, Jia H, Li C, Han Y, Wang H, Cao F. Rosuvastatin enhances the therapeutic efficacy of adipose-derived mesenchymal stem cells for myocardial infarction via PI3K/Akt and MEK/ERK pathways. Basic Res Cardiol.2013 Mar;108(2):333.
    [115]Mei Y, Bian C, Li J, Du Z, Zhou H, Yang Z, Zhao RC. miR-21 modulates the ERK-MAPK signaling pathway by regulating SPRY2 expression during human mesenchymal stem cell differentiation. J Cell Biochem.2013 Jun; 114(6):1374-84.
    [116]Gu Z, Cao X, Jiang J, Li L, Da Z, Liu H, Cheng C. Upregulation of p16INK4A promotes cellular senescence of bone marrow-derived mesenchymal stem cells from systemic lupus erythematosus patients. Cell Signal.2012 Dec;24(12):2307-14.
    [117]Herrmann JL, Weil BR, Abarbanell AM, Wang Y, Poynter JA, Manukyan MC, Meldrum DR. IL-6 and TGF-α costimulate mesenchymal stem cell vascular endothelial growth factor production by ERK-, JNK-, and PI3K-mediated mechanisms. Shock.2011 May;35(5):512-6.
    [1]Schaffler MB, Kennedy OD. Osteocyte signaling in bone. Curr Osteoporos Rep. 2012;10:118-125.
    [2]Kular J, Tickner J, Chim SM et al. An overview of the regulation of bone remodelling at the cellular level. Clin Biochem.2012;45:863-873.
    [3]Neve A, Corrado A, Cantatore FP. Osteocytes:central conductors of bone biology in normal and pathological conditions. Acta Physiol (Oxf).2012;204:317-330.
    [4]Baron R, Hesse E. Update on bone anabolics in osteoporosis treatment:rationale, current status, and perspectives. J Clin Endocrinol Metab.2012;97:311-325.
    [5]Zhao B, Ivashkiv LB. Negative regulation of osteoclastogenesis and bone resorption by cytokines and transcriptional repressors. Arthritis Res Ther. 2011;13:234.
    [6]Goltzman D. Discoveries, drugs and skeletal disorders. Nat Rev Drug Discov. 2002;1:784-796.
    [7]Ripamonti U, Roden LC, Ferretti C et al. Biomimetic matrices self-initiating the induction of bone formation. J Craniofac Surg.2011;22:1859-1870.
    [8]Seeman E. Bone modeling and remodeling. Crit Rev Eukaryot Gene Expr. 2009;19:219-233.
    [9]Zhao H. Membrane trafficking in osteoblasts and osteoclasts:new avenues for understanding and treating skeletal diseases. Traffic.2012;13:1307-1314.
    [10]Matsuo K, Otaki N. Bone cell interactions through Eph/ephrin:bone modeling, remodeling and associated diseases. Cell Adh Migr.2012;6:148-156.
    [11]Kawai M, Modder UI, Khosla S et al. Emerging therapeutic opportunities for skeletal restoration. Nat Rev Drug Discov.2011;10:141-156.
    [12]Takeda S, Karsenty G. Central control of bone formation. J Bone Miner Metab. 2001;19:195-198.
    [13]Schett G, Gravallese E. Bone erosion in rheumatoid arthritis:mechanisms, diagnosis and treatment. Nat Rev Rheumatol.2012;8:656-664.
    [14]Marie PJ. Signaling pathways affecting skeletal health. Curr Osteoporos Rep. 2012;10:190-198.
    [15]Nakashima T, Hayashi M, Takayanagi H. New insights into osteoclastogenic signaling mechanisms. Trends Endocrinol Metab.2012;23:582-590.
    [16]Motyl KJ, Rosen CJ. Understanding leptin-dependent regulation of skeletal homeostasis. Biochimie.2012;94:2089-2096.
    [17]Logan C.W., Nusse R. The Wnt signaling pathway in development and disease. Cell Dev. Bio.2004; 20:781-810.
    [18]Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell.2012; 149: 1192-205.
    [19]Nusse Roel, Varmus Harold. Three decades of Wnts:a personal perspective on how a scientific field developed. The EMBO Journal 2012;31:2670-2684.
    [20]Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis 2008;4: 68-75.
    [21]Nusse R, van Ooyen A, Cox D, Fung YK, Varmus H. Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature 1985;307(5947):131-6.
    [22]Klaus A., Birchmeier W. Wnt signaling and its impact on development and cancer. Nature Reviews Cancer 2008;8:387-398.
    [23]Rao Tata, Kiihl Michael. An Updated Overview on Wnt Signaling Pathways:A Prelude for More. Circulation Research 2010;106:1798-1806.
    [24]Habas, Raymond; Dawid, Igor B. Dishevelled and Wnt signaling:is the nucleus the final frontier?. Journal of Biology 2005;4:2.
    [25]MacDonald Bryan. Tamai Keiko, He Xi. Wnt/β-catenin signaling:components, mechanisms, and diseases. Developmental Cell 2009; 17:9-26.
    [26]Nusse R. Wnt signaling and stem cell control. Cell Res.2008;18:523-7.
    [27]Bakre MM, Hoi A, Mong JC, Koh YY, Wong KY, Stanton LW. Generation of multipotential mesendodermal progenitors from mouse embryonic stem cells via sustained Wnt pathway activation. J. Biol. Chem.2007;282:31703-12.
    [28]Woll PS, Morris JK, Painschab MS. Wnt signaling promotes hematoendothelial cell development from human embryonic stem cells. Blood 2008;111:122-31.
    [29]Baron R, Kneissel M. WNT signaling in bone homeostasis and disease:from human mutations to treatments. Nat Med.2013;19:179-92.
    [30]Holland JD, Klaus A, Garratt AN, Birchmeier W. Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol.2013;25:254-64.
    [31]Kaldis, P; M. Pagano. Wnt Signaling in Mitosis. Developmental Cell 2009; 17: 749-750.
    [32]Nalesso G, Sherwood J, Bertrand J, Pap T, Ramachandran M, De Bari C, Pitzalis C, Dell' accio F. WNT-3A modulates articular chondrocyte phenotype by activating both canonical and noncanonical pathways. J Cell Biol. 2011;193:551-64.
    [33]Johnson ML, Gong G, Kimberling W et al. Linkage of a gene causing high bone mass to human chromosome 11 (11q12-13). Am J Hum Genet 1997;60:1326-1332.
    [34]Little RD, Carulli JP, Del Mastro RG et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 2002;70:11-19.
    [35]Gong Y, Slee RB, Fukai N et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 2001;107:513-523.
    [36]Boyden LM, Mao J, Belsky J et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 2002;346:1513-1521.
    [37]Monroe DG, McGee-Lawrence ME, Oursler MJ et al. Update on Wnt signaling in bone cell biology and bone disease. Gene.2012;492:1-18.
    [38]Gkotzamanidou M, Dimopoulos MA, Kastritis E et al. Sclerostin:a possible target for the management of cancer-induced bone disease. Expert Opin Ther Targets.2012;16:761-769.
    [39]Zuo C, Huang Y, Bajis R et al. Osteoblastogenesis regulation signals in bone remodeling. Osteoporos Int.2012;23:1653-1663.
    [40]Zhang W, Drake MT. Potential role for therapies targeting DKK1, LRP5, and serotonin in the treatment of osteoporosis. Curr Osteoporos Rep.2012;10:93-100.
    [41]Hoeppner LH, Secreto FJ, Westendorf JJ. Wnt signaling as a therapeutic target for bone diseases. Expert Opin Ther Targets.2009;13:485-496.
    [42]Yamane T, Kunisada T, Tsukamoto H, Yamazaki H, Niwa H, Takada S, et al. Wnt signaling regulates hemopoiesis through stromal cells. J Immunol 2001;167:765-72.
    [43]Hausler KD, Horwood NJ, Chuman Y et al. Secreted frizzled-related protein-1 inhibits RANKL-dependent osteoclast formation. J Bone Miner Res 2004; 19: 1873-1881.
    [44]Glass DA, Bialek P, Ahn JD et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 2005;8:751-764.
    [45]Spencer GJ, Utting JC, Etheridge SL et al. Wnt signalling in osteoblasts regulates expression of the receptor activator of NFkappaB ligand and inhibits osteoclastogenesis in vitro. J Cell Sci 2006;119:1283-1296.
    [46]Maeda K, Kobayashi Y, Udagawa N et al. Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis. Nat Med 2012;18:405-412.
    [47]Wei W, Zeve D, Suh JM et al. Biphasic and dosage-dependent regulation of osteoclastogenesis by beta-catenin. Mol Cell Biol 2011;31:4706-4719.
    [48]Zhong Z, Zylstra-Diegel CR, Schumacher CA et al. Wntless functions in mature osteoblasts to regulate bone mass. Proc Natl Acad Sci U S A 2012;109:E2197-204.
    [49]Wan Y, Lu C, Cao J, Zhou R et al. Osteoblastic Wnts differentially regulate bone remodeling and the maintenance of bone marrow mesenchymal stem cells, Bone 2013;55:256-257.
    [50]De A. Wnt/Ca2+ signaling pathway:a brief overview. Acta Biochim Biophys Sin (Shanghai).2011;43):745-756.
    [51]Ott SM. Bone disease in CKD. Curr Opin Nephrol Hypertens.2012;21:376-381.
    [52]Zhou L, Li Y, Zhou D et al. Loss of Klotho Contributes to Kidney Injury by Derepression of Wnt/(3-Catenin Signaling. J Am Soc Nephrol.2013;24:771-785.
    [53]He W, Tan RJ, Li Y et al. Matrix metalloproteinase-7 as a surrogate marker predicts renal Wnt/β-catenin activity in CKD. J Am Soc Nephrol.2012; 23:294-304.
    [54]Lu Z, Xie Y, Liu X et al. Effect of 5/6 nephrectomized rat serum on epithelial- to-mesenchymal transition in vitro. Ren Fail.2011;33:600-608.
    [55]Penido MG, Alon US. Phosphate homeostasis and its role in bone health. Pediatr Nephrol.2012;27:2039-2048.
    [56]Sabbagh Y, Graciolli FG, O'Brien S et al. Repression of osteocyte Wnt/β-catenin signaling is an early event in the progression of renal osteodystrophy. J Bone Miner Res 2012;27:1757-1772.
    [57]Smith JN, Calvi LM. Current Concepts in Bone Marrow Microenvironmental Regulation of Hematopoietic Stem and Progenitor Cells. Stem Cells.2013 Mar 18. doi:10.1002/stem.1370. [Epub ahead of print]
    [58]Frenette PS, Pinho S, Lucas D, Scheiermann C.Mesenchymal stem cell:keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu Rev Immunol.2013;31:285-316.
    [59]Singh SR. Stem cell niche in tissue homeostasis, aging and cancer. Curr Med Chem.2012;19(35):5965-74.
    [60]Liu G, Vijayakumar S, Grumolato L, Arroyave R, Qiao H, Akiri G, Aaronson SA. Canonical Wnts function as potent regulators of osteogenesis by human mesenchymal stem cells. J Cell Biol.2009 Apr 6;185(1):67-75.
    [61]Kestler HA, Kuhl M. Generating a Wnt switch:it's all about the right dosage. J Cell Biol.2011 May 2;193(3):431-3.