自发性高血压大鼠体内RAS相关基因的表达及全反式维甲酸对其影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高血压病(essential hypertension,EH)被普遍认为是一种环境和遗传因素共同作用的多基因疾病。肾素血管紧张素系统(RAS)是机体内调控血压稳定的最重要机制之一,其中血管紧张素转换酶(ACE)及其新近发现的同源酶ACE2起关键性作用。ACE2可直接对抗ACE,它不仅能竞争性地作用于ACE的底物血管紧张素Ⅰ(angiotensinⅠ,AngⅠ),还能清除ACE的催化产物Ang Ⅱ,使之代谢生成舒血管物质Ang-(1-7)。由于ACE2、apelin以及APJ三个新成员的加入,RAS体系较既往变得更为复杂。新的RAS体系ACE2/ACE参与血压调控可能依赖于两条路径:其中一条为ACE与AngⅡ,起升压效应;另一条为ACE2与Ang-(1-7),通过对抗前一路径,引起血压下降。另外,RAS新体系中还可能存在一条独立于ACE2/Ang-(1-7)之外的降压路径,被命名为apelinAPJ信号系统。apelin-APJ系统可能通过直接拮抗AngⅡ-AT_1信号途径以及促进一氧化氮(NO)生成与释放来实现其降压效应。APJ是最早被克隆的一种与AT_1相关的孤儿受体。尽管APJ“孤儿”了多年,最近已分离出其内源性配体并命名为apelin,后者与AngⅡ高度同源。ACE2,apelin和APJ基因在维持心、肾功能以及血压稳定中起重要作用,其表达异常可能促成EH的发生、发展。
     血压分子镶嵌理论是长期以来较为认可的EH致病机制模型,认为EH的致病涉及多个环节,各环节彼此相互作用形成一个血压调控网络,而基因是该网络的中心。与作用于表面的传统降压药物相比,转录调节剂通过在基因水平(镶嵌模型的中心)直接调整高血压相关基因的转录、表达失控,可以从根本上达到EH防治目的。近年来有关转录因子及核激素受体的研究进展给转录调节降压剂提供了新的视点,维生素A的活性代谢产物全反式维甲酸(atRA)即是其中的一种。己证实atRA通过核内维甲酸受体(RAR)和维甲类X受体(RXR)的激活而起作用。AtRA可激活异二聚体RAR/RXR,后者通过识别和结合维甲酸受体反应元件(RARE),进而引起靶基因的转录激活或转录抑制。研究表明atRA能够调节RAS体系多种成分的基因表达,如肾素、ACE、AngⅡ、AT_1等。鉴于ACE2、apelin、APJ分别为ACE、AngⅡ和AT_1的同源类似物,无论在基因序列还是组织表达分
Essential hypertension is universally acknowledged as a multifactorial quantitative trait controlled by both genetic and environmental factors. The renin-angiotensin system (RAS) is currently considered a central regulator of blood pressure, in which angiotensin-converting enzyme (ACE) and its newly identified homologue ACE2 play a key role. ACE2 might counteract ACE by competing with ACE for the substrate angiotensin I (Ang I) or by directly metabolizing the Ang II to generate a vasodilator Ang-(l-7). The RAS has been shown to be a far more complex system than initially thought with the discoveries of ACE2, apelin and APJ. The novel RAS participates in the regulation of blood pressure depending likely on two pathways: ACE/Ang II, evoking pressor effect; and ACE2/Ang-(l-7), inducing depressor effect by directly antagonizing the former. In addition, there is another hypotensive pathway independent of ACE2/Ang-(l-7) termed apelin-APJ signaling pathway, which modulates the blood pressure through dampening Ang II-induced AT_1 signaling and potentiating the synthesis and release of nitric oxide (NO). The APJ is among the earliest cloned orphan receptor. Although "orphan" for many years, its natural ligand was recently isolated and named apelin, a homologue of Ang II. ACE2, apelin and APJ emerges as important regulators of cardiorenal function and blood pressure homeostasis, in which abnormalities may be critical contributors to the initiation and maintenance of hypertension.The Molecular Mosaic Theory is generally accepted as the pathogenesis of hypertension, in which multiple regulatory systems controlled by multiple genetic factors interact to promote essential hypertension. In contrast to conventional antihypertensive agents that treat surface facets of the mosaic, transcription-modulating drugs can be used to modify gene expression and attack essential hypertension at the core of the mosaic. Research advances on the key transcription factors and nuclear hormone receptors provide fresh insight into the
    development of transcription-modulating antihypertensive drugs, among which is all-trans retinoic acid (atRA), a biologically active metabolite of vitamin A. atRA exerts its effects by binding the retinoic acid receptor (RAR) and retinoid X receptor (RXR). Initially, atRA activates a heterodimer RAR/RXR, which further recognizes and binds to retinoic acid receptor response element (RARE) consensus sequence, thereby activating or repressing target gene transcription. Experimental documents have demonstrated that atRA influences the gene expression of components of the RAS including renin, ACE, Ang II and ATi receptor. In view of the sequence and distribution similarities between ACE2 and ACE (as well as apelin and Ang II; APJ and ATi), we predicted that atRA might affect gene expression and actions of ACE2, apelin and APJ, and therefore elicit some beneficial effects in hypertension. In the present work, we evaluate above-mentioned possibilities of atRA by examining changes of mRNA and protein of ACE2, apelin and APJ receptor and levels of serum NO in spontaneously hypertensive rats (SHR) after chronic atRA treatment.Methods: (1) Animals: SHR and WKY rats were randomly assigned to five treatment groups: WKY-C (WKY control), WKY-R (WKY treated with atRA), SHR-C (SHR control), SHR-L and SHR-H (SHR treated with low-dose or high-dose atRA). Rats received daily intraperitoneal injection of atRA (10~20 mg ? kg'1 ? day"1 ) or vehicle for a month. Systolic blood pressure (SBP) of rats was measured by the tail-cuff method. (2) Isolation of RNA: Total RNA was isolated from heart, aorta and kidney tissues using Trizol Reagent. cDNA were synthesized by standard techniques. (3) Real-time Quantitative PCR: Primers and TaqMan probes were designed and synthesized. The positive standards of rat ACE2, apelin, APJ and ATi were successfully cloned through plasmid recombination and DNA sequencing, then used as standard templates to construct the calibration curves for sample array. Rat GAPDH mRNA was measured as an internal control. (4) Northern Blotting: A 32P-labeled rat ACE2 cDNA probe was prepared with the Random Primes DNA Labeling System. Rat (3-actin probe was used as an internal control. 30 ug of RNA was resolved on a 1.2% FA gel and electrophoresed, then blotted to nylon membrane and fixed by the ultraviolet cross-linking. Blots were prehybridized and hybridized with the probes. With washes and exposure, the blots were then detected and analyzed in a Scanner. (5) Western Blotting: Protein samples were loaded onto precast denaturing gels, followed by separation and
    transblotting to nitrocellulose filter. After blocking, the primary and AP-labeled secondary antibody incubation, the positive bands representing target protein were developed and quantified with an Automated Imaging System. Rat P-actin protein was used as an internal control. (6) Measurement of Serum NO Levels: Serum NO concentrations were determined at 550 nm with the Greiss reagent after reduction with nitrate reductase. The positive and negative controls were established in the meantime. (7) Transmission Electron Microscope (TEM) Analysis: Samples of rat hearts were prefixed by 2.5% Glutaral and washed, followed by postfixation and stainning, and dehydration in a graded series of ethanol. After infiltration and polymerization, ultrathin sections were cut, and observed by TEM.Results: (1) A marked rise of SBP was shown in SHR compared with WKY rats (PO.01). SBP did not differ among SHR groups before and 1, 2 weeks after treatment. However, a significant reduction of SBP was shown in SHR-L and SHR-H 3, 4 weeks after atRA treatment (PO.05, respectively). (2) In placebo-treated SHR, a significant reduction of ACE2, APJ and apelin mRNA expression and an obvious rise of ATj mRNA expression were shown in heart, aorta and kidney, compared with WKY rats (PO.01, respectively). Supplementation with atRA led to upregulated mRNA expression of ACE2, APJ and apelin and downregulated mRNA expression of ATi in atRA-treated SHR (PO.05, respectively). (3) In placebo-treated SHR, protein expressions of ACE2, APJ and apelin were markedly depressed, whereas ATi protein expression was significantly increased when compared with WKY rats (PO.01, respectively). By contrast, in atRA-treated SHR, ACE2, APJ and apelin protein expression were significantly enhanced, whereas ATi protein expression was significantly decreased (P<0.05, respectively). (4) Serum NO was greatly reduced in SHR compared with WKY rats (P<0.01), but significantly elevated in atRA-treated SHR (PO.05). Serum NO levels did not differ among WKY rats. (5) Severe myocardial damage of the left ventricle was represented in SHR from TEM compared with WKY rats. However, in atRA-treated SHR, the myocardial damage of left ventricle was obviously attenuated.Conclusion: (1) Compared with conventional PCR, real-time quantitative PCR is a simple, convenient and accurate method, which can combine high sensitivity with reliable specificity and be available in detecting quantitatively and studying the genes relevant to the
引文
1. Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I, Scanga SE, Oliveira-dos-Santos AJ, Costa JD, Zhang LY, Pei Y, Scholey J, Ferrario CM, Manoukian AS, Chappe MC, Backx PH, Yagil Y, Penninger JM. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature, 2002, 417: 822-828.
    2. Kurtz TW, Gardner DG. Transcription-modulating drugs: a new frontier in the treatment of essential hypertension. Hypertension, 1998; 32: 380-386.
    3. Burrell LM, Johnston CI, Tikellis C, Cooper ME. ACE2, a new regulator of the renin-angiotensin system. Trends Endocrinol Metab, 2004, 15(4): 166-169.
    4. Katovich MJ, Grobe JL, Huentelman MJ, RaizadaMK. ACE2 as a novel target for gene therapy for hypertension. Exp Physiol, 2005, 10.1113/expphysiol. 2004. 028522.
    5. Reudelhuber TL. The renin-angiotensin system: peptides and enzymes beyond angiotensin Ⅱ. Curt Opin Nephrol Hypertens, 2005; 14(2): 155-159.
    6. Eriksson U, Danilczyk U, PenningerJM. Just the beginning: novel functions for angiotensin-converting enzymes. Curr Biol, 2002, 12: R745-752.
    7. Zisman LS. ACE and ACE2: a tale of two enzymes. Eur Heart J, 2005, 26(4): 322-324.
    8. Inagami T. The renin-angiotensin system. Essays Biochem, 1994; 28: 147-164.
    9. Schmaier AH. The kallikrein-kinin and the renin-angiotensin systems have a multilayered interaction. Am J Physiol Regulatory Integrative Comp Physiol, 2003, 285:1-13.
    10. Oudit GY, Crackower MA, Backx PH, Penninger JM. The role of ACE2 in cardiovascular physiology. Trends Cardiovasc Med, 2003, 13: 93-101.
    11. Raij L. Workshop: Hypertension and cardiovascular risk factors: role of the angiotensin Ⅱ-nitric oxide interaction. Hypertension, 2001, 37(2): 767-773.
    12. Brewster UC, Setaro JF, Perazella MA. The renin-angiotensin-aldosterone system: cardiorenal effects and implications for renal and cardiovascular disease states. Am J Med Sci, 2003;326(1):15-24.
    13.Chappell MC, Modrall JG, Diz DI, Ferrario CM. Novel aspects of the renal renin-angiotensin system: angiotensin-(1-7), ACE2 and blood pressure regulation. Contrib Nephrol, 2004;143:77-89.
    14. Leckie BJ. Targeting the renin-angiotensin system: what' s new? Curr Med Chem Cardiovasc Hematol Agents, 2005;3(1):23-32.
    15. Losano GA. On the cardiovascular activity of apelin. Cardiovasc Res, 2005, 65(1): 8-9.
    16.Danilczyk U, Eriksson U, Oudit GY, Penninger JM. Physiological roles of angiotensin-converting enzyme 2. Cell Mol Life Sci, 2004, 61(21): 2714-2719.
    17. Yagil Y, Yagil C. Hypothesis: ACE2 modulates blood pressure in the mammalian organism. Hypertension, 2003, 41:871-873.
    18.Ishida J, Hashimoto T, Hashimoto Y, Nishiwaki S, Iguchi T, Harada S, Sugaya T, Matsuzaki H, Yamamoto R, Shiota N, Okunishi H, Kihara M, Umemura S, Sugiyama F, Yagami K, Kasuya Y, Mochizuki N, Fukamizu A. Regulatory roles for APJ, a seven-transmembrane receptor related to angiotensin-type I receptor in blood pressure in vivo. J Biol Chem, 2004, 279(25): 26274-26279.
    19.Tatemoto K, Hosoya M, Habata Y, Fujii R, Kakegawa T, Zou MX, Kawamata Y, Fukusumi S, Hinuma S, Kitada C, Kurokawa T, Onda H, Fujino M. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun, 1998, 251: 471-476.
    20. Ferrario CM. Commentary on Tikellis et al: There is more to discover about angiotensin-converting enzyme. Hypertension, 2003, 41(3) :390—391.
    21. Lee RT. Functional genomics and cardiovascular drug discovery. Circulation, 2001; 104(12): 1441-1446.
    22. Masri B, Knibiehler B, Audigier Y. Apelin signalling: a promising pathway from cloning to pharmacology. Cell Signal, 2005; 17(4): 415-426.
    23.Ashley EA, Powers J, Chen M, Kundu R, Finsterbach T, Caffarelli A, Deng A,
     Eichhorn J, Mahajan R, Agrawal R, Greve J, Robbins R, Patterson AJ, Bernstein D, Quertermous T. The endogenous peptide apelin potently improves cardiac contractility and reduces cardiac loading in vivo. Cardiovasc Res, 2005, 65(1): 73-82.
    24. Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. JBiolChem, 2000, 275:33238-33243.
    25. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE, Acton S. A novel angiotensin-converting enzyme- related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res, 2000, 87:E1-E9.
    26. Tikellis C, Johnston CI, Forbes JM, Burns WC, Burrell LM, Risvanis J, Cooper ME. Characterization of renal angiotensin-converting enzyme 2 in diabetic nephropathy. Hypertension, 2003, 41:392-397.
    27.Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, Godbout K, Parsons T, Baronas E, Hsieh F, Acton S, Patane M, Nichols A, Tummino P. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem, 2002, 277 (17):14838- 14843.
    28.Brosnihan KB, Neves LAA, Joyner J, Averill DB, Chappell MC, Sarao R, Penninger J, Ferrario CM. Enhanced renal immunocytochemical expression of ANG-(1-7) and ACE2 during pregnancy. Hypertension, 2003, 42(4):749-753.
    29. Li NJ, Zimpelmann J, Cheng K, Wilkins JA, Burns KD. The role of angiotensin converting enzyme 2 in the generation of angiotensin 1-7 by rat proximal tubules. Am J Physiol Renal Physiol, 2005; 288: 353-362.
    30. Zisman LS, Keller RS, Weaver B, Lin Q, Speth R, Bristow MR, Canver CC. Increased angiotensin-(1-7)-forming activity in failing human heart ventricles: evidence for upregulation of the angiotensin-converting enzyme homologue ACE2. Circulation, 2003, 108 (14):1707-1712.
    31.Maia LG, Ramos MC, Fernandes L, Carvalho MHCD, Campagnole-Santos MJ, Santos
     RASD. Angiotensin-(1-7) antagonist A-779 attenuates the potentiation of bradykinin by captopril in rats. J Cardiovasc Pharmacol, 2004;43:685-691
    32.Santos RASD, Passaglio KT, Pesquero JB, Bader M, Silva ACSE. Interactions between angiotensin-(l-7), kinins, and angiotensin II in kidney and blood vessels. Hypertension, 2001, 38:660-664.
    33. Tallant EA, Clark MA. Molecular Mechanisms of Inhibition of Vascular Growth by Angiotensin-(1-7). Hypertension, 2003, 42:574-579.
    34.Mendes AC, Ferreira AJ, Pinheiro SV, Santos RA. Chronic infusion of angiotensin-(1-7) reduces heart angiotensin II levels in rats. Regul Pept, 2005;125:29-34.
    35.Ryan MJ, Sigmund CD. ACE, ACE inhibitors, and other JNK. Circ Res, 2004, 94(1): 1-3.
    36.De Falco M, Fedele V, Russo T, Virgilio F, Sciarrillo R, Leone S, Laforgia V, De Luca A. Distribution of apelin, the endogenous ligand of the APJ receptor, in the lizard Podarcis sicula. J Mol Histol, 2004;35(5): 521-527.
    37.Kagiyama S, Fukuhara M, Matsumura K, Lin Y, Fujii K, Iida M. Central and peripheral cardiovascular actions of apelin in conscious rats. Regul Pept. 2005:125(1-3):55-59.
    38. Kleinz MJ, Skepper JN, Davenport AP. Immunocytochemical localisation of the apelin receptor, APJ, to human cardiomyocytes, vascular smooth muscle and endothelial cells. Regul Pept, 2005;126(3):233-240.
    39.Szokodi I, Tavi P, Foldes G, Voutilainen-Myllyla S, lives M, Tokola H, Pikkarainen S, Piuhola J, Rysa J, Toth M, Ruskoaho H. Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circulation Research, 2002,91:434-440.
    40. Lee DK, Lanca AJ, Cheng R, Nguyen T, Ji XD, Gobeil F Jr, Chemtob S, George SR, O'Dowd BF. Agonist-independent nuclear localization of the Apelin, angiotensin AT,, and bradykinin B2 receptors. J Biol Chem, 2004, 279(9): 7901-7908.
    41. Lee DK, Saldivia VR, Nguyen T, Cheng R, George SR, 0' Dowd BF. Modification of the Terminal Residue of Apelin-13 Antagonizes Its Hypotensive Action. Endocrinology, 2005; 146: 231-236.
    42. Medhurst AD, Jennings CA, Robbins MJ, Davis RP, Ellis C, Winborn KY, Lawrie KW, Hervieu G, Riley G, Bolaky JE, Herrity NC, Murdock P, Darker JG. Pharmacological and immunohistochemical characterization of the APJ receptor and its endogenous ligand apelin. J Neurochem, 2003;84(5): 1162- 1172.
    43. De Falco M, De Luca L, Onori N, Cavallotti I, Artigiano F, Esposito V, De Luca B, Laforgia V, Groeger AM, De Luca A. Apelin expression in normal human tissues. In Vivo, 2002:16 (5):333-336.
    44. HosoyaM, Kawamata Y, Fukusumi S, Fujii R, HabataY, Hinuma S, KitadaC, Honda S, Kurokawa T, Onda H, Nishimura 0, Fujino M. Molecular and functional characteristics of APJ:tissue distribution of mRNA and interaction with the endogenous ligand apelin. J Biol Chem, 2000, 275: 21061-21067.
    45. Kawamata Y, Habata Y, Fukusumi S, Hosoya M, Fujii R, Hinuma S, Nishizawa N, Kitada C, Onda H, Nishimura 0, Fujino M. Molecular properties of apelin: tissue distribution and receptor binding. Biochim Biophys Acta, 2001; 1538(2-3): 162-171.
    46. Cheng X, Cheng XS, Pang CC. Venous dilator effect of apelin, an endogenous peptide ligand for the orphan APJ receptor, in conscious rats. Eur J Pharmacol, 2003;470(3):171-175.
    47. Lee DK, Cheng R, Nguyen T, Fan T, Kariyawasam AP, Liu Y, Osmond DH, George SR, 0'Dowd BF. Characterization of apelin, the ligand for the APJ receptor. Journal of Neurochemistry, 2000,74:34-41.
    48. Tatemoto K, Takayama K, Zou MX, Kumaki I, Zhang W, Kumano K, Fujimiya M. The novel peptide apelin lowers blood pressure via a nitric oxide-dependent mechanism. Regul Pept, 2001, 99:87-92.
    49. Page IH. The mosaic theory of arterial hypertension: its interpretation.
     Perspect Biol Med, 1967;10:325-333.
    50.Dechow C, Morath C, Peters J,et al. Effects of all-trans retinoic acid on renin-angiotensin system in rats with experimental nephritis. Am J Physiol Renal Physiol, 2001;281(5):F909-919.
    51.LU L, Yao T, Zhu YZ. Huang GY, Cao YX, Zhu YC. Chronic all-trans retinoic acid treatment prevents medial thickening of intramyocardial and intrarenal arteries in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol, 2003;285:H1370-H1377.
    52. Miano JM, Kelly LA, Artacho CA, Nuckolls TA, Piantedosi R, Blaner WS. all-Trans-retinoic acid reduces neointimal formation and promotes favorable geometric remodeling of the rat carotid artery after balloon withdrawal injury. Circulation, 1998; 98(12): 1219-1227.
    53.Pan L, Gross KW. Transcriptional regulation of renin: an update. Hypertension, 2005;45(1):3-8.
    54. Wang HJ, Zhu YC, Yao T. Effects of all-trans retinoic acid on angiotensin II-induced myocyte hypertrophy. J Appl Physiol. 2002; 92(5): 2162-2168.
    55.Horn V, Minucci S, Ogryzko VV, Adamson ED, Howard BH, Levin AA, Ozato K. RAR and RXR selective ligands cooperatively induce apoptosis and neuronal differentiation in P19 embryonal carcinoma cells. FASEB J, 1996;10: 1071-1077.
    56.Huang DY, Furukawa A, Ichikawa Y. Molecular cloning of retinal oxidase/ aldehyde oxidase cDNAs from rabbit and mouse livers and functional expression of recombinant mouse retinal oxidase cDNA in Escherichia coli. Arch-Biochem Biophys, 1999;364(2):264-272.
    57. Neuville P, Bochaton-Piallat ML, Gabbiani G. Retinoids and arterial smooth muscle cells. Arterioscler Thromb Vasc Biol, 2000;20:1882-1888.
    58. Ross SA, McCaffery PJ, Drager UC, De Luca LM. Retinoids in embryonal development. Physiol Rev, 2000;80(3):1021-1054.
    59.Preston IR, Tang G, Tilan JU, Hill NS, Suzuki YJ. Retinoids and pulmonary hypertension. Circulation, 2005;111(6):782-90.
    60. Xu Q, Lucio-Cazana J, Kitamura M, Ruan X, Fine LG, Norman JT. Retinoids in nephrology: promises and pitfalls. Kidney Int, 2004;66(6):2119-31.
    61.Marill J, Idres N, Capron CC, Nguyen E, Chabot GC. Retinoic acid metabolism and mechanism of action: a review. Current Drug Metabolism. 2003;4:1-10.
    62. Sucov HM, Evans RM. Retinoic acid and retinoic acid receptors in development. Mol Neurobiol, 1995;10(2-3):169-184.
    63. Spanjaard RA, Ikeda M, Lee PJ, Charpentier B, Chin WW, Eberlein TJ. Specific activation of retinoic acid receptors (RARs) and retinoid X receptors reveals a unique role for RARgamma in induction of differentiation and apoptosis of S91 melanoma cells. J Biol Chem, 1997;272(30):18990-18999.
    64. Miano JM, Topouzis S, Majesky MW, Olson EN. Retinoid receptor expression and all-trans retinoic acid-mediated growth inhibition in vascular smooth muscle cells. Circulation, 1996;93 (10):1886-1895.
    65. Balmer JE, Blomhoff R. Gene expression regulation by retinoic acid. J. Lipid Res, 2002; 43(11): 1773-1808.
    66. Chambon P. A decade of molecular biology of retinoic acid receptors. FASEB J, 1996:10: 940-954.
    67. Katugampola SD, Davenport AP. Emerging roles for orphan G-protein- coupled receptors in the cardiovascular system. Trends Pharmacol Sci, 2003, 24:30-35.
    68. Haxsen V, Adam-Stitah S, Ritz E, Wagner J. Retinoids inhibit the actions of angiotensin II on vascular smooth muscle cells. Circ Res, 2001 ;88: 637-644.
    69.Takeda K, Ichiki T, Funakoshi Y, Ito K, Takeshita A. Downregulation of angiotensin II type 1 receptor by all-trans retinoic acid in vascular smooth muscle cells. Hypertension, 2000;35[part 2]:297-302.
    70. Jung R, Soondrum K, Neumaier M. Quantitative PCR. Clin Chem Lab Med, 2000, 38(9): 833-836.
    71.Kim DW. Real time quantitative PCR. Exp Mol Med. 2001, 33(Suppl 1): 101-109.
    72.Bustin SA. Absolute quantification of mRNA using real-time reverse
     transcription polymerase chain reaction assays. J Mol Endocrinol, 2000:25(2): 169-193.
    73. Ding C, Cantor CR. Quantitative analysis of nucleic acids——the last few years of progress. J Biochem Mol Biol, 2004, 37(1):1-10.
    74. Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res, 1996,6: 986-994.
    75.Giulietti A, Overbergh L, Valckx D, Decallonne B, Bouillon R, Mathieu C. An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods, 2001,25(4): 386-401.
    76.Schmittgen TD. Real-time quantitative PCR. Methods. 2001:25(4):383-385.
    77. Orlando C, Pinzani P, Pazzagli M. Developments in quantitative PCR. Clin Chem Lab Med, 1998, 36(5):255-269.
    78. Bustin SA. Review: Quantification of mRNA using real-time RT-PCR: trends and problems. J Mol Endocrinol, 2002,29 (1): 23-29.
    79. Tse C, Capeau J. Real time PCR methodology for quantification of nucleic acids. Ann Biol Clin (Paris), 2003, 61(3):279-293.
    80. Whelan JA, Russell NB, Whelan MA. A method for the absolute quantification of cDNA using real-time PCR. J Immunol Methods. 2003, 278 (1~2): 261-269.
    81.Bustin SA, Nolan T. Pitfalls of quantitative real-time reverse- transcription polymerase chain reaction. J Biomol Tech, 2004 15 (3): 155-166.
    82. Tichopad A, Dilger M, Schwarz G, Pfaffl MW. Standardized determination of real-time PCR efficiency from a single reaction set-up. Nucleic Acids Research, 2003, 31 (20): 122.
    83. Freeman WM, Walker SJ, VranaKE. Quantitative RT-PCR: pitfalls and potential. Biotechniques, 1999, 26(1):112-122.
    84. Boehm M, Nabel EG. Angiotensin-converting enzyme 2——a new cardiac regulator. N Engl J Med, 2002, 347(22):1795-1797.
    85. Danilczyk U, Eriksson U, Crackower MA, Penninger JM. A story of ACEs. J Mol Med, 2003:81(4): 227-234
    86. Warner FJ, Smith AI, Hooper NM, Turner AJ. Angiotensin-converting enzyme-2: a molecular and cellular perspective. Cell Mol Life Sci, 2004; 61(21): 2704- 2713.
    87. Chen JY, Penco S, Ostrowski J, Balaguer P, Pons M, Starrett JE, Reczek P, Chambon P, Gron-emeyer H. RAR-specific agonist/antagonists which dissociate transactivation and API transrepression inhibit anchorage- independent cell proliferation. Embo J, 1995:14:1187-1197.
    88.Farina AR, Masciulli MP, Tacconelli A, Cappabianca L, Santis GD, Gulino A, Mackay AR. All-trans-retinoic acid induces nuclear factor {kappa}B activation and matrix metalloproteinase-9 expression and enhances basement membrane invasivity of differentiation-resistant human SK-N-BE 9N neuroblastoma cells. Cell Growth Differ, 2002; 13 (8): 343-354.
    89. Zicha J, Kune J. Ontogenetic aspects of hypertension development: analysis in the rat. Physiol. Rev, 1999; 79(4): 1227-1282.
    90. Rosselli M, ImthurnB, Keller PJ, Jackson EK, Dubey RK. Circulating nitric oxide (nitrite/nitrate) concentrations in postmenopausal women substituted with 17β-estradiol and norethisterone acetate. A two-year follow-up study. Hypertension, 1995;25:848-853.
    91. Cheng YJ, Lotan R. Molecular cloning and characterization of a novel retinoic acid-inducible gene that encodes a putative G protein-coupled receptor. J Biol Chem, 1998;273(52): 35008-35015.
    92. Mic FA, Molotkov A, Benbrook DM, Duester G. Retinoid activation of retinoic acid receptor but not retinoid X receptor is sufficient to rescue lethal defect in retinoic acid synthesis. Proc Natl Acad Sci, 2003;100 (12):7135- 7140.
    93. Aranda A, Pascual A. Nuclear hormone receptors and gene expression. Physiol Rev, 2001;81(3):1269-1304.
    94.Towler P, Staker B, Prasad SG, Menon S, Tang J, Parsons T, Ryan D, Fisher M, Williams D, Dales NA, Patane MA, Pantoliano MW. ACE2 X-ray structures
     reveal a large hinge-bending motion important for inhibitor binding and catalysis. J Biol Chem, 2004;279(17):17996-8007.
    95. Zhang H, Wada J, Hida K, Tsuchiyama Y, Hiragushi K, Shikata K, Wang H, LinS, Kanwar YS, Makino H. Collectrin, a collecting duct-specific transmembrane glycoprotein, is a novel homolog of ACE2 and is developmentally regulated in embryonic kidneys. J Biol Chem, 2001, 276:17132-17139.
    96. Burrell LM, Risvanis J, Kubota E, Dean RG, MacDonald PS, Lu S, Tikellis C, Grant SL, Lew RA, Smith AI, Cooper ME, Johnston CI. Myocardial infarction increases ACE2 expression in rat and humans. Eur Heart J, 2005, 26(4): 369-375.
    97. Harmer D, Gilbert M, Borman R, Clark KL. Quantitative mRNA expression\ profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett, 2002:532(1-2):107-110.
    98. Huang LL, Sexton DJ, Skogerson K, Devlin M, Smith R, Sanyal I, Parry T, Kent R, Enright J, Wu QL, Conley G, DeOliveira D, Morganelli L, Ducar M, Wescott CR, Ladner RC. Novel peptide inhibitors of angiotensin-converting enzyme 2. J Biol Chem, 2003:278:15532-15540.
    99. Ishiyama Y, Gallagher PE, Averill DB, Tallant EA, Brosnihan KB, Ferrario CM. Upregulation of angiotensin-converting enzyme 2 after myocardial infarction by blockade of angiotensin II receptors. Hypertension, 2004;43: 970-976.
    100. Bernstein KE. Physiology: two ACEs and a heart. Nature, 2002;417: 799-802.
    101. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, StaglianoN, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE, Acton S. Heart block, ventricular tachycardia, and sudden death in ACE2 transgenic mice with downregulated connexins. J Mol Cell Cardiol, 2003, 35: 1043-1053.
    102. Romero JC, Reckelhoff JF. Role of angiotensin and oxidative stress in essential hypertension. Hypertension, 1999; 34: 943-949.
    103. Breitwieser GE. G Protein - coupled receptor oligomerization: implications for G protein activation and cell signaling. Circ Res, 2004, 94:17-27.
    104. Katugampola SD, Maguire JJ, Matthewson SR, Davenport AP. [(125)I]- (Pyr(1)
     Apelin-13 is a novel radioligand for localizing the APJ orphan receptor in human and rat tissues with evidence for a vasoconstrictor role in man. Br J Pharmacol, 2001;132(6):1255-1260.
    105. Simzar S, Rotunda AM, Craft N. Scrotal ulceration as a consequence of all-trans-retinoic acid (ATRA) for the treatment of acute promyelocytic leukemia. J Drugs Dermatol, 2005;4(2):231-232.
    106. Carey RM. Angiotensin type-1 receptor blockade increases ACE 2 expression in the heart. Hypertension. 2004;43(5):943-944.
    107. O'Dowd BF, Heiber M, Chan A, Heng HH, Tsui LC, Kennedy JL, Shi X, Petronis A, George SR, Nguyen T. A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene, 1993; 136(1-2): 355-360.
    108. Chen MM, Ashley EA, Deng DX, Tsalenko A, Deng A, Tabibiazar R, Ben-Dor A, Fenster B, Yang E, King JY, Fowler M, Robbins R, Johnson FL, Bruhn L, McDonagh T, Dargie H, Yakhini Z, Tsao PS, Quertermous T. Novel role for the potent endogenous inotrope apelin in human cardiac dysfunction. Circulation, 2003,108(9): 1432-1439.
    109. Berry MF, Pirolli TJ, Jayasankar V, Burdick J, Morine KJ, Gardner TJ, Woo YJ. Apelin has in vivo inotropic effects on normal and failing hearts. Circulation, 2004, 110(11 Suppl 1) :II187-193.
    110. Mota DN, Reaux-Le Goazigo A, El Messari S, Chartrel N, Roesch D, Dujardin C, Kordon C, Vaudry H, Moos F, Llorens-Cortes C. Apelin, a potent diuretic neuropeptide counteracting vasopressin actions through inhibition of vasopressin neuron activity and vasopressin release. Proc Natl Acad Sci USA, 2004, 101(28):10464-10469.
    111. Sunter D, Hewson AK, Dickson SL Intracerebroventricular injection of apelin-13 reduces food intake in the rat. Neurosci Lett, 2003;353(l): 1-4.
    112. Heximer SP, Knutsen RH, Sun XG, Kaltenbronn KM, Rhee MH, Peng N, Oliveira- dos-Santos A, Penninger JM, Muslin AJ, Steinberg TH, Wyss JM, Mecham RP,