3.0T磁共振PWI、DTI及MRS在单侧大脑中动脉闭塞中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言常规影像学检查(如CT、MRI)阴性的脑动脉闭塞或狭窄的脑血管病与脑卒中、白质疏松、脑萎缩、血管性痴呆有明显关系,采用有效的无创检查方法评价狭窄或闭塞动脉供血区脑组织的缺血损害程度尤为重要。本研究拟采用3.0T磁共振PWI、DTI及MRS研究常规影像学检查阴性的脑动脉闭塞或重度狭窄患者的脑组织血流灌注、弥散及代谢改变,为临床提供有效诊断信息。研究分为三部分,第一部分:3.0T磁共振PWI在单侧大脑中动脉闭塞的应用;第二部分:3.OT磁共振DTI在单侧大脑中动脉闭塞的应用;第三部分3.0T磁共振MRS在单侧大脑中动脉闭塞的应用。
     第一部分3.0T磁共振PWI在单侧大脑中动脉闭塞中的应用摘要
     目的:利用3.0T磁共振PWI对常规MRI脑实质无异常信号的单侧大脑中动脉闭塞或重度狭窄患者进行研究,以评价其供血区脑组织及远端脑白质灌注改变。
     方法:采用GE EXCITE Ⅱ3. OT双梯度超导磁共振仪,对脑实质无异常信号的34例单侧大脑中动脉M1段闭塞或重度狭窄(≧75%)患者进行PWI研究,PWI采用T2*梯度回波EPI (T2*-GRE-EPI)成像序列,采用正交头线圈,扫描范围包括全脑,对比剂采用马根维显(Gd-DTPA),注射剂量0.2mmol/kg,流速4m1/s。采用GE functool4.2软件对受检者灌注数据进行后处理,对患、健侧放射冠区、颞叶皮质、丘脑、豆状核、内囊前肢、内囊后肢、大脑脚rCBF、rCBV、MTT、TTP进行分析,统计学方法利用SPSS13.0软件,采用配对t检验或秩和检验方法,按α=0.05水准,P     结果:患侧放射冠区较镜像健侧平均MTT及TTP延长(P<0.01),平均rCBF降低(P<0.01),平均rCBV无统计学差异;患侧颞叶皮质较健侧镜像区平均MTT及TTP延长(P<0.01),平均rCBF、rCBV无统计学差异;患侧豆状核较健侧镜像区平均TTP延长(P<0.01),平均MTT、rCBF、rCBV无统计学差异;患侧内囊前肢及后肢较镜像健侧区平均TTP延长(P<0.01),平均MTT、rCBF及rCBV无统计学差异;患侧丘脑、大脑脚MTT、rCBF、rCBV及TTP较镜像健侧无统计学差异。
     结论:利用MTT、rCBF、rCBV及TTP可快速、无创地评价常规MRI脑实质无异常的脑动脉闭塞或重度狭窄供血区脑组织血流灌注异常改变,其供血区远端脑白质无灌注异常发生,其中以MTT及TTP两参数最为敏感。
     目的:利用3.0T磁共振DTI对常规MRI脑实质无异常信号的单侧大脑中动脉Ml段闭塞或重度狭窄患者进行研究,以评价供血区及其远端脑组织弥散改变。
     方法:采用GE EXCITE Ⅱ3.0T双梯度超导磁共振仪,对脑实质无异常信号的34例单侧大脑中动脉闭塞或重度狭窄(≧75%)患者进行DTI研究。DTI采用单次激励自旋回波EPI序列:(TR,6000ms;TE,90ms;NEX,4;thickness,5mm),扩散敏感梯度取15个方向,通过预实验b值取2200s/mm2。采用GE functool4.2软件对受检者DTI数据进行后处理,测量受检者患、健侧放射冠区、颞叶皮质、丘脑、豆状核、内囊前肢、内囊后肢、大脑脚及脑桥FA值、ADC值、平行弥散方向本征值λ1及垂直弥散方向本征值λ23。统计学方法利用SPSS13.0软件,采用配对t检验或秩和检验,按α=0.05水准,P<0.05为差异具有统计学意义。
     结果:患侧放射冠区较镜像健侧FA值减小(P<0.05),ADC、λ1及λ23值增大(P<0.05);患侧颞叶皮质λ23值较健侧增大(P<0.05),而FA、ADC、λ1值无统计学差异;患侧豆状核较健侧λ23值增大(P<0.05),而患、健侧FA、ADC及λ1值无统计学差异;患侧内囊前肢及后肢较健侧FA值减小(P<0.05),λ23值增大(P<0.05),而ADC及λ1值与健侧无统计学差异。患、健侧丘脑、大脑脚及脑桥FA、ADC、λ1及λ23值无统计学差异。
     结论:采用高b值DTI能够敏感探测常规MRI无异常信号的慢性脑动脉闭塞或重度狭窄供血区脑组织弥散异常,而缺血区远端脑白质无弥散异常改变。
     目的:利用3.0T磁共振MRS对常规MRI脑实质无异常信号的单侧大脑中动脉闭塞或重度狭窄患者进行研究,以评价供血区脑组织代谢改变。
     方法:采用GE EXCITE Ⅱ3.0T双梯度超导磁共振仪,对脑实质无异常信号的34例单侧大脑中动脉M1段闭塞或重度狭窄(≧75%)患者进行MRS研究。MRS采用化学位移成像(Chemical Shift Imaging, CSI)进行多体素采集,点解析波谱(Point Resolved Spectroscopy, PRESS)序列扫描,TR1500ms, TE135ms,采集时间5.6min。应用GE EXCITE Ⅱ3.0T MR仪自带MRS分析软件,测量患、健侧放射冠区、丘脑、豆状核NAA、Cr、Cho及NAA/Cho、NAA/Cr、Cho/Cr值,并观察Lac峰。统计学方法利用SPSS13.0软件,采用配对t检验或秩和检验,按α=0.05水准,P<0.05为差异有统计学意义。
     结果:患侧放射冠区较镜像健侧平均NAA、Cr、NAA/Cr及NAA/Cho减小(P<0.01), Cho及Cho/Cr增大(P<0.05);患侧丘脑平均Cho、NAA、Cr、NAA/Cr、 NAA/Cho及Cho/Cr与镜像健侧无统计学差异;患侧豆状核较镜像健侧平均NAA、NAA/Cho降低降低(P<0.05), Cho及Cho/Cr升高(P<0.05),患侧豆状核Cr及NAA/Cr与镜像健侧无统计学差异,所有患者患侧各测量部位未观察到Lac峰。
     结论:MRS可敏感检测慢性脑动脉重度狭窄或闭塞所致供血区脑组织的代谢改变,弥补了常规MRI的不足。
Patient with occlusion or severe stenosis of the cerebral artery without MRI evidence of brain parenchymal abnormalities is prone to suffer cerebral stroke, leukoaraiosis, encephalanalosis, vascular dementia. It is important to evaluate the damage of patient's brain parenchymal with non-invasive imaging methods. In our study, the patients with normal appearing brain parenchymal and occlusion or severe stenosis of the unilateral middle cerebral artery (MCA) area were performed with perfusion-weighted imaging(PWI), diffusion tensor imaging (DTI) and magnetic resonance spectrum(MRS) use of a3T Tesla scanner(Ge Medical System, Excite Ⅱ,USA). The study was divided three chapter:CHAPTER Ⅰ application of perfusion-weighted imaging in unilateral cerebral arterial occlusive disease using3. OT MR, CHAPTER Ⅱ application of diffusion tensor imaging in unilateral cerebral arterial occlusive disease using3. OT MR, CHAPTER Ⅲ application of magnetic resonance spectrum in unilateral cerebral arterial occlusive disease using3.0T MR.
     CHAPTER Ⅰ Application of Perfusion-weighted Imaging in Unilateral Cerebral Arterial Occlusive Disease using3.0T MR
     ABSTRACT
     Purpose:
     To assess perfusion changes in the areas brain parenchymal and remote white matter with unilateral occlusion or severe stenosis of the MCA without magnetic resonance imaging (MRI) evidence of brain parenchymal abnormalities using PWI.
     Materials and Methods:
     A total of34patients with occlusion or severe unilateral stenosis (≥75%) of the MCA without abnormal brain parenchymal signals underwent PWI at3T MR. The protocol was axial PWI with T2*-GRE-EPI. All brain imaging was conducted using a quadrature birdcage head coil. Contrast was Gd-DTPA with the dose of0.2mmol/kg and the rate of flow of4mml/s. PWI data were transferred to a workstation supplied by the manufacturer (Advantage Workstation4.2; GE Health-care) for further analysis. rCBF, rCBV, MTT and TTP were measured at ipsilateral (affected hemisphere) and contralateral (unaffected hemisphere) corona radiata, gray matter of temporal lobe, thalamus, lentiform nucleus, anterior and posterior limbs of the internal capsule and cerebral peduncle on the T2WI for all patients. Data analysis was conducted using SPSS13.0(SPSS, Chicago, IL, USA). Paired t-tests and rank test were used to compare mean rCBF, rCBV, MTT and TTP values. P<0.05was considered statistically significant.
     Results:
     The mean MTT and TTP were significantly higher, mean rCBF was significantly lower at ipsilateral corona radiata than at contralateral corona radiata (P<0.01), mean rCBV was not significantly different between the bilateral corona radiata. The mean MTT and TTP were significantly higher at gray matter of ipsilateral temporal lobe than at contralateral temporal lobe (P<0.01), mean rCBF and rCBV were not significantly different between the bilateral temporal lobe. The mean TTP was significantly higher at ipsilateral lentiform nucleus than at contralateral lentiform nucleus (P<0.01), mean MTT, rCBF and rCBV were not significantly different between the bilateral lentiform nucleus. The mean TTP was significantly higher at ipsilateral anterior and posterior limbs of the internal capsule than at contralateral anterior and posterior limbs of the internal capsule (P<0.01), mean MTT, rCBF and rCBV were not significantly different between the bilateral anterior and posterior limbs of the internal capsule. Mean MTT, rCBF, rCBV and TTP were not significantly different between the bilateral thalamus and bilateral cerebral peduncle.
     Conclusion:
     In conclusion, MTT, rCBF, rCBV and TTP may be used to sensitively depict perfusion changes in the brain parenchymal of regions of cerebral artery obstruction without abnormal perfusion in the remote white matter in patients with occlusion or severe stenosis of the MCA without MRI evidence of brain parenchymal abnormalities.
     Purpose:
     To assess diffusion changes in the brain parenchymal and remote brain parenchymal with unilateral severe stenosis or occlusion of the MCA without MRI evidence of brain parenchymal abnormalities using high b-value DTI.
     Materials and Methods:
     A total of34patients with severe occlusion or unilateral stenosis (≥75%) of the MCA without abnormal brain parenchymal signals underwent DTI at3.0T MR.The protocol was axial sensitivity-encoding echo-planar DTI with high b values (6000ms TR,90ms TE, four excitations),5mm section thickness,15non-collinear gradient directions; b=2200s/mm2. DTI data were transferred to a workstation supplied by the manufacturer (Advantage Workstation4.2; GE Health-care) for further analysis. FA, ADC, λ1and λ23were measured at ipsilateral (affected hemisphere) and contralateral (unaffected hemisphere) corona radiata, gray matter of frontal lobe, thalamus, lentiform nucleus, anterior and posterior limbs of the internal capsule, cerebral peduncle and pons on the T2WI (b=0) for all patients. Data analysis was conducted using SPSS13.0(SPSS, Chicago,IL, USA). Paired t-tests and rank test were used to compare mean FA, ADC, λ1and λ23values. P<0.05was considered statistically significant.
     Results:
     The mean FA was significantly lower (P<0.05), mean ADC, λ1and λ were significantly higher at ipsilateral corona radiata than at contralateral corona radiata (P<0.05).The mean λ23was significantly higher at ipsilateral gray matter of frontal lobe and lentiform nucleus than at contralateral frontal lobe and lentiform nucleus (P<0.05), mean FA,ADC and λ1were not significantly different between the bilateral gray matter of frontal lobe and bilateral lentiform nucleus. The mean FA was significantly lower, mean λ23was significantly higher at ipsilateral anterior and posterior limbs of the internal capsule than at contralateral anterior and posterior limbs of the internal capsule (P <0.05), mean ADC and λ1were not significantly different between the bilateral anterior and posterior limbs of the internal capsule. Mean FA, ADC, λ1and λ23were not significantly different between the bilateral thalamus, bilateral cerebral peduncle and bilateral pons.
     Conclusion:
     In conclusion, DTI may be used to sensitively depict diffusion changes in the brain parenchymal of regions of cerebral artery obstruction without abnormal anisotropy and diffusivity in the remote white matter in patients with occlusion or severe stenosis occlusion of the MCA without MRI evidence of brain parenchymal abnormalities.
     Purpose:
     To assess metabolism changes in the areas brain parenchymal with unilateral occlusion or severe stenosis of the MCA without MRI evidence of brain parenchymal abnormalities using MRS.
     Materals and Methods:
     A total of34patients with occlusion or severe unilateral stenosis (≥75%) of the MCA without abnormal brain parenchymal signals underwent MRS at3.0T MR. The protocol was chemical shift imaging (CSI) MRS with multi voxel acquisition and point resolved spectroscopy (PRESS)(1500ms TR,135ms TE),5mm section thickness,5.6min scan time. MRS data were transferred to a workstation supplied by the manufacturer (Advantage Workstation4.2; GE Health-care) for further analysis. NAA, Cr, Cho, NAA/Cho, NAA/Cr, Cho/Cr and were Lac measured at ipsilateral (affected hemisphere) and contralateral (unaffected hemisphere) corona radiata, thalamus and lentiform nucleus on the T2WI for all patients. Data analysis was conducted using SPSS13.0(SPSS, Chicago, IL, USA). Paired t-tests and rank test were used to compare NAA, Cr, Cho, NAA/Cho, NAA/Cr and Cho/Cr. P<0.05was considered statistically significant.
     Results:
     The mean NAA, Cr, NAA/Cr and NAA/Cho were significantly lower, mean Cho, Cho/Cr were significantly higher at ipsilateral corona radiata than at contralateral corona radiata (P<0.05). Mean Cho, NAA, Cr, NAA/Cr, NAA/Cho and Cho/Cr were not significantly different between the bilateral thalamus. The mean NAA and NAA/Cho were significantly lower, mean Cho and Cho/Cr were significantly higher at ipsilateral lentiform nucleus than at contralateral lentiform nucleus (P<0.05),while Cr and NAA/Cr were not significantly different between the bilateral lentiform nucleus, Lac was not found at ipsilateral corona radiata, thalamus and lentiform nucleus of these patients.
     Conclusion:
     In conclusion, MRS may be used to sensitively depict metabolism changes in the brain parenchymal of regions of cerebral artery obstruction in patients with occlusion or severe stenosis of the MCA without MRI evidence of brain parenchymal abnormalities.
引文
[1]吴兆苏,姚崇华,赵冬,等。我国人群脑卒中发病率、死亡率的流行病学研究[J]。中华流行病学杂志,2003,24(3):236-239。
    2 Castano C, Dorado L, Guerrero C, et al. Mechanical thrombectomy with the Solitaire AB device in large artery occlusions of the anterior circulation:A pilot study[J]. Stroke 2010;41(2):1836-1840.
    3 Zhang G, Zhang R, Wu H, et al. Recanalization of occluded large arteries with broadened therapeutic window for acute cerebral infarction[J].Clin Neurol Neurosurg.2013 Jul;115(7):1009-1015.
    4王金月,刘筠,慢性脑血管功能不全的影像学研究[J]。国外医学临床放射学分册,2007,30(6),381-384
    5平井俊策.平成元年度厚生省循环器病研究委托班研究报告集[R]。国立循环器病,1990:80。
    6 Zubkov IuN, Khil'ko VA, Ivanova NE. The diagnosis and treatment of chronic cerebrovascular insufficiency in atherosclerotic stenosis or occlusion of the carotid artery[J]. Vestn Khir Im I I Grek.1997; 156(3):15-18.
    7 De la Torre JC, Fortin T, Park GA, etal. Chlonic cerebrovaseular insufficiency induces dementia-like deficits in aged rats [J]. Brain Res, 1992,582(2):186-195.
    8 Tanaka k, Wada N, Ogawa N. Chronic cerebral hypoperfusion induces transient reversible monoaminergic changes in the rat brain [J]. Neuroehem Res,2000,25(2):313-320.
    9 Khil'ko VA. Diagnosis and treatment of chronic cerebrovascular in-sufficiency in carotid atherosclerotic stenosis [J]. Vestn Ross Akad. Med Nauk,1998, (1):30-34.
    10 Bisdas S, Nemitz 0, Berding G, et al. Correlative assessment of cerebral blood flow obtained with perfusion CT and positron emission tomography in symptomatic stenotic carotid disease[J]. Eur Radiol,2006, 16 (10):2220-2228.
    11 Kleinman JT, Mlynash M, Zaharchuk G, et al. Yield of CT perfusion for the evaluation of transient ischaemic attack[J].Int J Stroke.2012 Dec 11.1747-1749
    12 Viallon M, Altrichter S, Pereira VM, et al. Combined use of pulsed arterial spin-labeling and usceptibility-weighted imaging in stroke at 3T[J].Eur Neurol.2010;64 (5):286-2896.
    13 Meng X, Wang Q, Hou J, et al. Diffusion tensor imaging of normal-appearing white matter in unilateral cerebral arterial occlusive disease[J].J Magn Reson Imaging.2013 Sep;38(3):650-654.
    14 Tran T, Ross B, Lin A. et al. Magnetic resonance spectroscopy in neurological diagnosis [J]. Neurol Clin,2009,27(1):21-60.
    15 Kim EH, Lee J, Jang SH. Motor outcome prediction using diffusion tensor tractography of the corticospinal tract in large middle cerebral artery territory infarct[J]. NeuroRehabilitation.2013,32(3):583-590.
    16 Manka C, Traber F, Gieseke J, et al. Three-dimensional dynamic susceptibility-weighted perfusion MR imaging at 3.0 T:feasibility and contrast agent dose[J]. Radiology,2005,234(3):869-877.
    17 Chalela JA, Alsop DC, Gonzalez-Atavales JB, et al. Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin label ing[J]. Stroke,2000,31(3):680-687.
    18 Wong EC. New developments in arterial spin labeling pulse sequences[J]. NMR Biomed.2013,26(8):887-891.
    19 Maumet C, Maurel P, Ferre JC, et al. Patient-specific detection of perfusion abnormalities combining within-subject and between-subject variances in Arterial Spin Labeling[J].Neuroimage.2013,81:121-130.
    20 Donahue MJ, Hussey E, Rane S, et al, Vessel-encoded arterial spin labeling (VE-ASL) reveals elevated flow territory asymmetry in older adults with substandard verbal memory performance[J]. J Magn Reson Imaging.2013 26(30):657-660.
    21 Hoeffner EG. Cerebral perfusion imaging[J]. J Neuroophthalmol, 2005,25(4):313-320.
    22 Roy B, Awasthi R, Bindal A, et al. Comparative Evaluation of 3-Dimensional Pseudocontinuous Arterial Spin Labeling With Dynamic Contrast-Enhanced Perfusion Magnetic Resonance Imaging in Grading of Human Glioma[J].J Comput Assist Tomogr.2013,37(3):321-326.
    23 Hatzoglou V, Ulaner GA, Zhang Z, et al. Comparison of the effectiveness of MRI perfusion and f luorine-18 FDG PET-CT for differentiating radiation injury from viable brain tumor:a preliminary retrospective analysis with pathologic correlation in all patients[J].Clin Imaging.2013, 37(3):451-457.
    24张放,姚振威,冯晓源,等。MR灌注加权成像在缺血性脑血管病中的应用价值[J]。国际医学放射学杂志,2008,31(2),87-89。
    25 Kim HJ, Yun SC, Cho KH, Differential patterns of evolution in acute middle cerebral artery infarction with perfusion-diffusion mismatch: atherosclerotic vs. cardioembolic occlusion[J]. J Neurol Sci.2008, 273(1-2):93-98.
    26 程艳华,周宏伟,刘洋,等。PWI对单侧大脑中动脉狭窄及闭塞脑组织血流评价的研究[J]。中风与神经疾病杂志2011,28(4)367-369。
    27 Schaefer PW, Hunter GJ, He J, et al. Predicting cerebral ischemic infarct volume with diffusion and perfusion MR imaging[J]. AJNR, 2002,23(10):1785-1794.
    28 Rivers CS, Wardlaw JM, Armitage PA, et al. Do acute diffusion-and perfusion-weighted MRI lesions identify final infarct volume in ischemic stroke[J]. Stroke,2006,37(1):98-104.
    29 Seitz RJ, Meisel S, Weller P, et al. Initial ischemic event: perfusion-weighted MR imaging and apparent diffusion coefficient for stroke evolution[J]. Radiology,2005,237(3):1020-1028.
    30 Nuutinen J, Liu Y, Laakso MP, et al. Assessing the outcome of stroke:a comparison between MRI and clinical stroke scales [J]. Acta Neurol Scand, 2006,113(2):100-107.
    31 Fiehler J, von Bezold M, Kucinski T, et al. Cerebral blood flow predicts lesion growth in acute stroke patients[J]. Stroke,2002,33(10): 2421-2425.
    32 Baird AE, Benf ield A, Schlaug G, et al. Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weighted magnetic resonance imaging [J]. Ann Neurol,1997,41(5):581-589.
    33 Mezzapesa DM, Petruzzellis M, Lucivero V, et al. Multimodal MR examination in acute ischemic stroke[J]. Neuroradiology,2006,48 (4):238-246.
    34 Yoshimoto T, Shirasaka T, Yoshizumi T, et al. Evaluation of carotid distal pressure for prevention of hyperperfusion after carotid endarterectomy[J]. Surg Neurol,2005,63(6):554-558.
    35 Timaran CH, Mantese VA, Malas M, et al. Differential outcomes of carotid stenting and endarterectomy performed exclusively by vascular surgeons in the Carotid Revascularization Endarterectomy versus Stenting Trial (CREST) [J].J Vasc Surg.2013,57(2):303-308.
    36 Ances BM, McGarvey ML, Abrahams JM,et al.Continuous arterial spin labeled perfusion magnetic resonance imaging in patients before and after carotid endarterectomy[J].J Neuroimaging.2004,14(2):133-138.
    37 Bisdas S, Nemitz 0, Berding G, et al. Correlative assessment of cerebral blood flow obtained with perfusion CT and positron emission tomography in symptomatic stenotic carotid disease[J]. Eur Radiol, 2006,16 (10):2220-2228.
    38 Derdeyn CP. Cerebral hemodynamics in carotid occlusive disease[J]. AJNR,2003,24 (8):1497-1499.
    39 Marshall RS, Krakauer JW, Matejovsky T, et al. Hemodynamic impairment as a stimulus for functional brain reorganization [J]. J Cereb Blood Flow Metab,2006,26 (10):1256-1262.
    40 Griffiths PD, Gaines P, Cleveland T, et al. Assessment of cerebral haemodynamics and vascular reserve in patients with symptomatic carotid artery occlusion:an integrated MR method[J]. Neuroradiology, 2005,47(3):175-182.
    41 Bozzao A, Floris R, Gaudiello F, et al. Hemodynamic modifications in patients with symptomatic unilateral stenosis of the internal carotid artery:evaluation with MR imaging perfusion sequences[J]. AJNR,2002, 23(8):1342-1345.
    42 Lopez-Cancio E, Galan A, Dorado L, et al.Biological signatures of asymptomatic extra- and intracranial atherosclerosis:the Barcelona-AsIA (Asymptomatic Intracranial Atherosclerosis) study[J]. Stroke,2012, 43(10):2712-2719.
    43王桂红,王拥军,姜卫剑,等,缺血性脑血管病患者脑动脉狭窄的分布及特征[J]。中华老年心脑血管病杂志,2003,5(05),315-317。44高培毅,林燕,脑梗死前期脑局部低灌注的CT灌注成像表现及分期[J]。中华
    放射学杂志,2003,37(10),312-317。
    45 Von Oettingen G, Bergholt B, Gyldensted C, et al. Blood flow and ischemia within traumatic cerebral contusions[J]. Neurosurgery, 2002,50 (4):781-790.
    46 Xue J, Gao P, Wang X, et al. Ischemic lesion typing on computed tomography perfusion and computed tomography angiography in hyperacute ischemic stroke:a preliminary study [J]. Neurol Res,2008,30(4):337-340.
    47 Arakawa S, Wright PM, Koga M, et al. Ischemic thresholds for gray and white matter:a diffusion and perfusion magnetic resonance study [J]. Stroke,2006,37(5):1211-1216.
    48 Bristow MS, Simon JE, Brown RA, et al. MR perfusion and diffusion in acute ischemic stroke:human gray and white matter have different thresholds for infarction[J]. J Cereb Blood Flow Metal,2005, 25(10):1280-1287.
    49 Simon JE, Bristow MS, Lu H, et al. A novel method to derive separate gray and white matter cerebral blood flow measures from MR Imaging of acute ischemic stroke patients[J]. J Cereb Blood Flow Metab, 2005,25(9):1236-1243.
    50 Inglese M, Park SJ, Johnson G, et al. Deep gray matter perfusion in multiple sclerosis:dynamic susceptibility contrast perfusion magnetic resonance imaging at 3 T[J].Arch Neurol,2007,64(2):196-202
    51 Kim SJ, Kim IJ, Kim YK, et al. Probabilistic anatomic mapping of cerebral blood flow distribution of the middle cerebral artery [J]. J Nucl Med.2008,49(1):39-43.
    52 Vitosevic Z, Cetkovic M, Vitosevic B,et al. Blood supply of the internal capsule and basal nuclei.错误!超链接引用无效。2005,133(1-2):41-45.
    53姜恒,谢拥军,聂政,等,脉络丛前动脉显微解剖结构的临床应用研究[J],局解手术学杂志,2011,(2):149-150。
    54 Schaefer PW, Ozsunar Y, He J, et al. Assessing tissue viability with MR diffusion and perfusion imaging[J]. AJNR,2003,24(3):436-443.
    55 Bisdas S, Nemitz 0, Berding G, et al. Correlative assessment of cerebral blood flow obtained with perfusion CT and positron emission tomography in symptomatic stenotic carotid disease[J]. Eur Radiol,2006, 16(10):2220-2228.
    56 Derdeyn CP. Cerebral hemodynamics in carotid occlusive disease [J]. AJNR,2003,24(8):1497-1499.
    1 Heemskerk AM, Leemans A, Plaisier A, et al. Acquisition Guidelines and Quality Assessment Tools for Analyzing Neonatal Diffusion Tensor MRI Data[J].AJNR Am J Neuroradiol.2013 34 (8),1496-1505.
    2 Yoshida S, Oishi K, Faria AV, et al. Diffusion tensor imaging of normal brain development[J]. Pediatr Radiol.2013;43(1):15-27.
    3 Bennett IJ, Rypma B. Advances in functional neuroanatomy:A review of combined DTI and fMRI studies in healthy younger and older adults [J]. Neurosci Biobehav Rev.2013:37(7):1201-1210.
    4 Abdullah KG, Lubelski D, Nucifora PG, et al.Use of diffusion tensor imaging in glioma resection[J]. Neurosurg Focus.2013;34(4):1201-1206.
    8 Werring DJ, Toosy AT, Clark CA, et al. Diffusion tensor imaging can detect and quantify corticospinal tract degeneration after stroke[J]. J Neurol Neurosurg Psychiatry,2000,69:269-272.
    9 Habas C. Basic principles of diffusion tensor MR tractography[J]. Radiology.2004,85:281-286.
    10 Tench CR, Morgan PS, Wilson M, et al. White matter mapping using diffusion tensor MRI[J]. Magn Reson Med,2002,47:967-972.
    11 Winston GP.The physical and biological basis of quantitative parameters derived from diffusion MRI[J]. Quant Imaging Med Surg.2012 Dec;2(4):254-265.
    12 Jones DK, Knosche TR, Turner R. White matter integrity, fiber count, and other fallacies:the do's and don'ts of diffusion MRI [J]. Neuroimage. 2013 Jun;73:239-254.
    13 Wang Q, Xu X, Zhang M. Normal aging in the basal ganglia evaluated by eigenvalues of diffusion tensor imaging[J]. AJNR Am J Neuroradiol. 2010;31(3):516-520.
    14 Campbell BC, Davis SM, Donnan GA., How much diffusion lesion reversal occurs after treatment within three-hours of stroke onset [J]. Int J Stoke. 2013;8(5):329-330.
    15 Ract I, Ferre JC, Ronziere T, Leray E, et al. Improving detection of ischemic lesions at 3Tesla with optimized diffusion-weighted magnetic resonance imaging[J]. J Neuroradiol.2013;25(6):49-57.
    16 Brunser AM, Hoppe A,Illanes S, et al. Accuracy of diffusion-weighted imaging in the diagnosis of stroke in patients with suspected cerebral infarct[J]. Stroke.2013:44(4):1169-1171.
    17 Weidauer S, Gaa J, Sitzer M, et al. Posterior encephalopathy with vasosp.asm:MRI and angiography [J]. Neuroradiology,2003,45:869-873.
    18 Schwartz RB. Hyperfusion encephalopathy:hypertensive encephalopathy and related conditions[J]. Neurologist,2002,8(3):22-29.
    19 Sorensen AG, Wu 0, Copen WA, et al. Human acute cerebral ischemia: detection of changes in water diffusion anisotropy by using MR imaging [J]. Radiology,1999,212(3):785-792.
    20 Thomalla G, Glauche V, Weiller C, et al. Time course of wallerian degeneration after ischaemic stroke revealed by diffusion tensor imaging[J]. J Neurol Neurosurg Psychiatry,2005,76(2):266-268.
    21 Kunimatsu A, Aoki S, Masutani Y, et al. Three dimensional white matter tractography by diffusion tensor imaging in ischaemic at roke involving the corticospinal tract[J]. Neuroradiology,2003,45(8):532-535.
    22 Zivadinov R, Bergsland N, Stosic M, et al. Use of perfusion-and diffusion-weighted imaging in differential diagnosis of acute and chronic ischemic stroke and multiple sclerosis[J]. Neurol Res,2008,30(8):816-826.
    23 Blaser T, Hofmann K, Buerger T, et al. Risk of stroke, transient ischemic attack, and vessel occlusion before endarterectomy in patients with symptomatic severe carotid stenosis [J]. Stroke,2002,33(4):1057-1062.
    24卢洁,李坤成,焦立群,等。磁共振脑灌注成像在慢性颈内动脉狭窄与闭塞患者中的应用价值[J]。中华老年心脑血管病杂志,2006,8(10):688-691。
    25. Meyer J, Gutierrez A, Mock B, et al. High-b-value Diffusion-weighted MR Imaging of Suspected Brain Infarction[J], AJNR Am J Neuroradiol. 2000,21(10):1821-1829.
    26. Hoque R, Ledbetter C, Gonzalez-Toledo E, et al. The role of quantitative neuroimaging indices in the differentiation of ischemia from demyelination:an analytical study with case presentation[J]. Int Rev Neurobiol.2007;79:491-519.
    27 Song SK, Sun SW, Ramsbottom MJ, et al. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water[J]. Neuroimage 2002;17(3):1429-1436.
    28. Niendorf T, Dijkhuizen RM, Norris DG, et al. Biexponential diffusion attenuation in various states of brain tissue:implications for diffusion-weighted imaging[J]. Magn Reson Med 1996;36(6):847-857.
    29. Mulkern RV, Gudbjartsson H, Westin CF, et al. Multi-component apparent diffusion coefficients in human brain[J]. NMR Biomed 1999; 12(1):51-62.
    30. Inoue T, Oqasawara K, Konno H, et al. Diffusion tensor imaging in patients with major cerebral artery occlusive disease[J], Neuro Med Chir(Tokyo) 2003:43(9),421-425.
    31. Righini A, Doneda C, Parazzini C, et al. Diffusion tensor imaging of early changes in corpus callosum after acute cerebral hemisphere lesions in newborns[J]. Neuroradiology 2010;52(11):1025-1035.
    32 Wang S, Wu EX, Cai K, et al. Mild hypoxic-ischemic injury in the neonatal rat brain:longitudinal evaluation of white matter using diffusion tensor MR imaging[J]. AJNR Am J Neuroradiol.2009,30(10):1907-1913.
    33 Silun Wang, Ed X. Wu, Chung Nga Tam, et al. Characterization of White Matter Injury in a Hypoxic-Ischemic Neonatal Rat Model by Diffusion Tensor MRI[J]. Stroke.2008,39(8):2348-2353.
    34梁志坚,刘斯润,曾进胜,等。脑梗死后继发神经纤维顺行性和逆行性损害的磁共振弥散张量成像[J]。中华神经科杂志,2006,39(12):827-831。
    35. Clark CA, Le Bihan D. Water diffusion compartmentation and anisotropy at high b values in the human brain[J]. Magn Reson Med. 2000; 44 (6):852-859.
    36. Alexander AL, Lee JE, Lazar M, et al. Diffusion tensor imaging of the brain[J]. Neurotherapeutics.2007;4(3):316-329.
    37 Shiraishi A, Hasegawa Y, Okada S, et al. Highly diffusion-sensitized tensor imaging of unilateral cerebral arterial occlusive disease[J]. American Journal of Neuroradiology,2005,26(6):1498-1504.
    38 Joel R. Meyer, Arturo Gutierrez, et al. High-b-value Diffusion-weighted MR Imaging of Suspected Brain Infarction[J]. AJNR Am J Neuroradiol. 2000,21 (10):1821-1829.
    39 Yoshiura T, Mihara F, Tanaka A, et al. High b value diffusion-weighted imaging is more sensitive to white matter degeneration in Alzheimer's disease[J]. Neuroimage,2003,20(1):413-419.
    1 Tran T, Ross B, Lin A. et al. Magnetic resonance spectroscopy in neurological diagnosis [J]. Neurol Clin,2009,27(1):21-60.
    2 Burtscher I M, Holt s S. Proton MR spectroscopy in clinical routine [J]. J Magn Reson Imaging,2001,13(4):560-567.
    3 Soares D P, Law M. Magnetic resonance spectroscopy of the brain:review of metabolites and clinical applications [J]. Clin Radiol,2009, 64(1):12-21.
    4 Danielsen ER, Ross B. Magnetic resonance spectroscopy diagnosis of neurological diseases [M]. New York:Marcel Dekker,1999.
    5 Jissendi Tchofo P, Baleriaux D. Brain (1)H-MR spectroscopy in clinical neuro-imaging at 3T[J]. J Neuroradiol,2009,36(1):24-40.
    6 Xu D, Vigneron D. Magnetic resonance spectroscopy imaging of the newborn brain-a technical review [J]. Semin Perinatol.2010,34(1):20-27.
    7王金月,刘筠,慢性脑血管功能不全的影像学研究,国外医学临床放射学分册[J]。2007;30(6):381-384。
    8 Jurdnek I, Baciak L. Cerebral hypoxia-ischemia:focus on the use of magnetic resonance imaging and spectroscopy in research on animals. Neurochem Int.2009,54(8):471-80.
    9 Galanaud D, Nicoli F, Confort-Gouny S, et al. Indications for cerebral MR proton spectroscopy in 2007[J]. Rev Neurol (Paris).2007,63(3):287-303.
    10 Panigrahy A, Borzage M, Bluml S. Basic principles and concepts underlying recent advances in magnetic resonance imaging of the developing brain [J]. Semin Perinatol,2010,34(1):3-19.
    11 张苗,卢洁,李坤成,质子磁共振波谱评价颈内和大脑中动脉狭窄与闭塞的脑代谢研究[J].中华老年心脑血管病杂志,2007,9(6):385-387.
    12 Bissehops RH, Kappelle LJ, Mall WP, et al. Hemodynamic and metabolic changes in transient ischemic attack patients:a magnetic resonance angiography and'H-magnetic resonance spectroscopy study performed within 3 days of onset of a transient ischemic attack [J]. Stroke,2002, 33(1):110-115.
    13 Tsuehida C, Kimura H, Sadato N, et al. Evaluation of brain metabolism in steno-occlusive carotid artery disease by proton MR spectroscopy:a correlative study with oxygen metabolism by PET[J]. J Nuel Med,2000, 41 (8):1357-1362.
    14卢洁,李坤成,张苗,等,短暂性脑缺血发作的质子磁共振波谱研究[J]。放射学实践,2007,22(2):136-239
    15 Wang LM, Han YF, Tang XC. Huperzine A improves cognitive deficits caused by chronic cerebral hyroperfusion in rats [J]. Eur J Pharmacol,2000, 398(1):65-72.
    16 Plaschke K, Weigand MA, Miehel A, et al. Permanent cerebral hypoperfusion:'preconditioning-like'effects On rat energy metabolism towards; acute systemic hypotension [J]. Brain Res,2000,858(2):363-370.
    17 Ohta H, Nishikawa H, Kimura H, et al. Chronic cerebral hypoperfusion by permanent internal carotid ligation produces learning impairment without brain damage in rats [J]. Neuroscience,1997,79(4):1039-1050.
    18 Eszter F, Gergely D, Rob AIV, et al. Experimental cerebral hypoperfusion induces white matter injury and microglial activation in the rat brain [J]. Acta Neuropathol,2004,108(34):57-64.
    19 Vicente E, Degerone D, Bohn L, et al. Astroglial and cognitive effects of chronic cerebral hypoperfusion in the rat [J]. Brain Res,2009,1251: 204-212.
    20 Kim DH, Kim S, Jung WY, et al. The neuroprotective effects of the seeds of Cassia obtusifolia on transient cerebral global ischemia in mice [J]. Food Chem Toxicol,2009,47(7):1473-1479.
    21 李露斯,姚桃元,肖之荣。大鼠慢性脑血流灌注不足脑的病理组织学和超微结构变化[J]。 第三军医大学学报,1999,21(11):805-807.
    22 Brooks WM, Wesley MH, Kodituwakku PW, et al.'H-MRS differentiates white matter hyperintensities in subcortical arteriosclerotic encephalopathy from those in normal elderly [J]. Stroke.1997, 28(10):1940-1943.
    23 Nitkunan A, Charlton RA, Barrick TR, et al. Reduced N-acetylaspartate is consistent with axonal dysfunction in cerebral small vessel disease [J].NMR Biomed,2009,22(3):285-291.
    24 张虹,屈秋民,刘军,等,脑梗塞患者白质疏松的磁共振波谱研究[J]。陕西医学杂志,2008,37(6):703-705。
    25 Mihara F, Kuwabara Y, Yoshida T, et al. Correlation between proton magnetic resonance spectroscopic lactate measurements and vascular reactivity in chronic occlusive cerebrovascular disease:a comparison with positron emission tomography [J]. Magn Reson Imaging,2000, 18(9):1167-1174.
    26 Wintermark M, ko NU, Smith WS, et al. Perfusion MRI before and after acetazolamide administration for assessment of cerebrovascular reserve capacity in patients with symptomatic internal carotid artery (ICA) occlusion:comparison with 99mTc-ECD SPECT[J]. Neuroradiology, 2007,49(4):317-326.
    27张勇,韩仲岩。急性脑梗死患者脑脊液中抑制性氨基酸递质的动态观察[J]。卒中与神经疾病,2000,7(2):78-80。
    28 Goldberg MP, Choi DW. Combined oxygen and glueose deprivation in cortical cell culture:calcium dependent and calcium in dependent mechisms of neuronal injury[J]. Neurosci,1993,13(8):3510-3524.
    29 Benveniste H, Hedlund LW, Johnson A. Mechanism of detection of acute cerebral isc hemia in rats by diffusion weighted magnetic resonance microscopy[J]. stroke,1992,23(5):746-754.
    30 Calabresi P, Marf ia GA, Centonze D, et al. Sodium indux plays a major role in the membrane depolarization induced by oxygen and glucose deprivation in rat striated spiny neurons [J]. stroke,1999,30(1):171-179.
    31 Sager TN, Laursen H, Fink-Jensen A, et al.N-Acetylasparate distribution in rat brain striatum during acute brain ischemia [J]. J Cereb Blood Flow Metab.,1999,19(2):164-172.
    32 Lgarashi H, Kwee IL, Okubo S, et al. Predicting the pathological fate of focal cerebral ischemia using IH-magnetic resonance spectroscopic imaging[J]. International Congress Series,2003,1252:341-344.
    33 Gillard JH, Barker PB, van Zijl PCM, et al. Proton MR spectroscopy in acute middle cerebral artery stroke[J]. AJR,1996,17(5):873-886.
    34 Sagera TN, Toppb S, Torup L, et al.Evaluation of CA1 damage using single-voxel 1H-MRS and un-biased stereology:can non-invasive measures of N-acetyl-asperate following global ischemia be used as a reliable measure of neuronal damage[J]. Brain Research,2001,892(4):166-175.
    35 Higuchi T, Femandez EJ, Maudsley AA, et al.Mapping of lactate and N-acetyl-L-aspartate Predicts infarction during acute focal ischemia:in vivo 1H magnetic resonance spectroscopy in rats[J]. Neurosurgery,1996, 38(1):121-130.
    36 Castillo M, Kwoek L, Mukherji SK. Clinical applications of Proton MR spectroscopy[J]. AJNR,1996,17(1):1-15.
    37 Gideon P, Henriksen 0, Speriing B, et al. Early time course of N-acetylaspartate, creatine and phosphocreatine, and compound containing choline in the brain after acute stroke [J]. Stroke,1992,23(11):1566-1572.
    38 Rumpel H, Khoo JB, Chang HM, et al. Correlation of the apparent diffusion coefficient and the creatine level in early ischemic stroke:a comparison of different patterns by magnetic resonance [J]. Magn. Reson. Imaging,2001, 13(3):335-343.
    39 Lgarashi H, Kwee IL, Nakada T, et al.1H magnetic resonance spectroscopic imaging of permanent focal cerebral ischemia in rat:longitudinal metabolic changes in ischemic core and rim[J]. Brain Research,2001,907(1-2):208-221
    40 Graham GD, Blamire AM, Howseman AM, et al. Proton magnetic resonance spectroscopy of cerebral lactate and other metabolites in stroke patients[J]. Stroke,1992,23:1333-340.
    41 Ueno M, Tomimoto H, Akiguchi I, et al. Blood-brain barrier disruption in white matter lesions in a rat model of chronic cerebral hypoperfusion [J]. Cereb Blood Flow Metab, 2002,22(1):97-104.
    42 Eszter F, Gergely D, Rob AIV, et al. Experimental cerebral hypoperfusion induces white mat'ter injury and microglial activation in the rat brain [J]. Acta Neuropathol,2004,108(34):57-64.
    43 Vicente E, Degerone D, Bohn L, et al. Astroglial and cognitive effects of chronic cerebral hypoperfusion in the rat [J]. Brain Res,2009,1251 (2): 204-212.
    44 王金月,刘筠,钟进,等。慢性脑缺血患者脑血流动力学与脑代谢改变的影像学研究[J]。实用放射学杂志,2010,26(8),1079-1084.
    45 Kim DH, Kim S, Jung WY, et al. The neuroprotective effects of the seeds of Cassia obtusifolia on transient cerebral global ischemia in mice [J]. Food Chem Toxicol,2009,,47(7):1473-1479.
    46李露斯,姚桃元,肖之荣,大鼠慢性脑血流灌注不足脑的病理组织学和超微结构变化[J]。第三军医大学学报,1999,21(11):805-807.
    47 Dreher W, Kuhn B, Gyngell ML, et al. Temporal and regional changes during focal ischemia in rat brain studied by proton spectroscopic imaging and quantitative diffusion NMR imaging [J]. Magn Reson Med,1998, 39(6):878-888.