乌司他丁肺灌注液在深低温体外循环中未成熟肺保护及microRNA表达谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     婴幼儿在经历过采用深低温低流量(DHLF)体外循环(CPB)转机方法的心脏手术后,由于多种病理生理原因,其肺损伤往往较年长儿严重,已成为患儿术后并发症的主要死因。近年来,有临床及实验报道,体外循环期间经肺动脉灌注肺保护液可减轻体外循环所造成的肺损伤。深低温低流量体外循环中未成熟肺损伤机制研究还不十分完善,在肺保护液的选择上尚无定论。目前,人们发现microRNA作为一类重要的基因调控因子在多种病理生理过程和疾病中发挥着多效作用。
     本研究中,我们从临床出发,通过建立稳定的乳猪深低温低流量体外循环模型,向肺动脉灌注乌司他丁肺保护液,探讨其对深低温低流量体外循环下未成熟肺脏的保护作用。并检测肺组织microRNA表达谱变化及对其潜在调控的靶基因和相关功能进行研究,进而为肺保护的研究提供理论依据。
     方法
     15只乳猪(14-21天,2.4-7.Okg)随机分为深低温低流量体外循环致肺损伤组(C组)、不含乌司他丁肺保护液灌注组(P组)、乌司他丁肺保护液灌注组(U组),各5例。均模拟临床操作建立体外循环模型。P组及U组于主动脉阻断心脏灌停后经肺动脉分别灌注不含乌司他丁肺保护液和乌司他丁肺保护液,C组无保护液灌注,主动脉阻断时间2小时期间使用深低温低流量(25℃,50ml/kg/min)转机1小时,维持循环稳定2小时。分别于CPB转机前,CPB停机、停机后1小时、2小时检测血流动力学指标,通气情况,血气变化,计算相关呼吸参数以比较和评价肺功能改变,同期各时间点抽取5ml肺静脉血离心后提取血清,实验结束后取右下肺组织匀浆离心提取上清,ELISA法测定血清及肺组织中肿瘤坏死因子a (TNF-αa),白细胞介素6(IL-6),白细胞介素10(IL-10),髓过氧化物(MPO),丙二醛(MDA),超氧化物歧化酶(SOD)含量,EMSA法检测肺组织中核转录因子kappa B(NF-κB)的活性,并对肺组织病理学评分、细胞凋亡情况、肺湿重干重比值进行比较。同时使用microRNA芯片技术对C组及U组肺组织miRNA表达与同龄同体重正常乳猪肺组织进行检测比较,筛选差异表达的microRNA,选取差异较明显的microRNA实时定量聚合酶链反应(qRT-PCR)进行验证。使用miRanda预测潜在靶基因,运用DAVID数据库对差异表达miRNA的可能靶基因进行Gene Ontology分析和KEGG信号通路分析,并以qRT-PCR和ELISA分别检测肺组织中可能靶基因的表达。
     结果
     DHLF-CPB模型建立稳定成功,所有乳猪均出现肺损伤,并无明显血流动力学差异。实验终点时U组中肺功能指标、病理学评分明显优于C组及P组,同时湿干比及凋亡细胞比例较该两组明显降低。ELISA结果显示U组在实验终点时肺静脉血清中TNF-α,IL-6,MPO水平明显低于C组及P组,IL。-10,SOD水平则明显高于C组及P组,肺组织中IL-6,MPO含量明显低于C组及P组,IL-10,SOD含量明显高于C组及P组。实验终点时血清中MDA表达及组织TNF α,MDA含量U组与P组相比无明显差异,但均明显低于C组。EMSA结果显示U组NF-κ B活性要明显低于C组及P组。
     通过miRNA microarray技术检测,同正常乳猪肺组织miRNA表达相比,C组中16个miRNAs,U组中8个miRNAs的表达发生了显著改变(P<0.05),运用荧光定量PCR对miR-21, miR-127, miR-145, miR-204表达进行验证,C组中,miR-127, miR-145,miR-204的水平明显降低,miR-21水平明显上升,U组除miR-204表达变化无统计学差异,其余miRNAs变化趋势与C组相同,具有统计学差异。与C组相比,U组miR-127,miR-204表达均抬高,miR-21表达降低。通过对miRanda预测的miRNA靶点进行归类分析,得到在体外循环肺损伤期间相关的重要通路,包括T细胞受体信号通路,P13K-Akt-NF-K B信号通路,RAS通路。预测靶基因磷脂酰肌醇3-激酶(PIK3CG)、血管紧张素转化酶(ACE)、前列腺素内过氧化物合酶2(PTGS2) PCR验证和ELISA检测结果均提示U组ACE、PTGS2表达水平及C组PIK3CG、ACE、PTGS2均明显升高。同时,U组ACE、PTGS2、PIK3CG表达水平均较C组显著降低。
     结论
     深低温低流量体外循环术后可造成严重的肺损伤,乌司他丁肺保护液能较好地改善未成熟肺肺功能指标,减轻炎性反应和氧化应激,减少肺内细胞凋亡,减轻肺损伤,可能与其抑制NF-K B活性有关。miRNA表达变化提示miRNA参与肺损伤和肺动脉灌注肺保护的过程。C组和U组肺组织中可能具有抑炎作用的miR-127,miR-145, miR-204表达下调与促炎作用的miR-21表达上调,提示miRNA参与肺损伤的作用机制与炎性反应、氧化应激密切相关。而U组中miRNA变化程度均小于C组,说明乌司他丁肺灌注液可调节相关miRNA达到肺保护的效果。通过对miRNA及其相关分子通路的发现将有助于今后我们对体外循环肺损伤机制研究及肺保护的研究。
Objective
     After cardiac surgery performed under deep hypothermia with low-flow (DHLF) cardiopulmonary bypass (CPB) in infants, the lung injury often becomes more severe than elder children driven by diverse pathogenic etiologies, which has always been a major cause of infant patients' death during the post-operation time. Previous studies reported the potential advantages of additional lung protective solution perfusion on alleviate lung injury during cardiac surgery with CPB. For now, the mechanism of DHLF-CPB induced lung injury is inconclusive, a suitable lung preservation solution is still required. Due to their pleiotropic actions, microRNAs (miRNAs) are potential candidates involved in a diverse pathophysiological processes and diseases via regulating gene expression.
     In this study, we mimicked clinical procedure and established a stable piglet model undergoing deep hypothermia with low-flow (DHLF) cardiopulmonary bypass (CPB) with pulmonary artery perfusion as a lung protective strategy, aimed to evaluate the protective efficacy of pulmonary artery perfusion with urinary trypsin inhibitor (UTI) on immature lung. Furthermore, we investigated the changed miRNAs and their potential target genes and relevant function in neonatal piglet lungs in response to DHLF-CPB and lung protection with pulmonary perfusion with ulinastatin, in order to provide theoretical basis for CPB related immature lung injury and lung protection solution improvement.
     Methods
     15piglets aged14-21day, weighting2.4-7.0kg were randomly divided into3groups, with5piglets in each group:DHLF-CPB related lung injury group (Group C), the pulmonary artery perfusion without ulinastatin group (Group P) and the pulmonary infusion with ulinastatin group (Group U). A systemic CPB flow was established via aortic cannula and venous cannula in the right atrial appendage via median sternotomy. In group P and U, lung protective solution without or with ulinastatin was perfused via pulmonary artery respectively after cardiac arrest was obtained by aortic cross clamp and antegrade St. Thomas'cardioplegia through the aortic root. The DHLF-CPB was performed for60minutes (25℃,50ml/kg/min) during in the2hours aortic cross-clamping. After the piglets weaned from CPB, then received another120min observation. The hemodynamics and respiratory indices, blood gas analysis were recorded at four defined time-points:before CPB, at the end of CPB, and60minutes,120minutes after CPB. Pulmonary venous blood was sampled at the same preceding time interval. Right lung lower lobe was harvested at the end of the study. The levels of cytokines (TNF-α, IL-6, MPO, MDA and SOD) in pulmonary venous serum and lung tissue and the activity of NF-kappa B in lung tissue were measured by enzyme-linked immunosorbent assay (ELISA) and elctrophoresis mobility shift assay (EMSA), respectively. Morphological comparison was assessed by light and electronic microscopy. A TUNEL technique was performed to evaluate the state of cell apoptosis in the lungs. The wet to dry ratio of lung tissue is calculated to assess the extent of tissue edema. We applied miRNA microarray and qRT-PCR analysis to compare the miRNA expression of group C and group U with normal piglets in lung tissue. Meanwhile, predicted mRNA targets were obtained from miRanda. Then the predicted mRNA target genes had a Gene Ontology analysis and KEGG analysis performed by DAVID to obtain the functional annotation and pathway mapping. qRT-PCR and ELISA are used for further validation for the chosen target genes.
     Results
     All the15piglets were accomplished CPB successfully with stable hemodynamics, and demonstrated a state of lung injury. While pulmonary artery perfusion with UTI significantly ameliorated lung function and histopathological changes and we found a decrease in W/D ratio and the number of TUNEL-positive apoptotic cells in group U lungs when compared with that in the other two group lungs. There is a great decrease in the serum levels of TNF-α,IL-6, MPO and lung tissue levels of IL-6, MPO in group U compared to group C and group P. Also, we found an increase in the level of IL-10, SOD in group U lungs compared with that in lungs and serum of group C and group P which correlated with a strongly inhibition in the activity of NF-κB. We found no significant difference between group U and group P in the concentration of MDA in pulmonary venous serum and level of TNF-α and MDA in lung tissue.
     Using miRNA microarray we identified that when compared to normal piglets, the expression of16miRNAs in group C,8miRNAs in group U were significantly changed (P<0.05). The qRT-PCR analyses verified up-regulation of miR-21and down-regulation of miR-127, miR-145miR-204in group C. The same trend was also found in group U except miR-204. But there are up-regulation of miR-127, miR-204and down-regulation of miR-21in group U when compared to group C.
     Target genes were cross-referenced to the molecular pathways after obtained from miRanda, suggesting that the differentially expressed miRNAs were related to series of important biology pathway related to CPB-induced lung injury, including T Cell receptor signaling pathway, PI3K-Akt-NF-κB signaling pathway and RAS signaling pathway. We performed qRT-PCR and ELISA of3putatively target genes ACE, PTGS2and PIK3CG for further validation. The results revealed that the expression of the3target genes were up-regulated in group C. And there is an up-regulation of ACE and PTGS2in group U. And the extent of up-regulation of the3target genes in group C was higher than group U. Conclusion Deep hypothermic low-flow cardiopulmonary bypass surgery can induce severe lung damage. Pulmonary artery perfusion with UTI ameliorated immature pulmonary injury in the lungs via inhibiting the activity of NF-κB to reduce the extent of oxidative shock, inflammatory response and apoptosis of cells.
     Our results showed that dynamic changes of miRNA expression in piglet lungs of DHLF-CPB induced immature lung injury and pulmonary perfusion with ulinastatin lung protective solution. The level of putative anti-inflammatory miRNA:miR-127, miR-145and miR-204down-regulated and putative pro-inflammatory miRNA:miR-21up-regulated in group C and group U indicated that miRNA involved in the process of lung injury with close correlation to inflammatory response and oxidative stress. While the degree of miRNA level change was lower in group U suggested that ulinastatin alleviated DHLF-CPB induced lung injury by regulate relevant miRNA. Moreover, by understanding how the changed miRNAs regulate lung injury may provide a basis for understanding the pathogenesis of DHLF-CPB induced immature lung injury and pave a way to develop a novel therapeutic approach for lung protection.
引文
[1]Schultz JM, Kararalou T, Swanson J, Shen I, Ungerleider RM. Hypothermic low-flow cardiopulmonary bypass impairs pulmonary and right ventricular function more than circulatory arrest[J]. Ann Thorac Surg, 2006;81(2):474-80; discussion 80.
    [2]Liu Y, Wang Q, Zhu X, et al. Pulmonary artery perfusion with protective solution reduces lung injury after cardiopulmonary bypass[J]. Ann Thorac Surg,2000; 69 (5):1402-7.
    [3]Santini F, Onorati F, Telesca M, et al. Selective pulmonary pulsatile perfusion with oxygenated blood during cardiopulmonary bypass attenuates lung tissue inflammation but does not affect circulating cytokine levels[J]. Eur J Cardiothorac Surg,2012;42(6):942-50.
    [4]王强,李晓峰,刘迎龙,等.两种用油酸诱导的幼猪急性肺损伤模型血流动力学变化的对比分析[J].心肺血管病杂志,2009;28(5):351-5.
    [5]严伟民,姜虹,陈万涛,等.大鼠LPS吸入性肺损伤模型制备的研究[J].组织工程与重建外科杂志,2010;6(2):96-100.
    [6]Choi DW. Bench to bedside:the glutamate connection[J]. Science, 1992;258(5080):241-3.
    [7]Geraghty J. Adenomatous polyposis coli and translational medicine[J]. Lancet,1996;348(9025):422.
    [8]Woolf SH. The meaning of translational research and why it matters[J]. JAMA:the journal of the American Medical Association,2008;299 (2):211-3.
    [9]Hamada Y, Kameyama Y, Narita H, Benson KT, Goto H. Protamine after heparin produces hypotension resulting from decreased sympathetic outflow secondary to increased nitric oxide in the central nervous system[J]. Anesthesia and analgesia,2005;100(1):33-7.
    [10]Rajek A, Lenhardt R, Sessler DI, et al. Efficacy of two methods for reducing postbypass afterdrop[J]. Anesthesiology,2000;92(2):447-56.
    [11]Kim WG, Yang JH. End-point temperature of rewarming after hypothermic cardiopulmonary bypass in pediatric patients[J]. Artif Organs, 2005:29(11):876-9.
    [12]Deakin CD, Petley GW, Smith D. Pharmacological vasodilatation improves efficiency of rewarming from hypothermic cardiopulmonary bypass[J]. British journal of anaesthesia,1998;81(2):147-51.
    [13]Sakamoto T, Nollert GD, Zurakowski D, et al. Hemodilution elevates cerebral blood flow and oxygen metabolism during cardiopulmonary bypass in piglets[J]. Ann Thorac Surg,2004;77(5):1656-63; discussion 63.
    [14]Gaynor JW. The effect of modified ultrafiltration on the postoperative course in patients with congenital heart disease[J]. Seminars in thoracic and cardiovascular surgery Pediatric cardiac surgery annual,2003;6(128-39.
    [15]Duffy JY, McLean KM, Lyons JM, Czaikowski AJ, Wagner CJ, Pearl JM. Modulation of nuclear factor-kappaB improves cardiac dysfunction associated with cardiopulmonary bypass and deep hypothermic circulatory arrest[J]. Crit Care Med,2009;37(2):577-83.
    [1]Ng CS, Wan S, Yim AP, Arifi AA. Pulmonary dysfunction after cardiac surgery[J]. Chest,2002;121 (4):1269-1277.
    [2]Apostolakis E, Filos KS, Koletsis E, Dougenis D. Lung dysfunction following cardiopulmonary bypass[J]. J Card Surg,2010;25 (1):47-55.
    [3]Milot J, Perron J, Lacasse Y, Letourneau L, Cartier PC, Maltais F. Incidence and predictors of ARDS after cardiac surgery [J]. Chest,2001; 119 (3):884-888.
    [4]Marelli AJ, Mackie AS, Ionescu-Ittu R, Rahme E, Pilote L. Congenital heart disease in the general population:changing prevalence and age distribution[J], Circulation,2007;115 (2):163-172.
    [5]Ungerleider RM. Practice patterns in neonatal cardiopulmonary bypass[J]. ASAIO J,2005;51 (6):813-815.
    [6]Schultz JM, Karamlou T, Swanson J, Shen I, Ungerleider RM. Hypothermic low-flow cardiopulmonary bypass impairs pulmonary and right ventricular function more than circulatory arrest[J]. Ann Thorac Surg,2006;81 (2):474-480; discussion 480.
    [7]Qiu W, Zheng L, Gu H, Chen D, Chen Y. Comparison between adult and infant lung injury in a rabbit ischemia-reperfusion model[J]. J Thorac Cardiovasc Surg,2008;136 (2):352-359.
    [8]Paparella D, Yau TM, Young E. Cardiopulmonary bypass induced inflammation:pathophysiology and treatment. An update[J]. Eur J Cardiothorac Surg,2002;21 (2):232-244.
    [9]Su ZK, Sun Y, Yang YM, Zhang HB, Xu ZW. Lung function after deep hypothermic cardiopulmonary bypass in infants[J]. Asian Cardiovasc Thorac Ann,2003; 11 (4):328-331.
    [10]de Perrot M, Liu M, Waddell TK, Keshavjee S. Ischemia-reperfusion-induced lung injury[J]. Am J Respir Crit Care Med,2003;167 (4):490-511.
    [11]Chai PJ, Williamson JA, Lodge AJ, et al. Effects of ischemia on pulmonary dysfunction after cardiopulmonary bypass[J]. Ann Thorac Surg, 1999;67 (3):731-735.
    [12]Ng CS, Wan S, Arifi AA, Yim AP. Inflammatory response to pulmonary ischemia-reperfusion injury[J]. Surg Today,2006;36 (3):205-214.
    [13]Pratt CW, Swaim MW, Pizzo SV. Inflammatory cells degrade inter-alpha inhibitor to liberate urinary proteinase inhibitors [J]. Journal of leukocyte biology,1989;45 (1):1-9.
    [14]Umeadi C, Kandeel F, Al-Abdullah IH. Ulinastatin is a novel protease inhibitor and neutral protease activator[J]. Transplant Proc,2008;40 (2):387-389.
    [15]Xu M, Wen XH, Chen SP, An XX, Xu HY. Addition of ulinastatin to preservation solution promotes protection against ischemia-reperfusion injury in rabbit lung[J]. Chin Med J (Engl),2011;124 (14):2179-2183.
    [16]陈宝俊,孙明,邵峻,王东进.经肺动脉持续灌注低温含氧血及乌司他丁对肺的保护作用[J].实用医学杂志,2011;27(10):1765-1767.
    [17]Matute-Bello G, Downey G, Moore BB, et al. An official American Thoracic Society workshop report:features and measurements of experimental acute lung injury in animals[J]. American journal of respiratory cell and molecular biology,2011;44 (5):725-738.
    [18]Levy JH, Tanaka KA. Inflammatory response to cardiopulmonary bypass[J]. Ann Thorac Surg,2003;75 (2):S715-720.
    [19]Gu YJ, Boonstra PW, Graaff R, Rijnsburger AA, Mungroop H, van Oeveren W. Pressure drop, shear stress, and activation of leukocytes during cardiopulmonary bypass:a comparison between hollow fiber and flat sheet membrane oxygenators[J]. Art if Organs,2000;24 (1):43-48.
    [20]Zoban P, Cerny M. Immature lung and acute lung injury[J]. Physiological research/Academia Scientiarum Bohemoslovaca,2003;52 (5):507-516.
    [21]Vidal Melo MF. Clinical respiratory physiology of the neonate and infant with congenital heart disease[J]. International anesthesiology clinics,2004;42 (4):29-43.
    [22]el Habbal MH, Carter H, Smith LJ, Elliott MJ, Strobel S. Neutrophil activation in paediatric extracorporeal circuits:effect of circulation and temperature variation[J]. Cardiovascular research,1995;29 (1):102-107.
    [23]Newburger JW, Jonas RA, Wernovsky G, et al. A comparison of the perioperative neurologic effects of hypothermic circulatory arrest versus low-flow cardiopulmonary bypass in infant heart surgery[J]. N Engl J Med, 1993;329 (15):1057-1064.
    [24]Tassani P, Barankay A, Haas F, et al. Cardiac surgery with deep hypothermic circulatory arrest produces less systemic inflammatory response than low-flow cardiopulmonary bypass in newborns[J]. J Thorac Cardiovasc Surg,2002;123 (4):648-654.
    [25]Suzuki T, Fukuda T, Ito T, Inoue Y, Cho Y, Kashima I. Continuous pulmonary perfusion during cardiopulmonary bypass prevents lung injury in infants[J]. Ann Thorac Surg,2000;69 (2):602-606.
    [26]Gabriel EA, Fagionato Locali R, Katsumi Matsuoka P, et al. Lung perfusion during cardiac surgery with cardiopulmonary bypass:is it necessary?[J]. Interact Cardiovasc Thorac Surg,2008;7 (6):1089-1095.
    [27]Zhang R, Wang Z, Wang H, Song H, Zhang N, Fang M. Optimal pulmonary artery perfusion mode and perfusion pressure during cardiopulmonary bypass[J]. J Cardiovasc Surg (Torino),2010;51 (3):435-442.
    [28]Liu Y, Wang Q, Zhu X, et al. Pulmonary artery perfusion with protective solution reduces lung injury after cardiopulmonary bypass [J]. Ann Thorac Surg,2000;69 (5):1402-1407.
    [29]Siepe M, Goebel U, Mecklenburg A, et al. Pulsatile pulmonary perfusion during cardiopulmonary bypass reduces the pulmonary inflammatory response[J]. Ann Thorac Surg,2008;86 (1):115-122.
    [30]Bromke BJ, Kueppers F. The major urinary protease inhibitor: simplified purification and characterization[J]. Biochemical medicine, 1982; 27 (1):56-67.
    [31]潘成,虞惠康,罗月娥.注射用乌司他丁[J].中国新药杂志,2000;9:123-124.
    [32]Ito K, Mizutani A, Kira S, Mori M, Iwasaka H, Noguchi T. Effect of Ulinastatin, a human urinary trypsin inhibitor, on the oleic acid-induced acute lung injury in rats via the inhibition of activated leukocytes[J]. Injury,2005; 36 (3):387-394.
    [33]Ren B, Wu H, Zhu J, et al. Ulinastatin attenuates lung ischemia-reperfusion injury in rats by inhibiting tumor necrosis factor alpha[J]. Transplant Proc,2006;38 (9):2777-2779.
    [34]Nakanishi K, Takeda S, Sakamoto A, Kitamura A. Effects of ulinastatin treatment on the cardiopulmonary bypass-induced hemodynamic instability and pulmonary dysfunction[J]. Crit Care Med,2006;34 (5):1351-1357.
    [35]张剑蔚,陈煜,朱明,顾洪斌.不同剂量乌司他丁在婴幼儿体外循环中的肺保护作用[J].上海第二医科大学学报,2004:24(11):933-935.
    [36]王显悦,毕生辉,王晓武,张卫达,梅鲁刚,梁爱琼,徐宇,金振晓.乌司他丁对法洛四联症根治术婴幼儿的心肺保护作用[J]. 中国体外循环杂志,2012;10(4):203-206.
    [37]Chao YK, Wu YC, Yang KJ, et al. Pulmonary Perfusion With L-Arginine Ameliorates Post-Cardiopulmonary Bypass Lung Injury in a Rabbit Model[J]. J Surg Res,2009.
    [38]Omasa M, Fukuse T, Toyokuni S, et al. Glycine ameliorates lung reperfusion injury after cold preservation in an ex vivo rat lung model [J]. Transplantation,2003;75 (5):591-598.
    [39]Bouter H, Schippers EF, Luelmo SA, et al. No effect of preoperative selective gut decontamination on endotoxemia and cytokine activation during cardiopulmonary bypass:a randomized, placebo-controlled study[J]. Crit Care Med,2002; 30 (1):38-43.
    [40]Kim YH, Ko WS, Ha MS, et al. The production of nitric oxide and TNF-alpha in peritoneal macrophages is inhibited by Dichroa febrifuga Lour[J]. Journal of ethnopharmacology,2000;69 (1):35-43.
    [41]Joyce DA, Gibbons DP, Green P, Steer JH, Feldmann M, Brennan FM. Two inhibitors of pro-inflammatory cytokine release, interleukin-10 and interleukin-4, have contrasting effects on release of soluble p75 tumor necrosis factor receptor by cultured monocytes[J]. European journal of immunology,1994;24 (11):2699-2705.
    [42]Franke A, Lante W, Fackeldey V, et al. Proinflammatory and antiinflammatory cytokines after cardiac operation:different cellular sources at different times[J]. Ann Thorac Surg,2002;74 (2):363-370; discussion 370-361.
    [43]Donnelly SC, Strieter RM, Reid PT, et al. The association between mortality rates and decreased concentrations of interleukin-10 and interleukin-1 receptor antagonist in the lung fluids of patients with the adult respiratory distress syndrome[J]. Annals of internal medicine, 1996;125 (3):191-196.
    [44]Cao YZ, Tu YY, Chen X, Wang BL, Zhong YX, Liu MH. Protective effect of Ulinastatin against murine models of sepsis:inhibition of TNF-alpha and IL-6 and augmentation of IL-10 and IL-13[J]. Experimental and toxicologic pathology:official journal of the Gesellschaft fur Toxikologische Pathologie,2012;64 (6):543-547.
    [45]Dempsey PW, Doyle SE, He JQ, Cheng G. The signaling adaptors and pathways activated by TNF superfamily[J]. Cytokine & growth factor reviews, 2003;14 (3-4):193-209.
    [46]Yoshidome H, Kato A, Edwards MJ, Lentsch AB. Interleukin-10 inhibits pulmonary NF-kappaB activation and lung injury induced by hepatic ischemia-reperfusion[J]. The American journal of physiology,1999;277 (5 Pt 1):L919-923.
    [47]Aosasa S, Ono S, Mochizuki H, Tsujimoto H, Ueno C, Matsumoto A. Mechanism of the inhibitory effect of protease inhibitor on tumor necrosis factor alpha production of monocytes[J]. Shock,2001;15 (2):101-105.
    [48]Eppinger MJ, Jones ML, Deeb GM, Bolling SF, Ward PA. Pattern of injury and the role of neutrophils in reperfusion injury of rat lung[J]. J Surg Res,1995;58 (6):713-718.
    [49]Grommes J, Soehnlein 0. Contribution of neutrophils to acute lung injury[J]. Molecular medicine,2011;17 (3-4):293-307.
    [50]Fang WF, Cho JH, He Q, et al. Lipid A fraction of LPS induces a discrete MAPK activation in acute lung injury[J]. Am J Physiol Lung Cell Mol Physiol,2007;293 (2):L336-344.
    [51]Zhou W, Zeng D, Chen R, et al. Limb ischemic preconditioning reduces heart and lung injury after an open heart operation in infants [J]. Pediatr Cardiol,2010; 31 (1):22-29.
    [52]Kotecha S. Lung growth:implications for the newborn infant[J]. Arch Dis Child Fetal Neonatal Ed,2000;82 (1):F69-74.
    [53]Sugita T, Watarida S, Katsuyama K, Nakajima Y, Yamamoto R, Mori A. Effect of a human urinary protease inhibitor (Ulinastatin) on respiratory function in pediatric patients undergoing cardiopulmonary bypass[J]. J Cardiovasc Surg (Torino),2002;43 (4):437-440.
    [1]Santos AR, Heidemann SM, Walters HL,3rd, Delius RE. Effect of inhaled corticosteroid on pulmonary injury and inflammatory mediator production after cardiopulmonary bypass in children[J]. Pediatric critical care medicine:a journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies, 2007;8 (5):465-469.
    [2]Suzuki T, Fukuda T, Ito T, Inoue Y, Cho Y, Kashima I. Continuous pulmonary perfusion during cardiopulmonary bypass prevents lung injury in infants[J]. Ann Thorac Surg,2000;69 (2):602-606.
    [3]Kirklin JK, Westaby S, Blackstone EH, Kirklin JW, Chenoweth DE, Pacifico AD. Complement and the damaging effects of cardiopulmonary bypass[J]. J Thorac Cardiovasc Surg,1983;86 (6):845-857.
    [4]Diegeler A, Doll N, Rauch T, et al. Humoral immune response during coronary artery bypass grafting:A comparison of limited approach, "off-pump" technique, and conventional cardiopulmonary bypass[J]. Circulation, 2000;102 (19 Suppl 3):III95-100.
    [5]Ambros V. microRNAs:tiny regulators with great potential[J]. Cell, 2001;107 (7):823-826.
    [6]He L, Hannon GJ. MicroRNAs:small RNAs with a big role in gene regulation[J]. Nature reviews Genetics,2004;5 (7):522-531.
    [7]Tsitsiou E, Lindsay MA. microRNAs and the immune response[J]. Current opinion in pharmacology,2009;9 (4):514-520.
    [8]Androulidaki A, Iliopoulos D, Arranz A, et al. The kinase Aktl controls macrophage response to lipopolysaccharide by regulating microRNAs[J]. Immunity,2009;31 (2):220-231.
    [9]Weiss JB, Eisenhardt SU, Stark GB, Bode C, Moser M, Grundmann S. MicroRNAs in ischemia-reperfusion injury[J]. American journal of cardiovascular disease,2012;2 (3):237-247.
    [10]Cai ZG, Zhang SM, Zhang Y, Zhou YY, Wu HB, Xu XP. MicroRNAs are dynamically regulated and play an important role in LPS-induced lung injury[J]. Canadian journal of physiology and pharmacology,2012;90 (1):37-43.
    [11]Vaporidi K, Vergadi E, Kaniaris E,et al. Pulmonary microRNA profiling in a mouse model of ventilator-induced lung injury[J]. Am J Physiol Lung Cell Mol Physiol,2012;303 (3):L199-207.
    [12]He T, Feng G, Chen H, Wang L, Wang Y. Identification of host encoded microRNAs interacting with novel swine-origin influenza A (H1N1) virus and swine influenza virus[J]. Bioinformation,2009;4 (3):112-118.
    [13]Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA.org resource:targets and expression[J]. Nucleic acids research,2008;36 (Database issue):D149-153.
    [14]Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase:microRNA sequences, targets and gene nomenclature[J]. Nucleic acids research,2006;34 (Database issue):D140-144.
    [15]Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nature protocols,2009;4 (1):44-57.
    [16]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods,2001;25 (4):402-408.
    [17]Boggs RM, Wright ZM, Stickney MJ, Porter WW, Murphy KE. MicroRNA expression in canine mammary cancer[J]. Mammalian genome:official journal of the International Mammalian Genome Society,2008;19 (7-8):561-569.
    [18]Mortarino M, Gioia G, Gelain ME, et al. Identification of suitable endogenous controls and differentially expressed microRNAs in canine fresh-frozen and FFPE lymphoma samples[J]. Leukemia research,2010;34 (8):1070-1077.
    [19]Ambros V. The functions of animal microRNAs[J]. Nature,2004;431 (7006):350-355.
    [20]Cordes KR, Sheehy NT, White MP, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity[J]. Nature,2009;460 (7256):705-710.
    [21]Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing[J]. Cell,2005;123 (4):631-640.
    [22]Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell,2004;116 (2):281-297.
    [23]Wang X, Xu X, Ma Z, et al. Dynamic mechanisms for pre-miRNA binding and export by Exportin-5[J]. Rna,2011;17 (8):1511-1528.
    [24]Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs:are the answers in sight?[J]. Nature reviews Genetics,2008;9 (2):102-114.
    [25]Cissell KA, Deo SK. Trends in microRNA detection[J]. Analytical and bioanalytical chemistry,2009;394 (4):1109-1116.
    [26]Chen Y, Gel fond JA, McManus LM, Shireman PK. Reproducibility of quantitative RT-PCR array in miRNA expression profiling and comparison with microarray analysis[J]. BMC genomics,2009;10:407.
    [27]Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets in Drosophila[J]. Genome biology,2003;5 (1):R1.
    [28]Ashburner M, Ball CA, Blake JA, et al. Gene ontology:tool for the unification of biology. The Gene Ontology Consortium[J]. Nature genetics, 2000;25 (1):25-29.
    [29]Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets[J]. Nucleic acids research,2012;40 (Database issue):D109-114.
    [30]Dennis G, Jr., Sherman BT, Hosack DA, et al. DAVID:Database for Annotation, Visualization, and Integrated Discovery[J]. Genome biology, 2003;4 (5):P3.
    [31]Izzotti A, Calin GA, Arrigo P, Steele VE, Croce CM, De Flora S. Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke[J]. FASEB J,2009;23 (3):806-812.
    [32]Esquela-Kerscher A, Trang P, Wiggins JF, et al. The let-7 microRNA reduces tumor growth in mouse models of lung cancer[J]. Cell cycle,2008;7 (6):759-764.
    [33]Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family[J]. Cell,2005;120 (5):635-647.
    [34]Krell J, Frampton AE, Jacob J, et al. The clinico-pathologic role of microRNAs miR-9 and miR-151-5p in breast cancer metastasis[J]. Molecular diagnosis & therapy,2012;16 (3):167-172.
    [35]Epis MR, Giles KM, Barker A, Kendrick TS, Leedman PJ. miR-331-3p regulates ERBB-2 expression and androgen receptor signaling in prostate cancer[J]. J Biol Chem,2009;284 (37):24696-24704.
    [36]Wu ZS, Wu Q, Wang CQ, et al. MiR-339-5p inhibits breast cancer cell migration and invasion in vitro and may be a potential biomarker for breast cancer prognosis[J]. BMC cancer,2010;10:542.
    [37]Shatseva T, Lee DY, Deng Z, Yang BB. MicroRNA miR-199a-3p regulates cell proliferation and survival by targeting caveolin-2[J]. J Cell Sci, 2011;124 (Pt 16):2826-2836.
    [38]Corsten MF, Dennert R, Jochems S, et al. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease[J]. Circulation Cardiovascular genetics,2010;3 (6):499-506.
    [39]Arora P, Wu C, Khan AM, et al. Atrial natriuretic peptide is negatively regulated by microRNA-425[J]. The Journal of clinical investigation,2013;123 (8):3378-3382.
    [40]Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation[J]. Science,2004;303 (5654):83-86.
    [41]Tang JT, Wang JL, Du W, et al. MicroRNA 345, a methylation-sensitive microRNA is involved in cell proliferation and invasion in human colorectal cancer[J]. Carcinogenesis,2011;32 (8):1207-1215.
    [42]Lee H, Park CS, Deftereos G, et al. MicroRNA expression in ovarian carcinoma and its correlation with clinicopathological features[J]. World journal of surgical oncology,2012;10:174.
    [43]Yamamoto Y, Yoshioka Y, Minoura K, et al. An integrative genomic analysis revealed the relevance of microRNA and gene expression for drug-resistance in human breast cancer cells[J]. Molecular cancer,2011;10:135.
    [44]Podolska A, Anthon C, Bak M, et al. Profiling microRNAs in lung tissue from pigs infected with Actinobacillus pleuropneumoniae[J]. BMC genomics,2012;13:459.
    [45]Huang Y, Chuang AY, Ratovitski EA. Phospho-DeltaNp63alpha/miR-885-3p axis in tumor cell life and cell death upon cisplatin exposure [J]. Cell cycle,2011;10 (22):3938-3947.
    [46]Xie T, Liang J, Liu N, et al. MicroRNA-127 inhibits lung inflammation by targeting IgG Fcgamma receptor I[J], J Immunol,2012;188 (5):2437- 2444.
    [47]Medina-Tato DA, Ward SG, Watson ML. Phosphoinositide 3-kinase signalling in lung disease:leucocytes and beyond[J]. Immunology, 2007;121 (4):448-461.
    [48]Yum HK, Arcaroli J, Kupfner J, et al. Involvement of phosphoinositide 3-kinases in neutrophil activation and the development of acute lung injury[J]. J Immunol,2001;167 (11):6601-6608.
    [49]Kim SJ, Yoo KY, Jeong CW, et al. Urinary trypsin inhibitors afford cardioprotective effects through activation of PI3K-Akt and ERK signal transduction and inhibition of p38 MAPK and JNK[J]. Cardiology,2009;114 (4):264-270.
    [50]王焰斌,王小雷,陈伟新,翟宇佳,程毅坚,杨建安.PI3K/Akt信号转导通路在乌司他丁后处理减轻CPB下心脏瓣膜置换术患者心肌细胞凋亡中的作用[J].中华麻醉学杂志,2013:33(6):653-656.
    [51]Starczynowski DT, Kuchenbauer F, Argiropoulos B, et al. Identification of miR-145 and miR-146a as mediators of the 5q-syndrome phenotype[J]. Nature medicine,2010;16 (1):49-58.
    [52]Boettger T, Beetz N, Kostin S, et al. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mirl43/145 gene cluster [J]. The Journal of clinical investigation,2009;119 (9):2634-2647.
    [53]De Mello WC, Danser AH. Angiotensin II and the heart:on the intracrine renin-angiotensin system[J]. Hypertension,2000;35 (6):1183-1188.
    [54]Brasier AR, Recinos A,3rd, Eledrisi MS. Vascular inflammation and the renin-angiotensin system[J]. Arteriosclerosis, thrombosis, and vascular biology,2002;22 (8):1257-1266.
    [55]Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure[J]. Nature,2005;436 (7047):112-116.
    [56]Fischer S, Maclean AA, Liu M, Kalirai B, Keshavjee S. Inhibition of angiotensin-converting enzyme by captopril:a novel approach to reduce ischemia-reperfusion injury after lung transplantation[J]. J Thorac Cardiovasc Surg,2000;120 (3):573-580.
    [57]Wosten-van Asperen RM, Lutter R, Haitsma JJ, et al. ACE mediates ventilator-induced lung injury in rats via angiotensin II but not bradykinin[J]. Eur Respir J,2008;31 (2):363-371.
    [58]Wosten-van Asperen RM, Lutter R, Specht PA, et al. Ventilator-induced inflammatory response in lipopolysaccharide-exposed rat lung is mediated by angiotensin-converting enzyme[J]. Am J Pathol,2010;176 (5):2219-2227.
    [59]Liu R, Qi H, Wang J, et al. Ulinastatin activates the renin-angiotensin system to ameliorate the pathophysiology of severe acute pancreatitis[J]. Journal of gastroenterology and hepatology,2014.
    [60]Xiao J, Zhu X, He B, et al. MiR-204 regulates cardiomyocyte autophagy induced by ischemia-reperfusion through LC3-II[J]. Journal of biomedical science,2011;18:35.
    [61]Wu KK. Inducible cyclooxygenase and nitric oxide synthase[J]. Advances in pharmacology,1995;33:179-207.
    [62]Fosslien E. Biochemistry of cyclooxygenase (COX)-2 inhibitors and molecular pathology of COX-2 in neoplasia[J]. Critical reviews in clinical laboratory sciences,2000;37 (5):431-502.
    [63]Ermert L, Ermert M, Goppelt-Struebe M, et al. Cyclooxygenase isoenzyme localization and mRNA expression in rat lungs[J]. American journal of respiratory cell and molecular biology,1998;18 (4):479-488.
    [64]Hocherl K, Dreher F, Kurtz A, Bucher M. Cyelooxygenase-2 inhibition attenuates lipopolysaccharide-induced cardiovascular failure[J]. Hypertension,2002;40 (6):947-953.
    [65]Niitsu T, Tsuchida S, Peltekova V, et al. Cyclooxygenase inhibition in ventilator-induced lung injury[J]. Anesthesia and analgesia,2011;112 (1):143-149.
    [66]Sung YH, Shin MS, Ko IG, et al. Ulinastatin suppresses lipopolysaccharide-induced prostaglandin E2 synthesis and nitric oxide production through the downregulation of nuclear factorkappaB in BV2 mouse microglial cells[J]. International journal of molecular medicine, 2013;31 (5):1030-1036.
    [67]Kobayashi H, Sun GW, Terao T. Urinary trypsin inhibitor down-regulates hyaluronic acid fragment-induced prostanoid release in cultured human amnion cells by inhibiting cyclo-oxygenase-2 expression[J]. Molecular human reproduction,1999;5 (7):662-667.
    [68]Lu TX, Munitz A, Rothenberg ME. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression[J]. J Immunol,2009;182 (8):4994-5002.
    [69]Sonkoly E, Wei T, Janson PC, et al. MicroRNAs:novel regulators involved in the pathogenesis of psoriasis?[J]. PloS one,2007;2 (7):e610.
    [70]Zhou J, Wang KC, Wu W, et al. MicroRNA-21 targets peroxisome proliferators-activated receptor-alpha in an autoregulatory loop to modulate flow-induced endothelial inflammation[J]. Proc Natl Acad Sci U S A,2011;108 (25):10355-10360.
    [71]Lu Q, Harrington EO, Jackson H, Morin N, Shannon C, Rounds S. Transforming growth factor-betal-induced endothelial barrier dysfunction involves Smad2-dependent p38 activation and subsequent RhoA activation[J]. Journal of applied physiology,2006;101 (2):375-384.
    [72]Dhainaut JF, Charpentier J, Chiche JD. Transforming growth factor-beta:a mediator of cell regulation in acute respiratory distress syndrome[J]. Crit Care Med,2003;31 (4 Suppl):S258-264.
    [1]Paparella D, Yau TM, Young E. Cardiopulmonary bypass induced inflammation:pathophysiology and treatment. An update[J]. Eur J Cardiothorac Surg,2002;21 (2):232-244.
    [2]Ascione R, Lloyd CT, Underwood MJ, Lotto AA, Pitsis AA, Angelini GD. Inflammatory response after coronary revascularization with or without cardiopulmonary bypass[J]. Ann Thorac Surg,2000;69 (4):1198-1204.
    [3]Wan S, Izzat MB, Lee TW, Wan IY, Tang NL, Yim AP. Avoiding cardiopulmonary bypass in multivessel CABG reduces cytokine response and myocardial injury[J]. Ann Thorac Surg,1999;68 (1):52-56; discussion 56-57.
    [4]Kirklin JK, Westaby S, Blackstone EH, Kirklin JW, Chenoweth DE, Pacifico AD. Complement and the damaging effects of cardiopulmonary bypass[J]. J Thorac Cardiovasc Surg,1983;86 (6):845-857.
    [5]Frering B, Philip I, Dehoux M, Rolland C, Langlois JM, Desmonts JM. Circulating cytokines in patients undergoing normothermic cardiopulmonary bypass[J]. J Thorac Cardiovasc Surg,1994;108 (4):636-641.
    [6]Finn A, Naik S, Klein N, Levinsky RJ, Strobel S, Elliott M. Interleukin-8 release and neutrophil degranulation after pediatric cardiopulmonary bypass[J]. J Thorac Cardiovasc Surg,1993;105 (2):234-241.
    [7]Buckley CD, Rainger GE, Bradfield PF, Nash GB, Simmons DL. Cell adhesion:more than just glue (review)[J]. Molecular membrane biology, 1998; 15 (4):167-176.
    [8]Shappell SB, Toman C, Anderson DC, Taylor AA, Entman ML, Smith CW. Mac-1 (CDllb/CD18) mediates adherence-dependent hydrogen peroxide production by human and canine neutrophils[J]. J Immunol,1990;144 (7):2702-2711.
    [9]Muller WA. Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response[J]. Trends in immunology, 2003;24 (6):327-334.
    [10]Howard RJ, Crain C, Franzini DA, Hood CI, Hugli TE. Effects of cardiopulmonary bypass on pulmonary leukostasis and complement activation[J]. Archives of surgery,1988;123 (12):1496-1501.
    [11]Schlensak C, Doenst T, Preusser S, Wunderlich M, Kleinschmidt M, Beyersdorf F. Bronchial artery perfusion during cardiopulmonary bypass does not prevent ischemia of the lung in piglets:assessment of bronchial artery blood flow with fluorescent microspheres[J]. Eur J Cardiothorac Surg,2001;19 (3):326-331; disciussion 331-322.
    [12]Dreyer WJ, Michael LH, Millman EE, Berens KL. Neutrophil activation and adhesion molecule expression in a canine model of open heart surgery with cardiopulmonary bypass[J]. Cardiovascular research,1995;29 (6):775-781.
    [13]Royston D, Fleming JS, Desai JB, Westaby S, Taylor KM. Increased production of peroxidation products associated with cardiac operations. Evidence for free radical generation[J]. J Thorac Cardiovasc Surg,1986; 91 (5):759-766.
    [14]Gu YJ, Wang YS, Chiang BY, Gao XD, Ye CX, Wildevuur CR. Membrane oxygenator prevents lung reperfusion injury in canine cardiopulmonary bypass[J]. Ann Thorac Surg,1991;51 (4):573-578.
    [15]Chai PJ, Williamson JA, Lodge AJ, et al. Effects of ischemia on pulmonary dysfunction after cardiopulmonary bypass[J]. Ann Thorac Surg, 1999;67 (3):731-735.
    [16]Friedman M, Sellke FW, Wang SY, Weintraub RM, Johnson RG. Parameters of pulmonary injury after total or partial cardiopulmonary bypass[J]. Circulation,1994;90 (5 Pt 2):II262-268.
    [17]Kuratani T, Matsuda H, Sawa Y, Kaneko M, Nakano S, Kawashima Y. Experimental study in a rabbit model of ischemia-reperfusion lung injury during cardiopulmonary bypass[J]. J Thorac Cardiovasc Surg,1992;103 (3):564-568.
    [18]Jaggers JJ, Forbess JM, Shah AS, et al. Extracorporeal membrane oxygenation for infant postcardiotomy support:significance of shunt management[J]. Ann Thorac Surg,2000;69 (5):1476-1483.
    [19]Drew CE, Anderson IM. Profound hypothermia in cardiac surgery:report of three cases[J]. Lancet,1959;1 (7076):748-750.
    [20]Richter JA, Meisner H, Tassani P, Barankay A, Dietrich W, Braun SL. Drew-Anderson technique attenuates systemic inflammatory response syndrome and improves respiratory function after coronary artery bypass grafting[J]. Ann Thorac Surg,2000;69 (1):77-83.
    [21]Mendler N, Heimisch W, Schad H. Pulmonary function after biventricular bypass for autologous lung oxygenation[J]. Eur J Cardiothorac Surg,2000;17 (3):325-330.
    [22]孔祥,黄惠民,马良龙,范慧敏,赵曙光,刘中民.双心室体外循环的肺保护作用[J].同济大学学报(医学版),2007:28(5):102-106.
    [23]Serraf A, Robotin M, Bonnet N, et al. Alteration of the neonatal pulmonary physiology after total cardiopulmonary bypass[J]. J Thorac Cardiovasc Surg,1997;114 (6):1061-1069.
    [24]Nakamoto K, Maeda M, Taniguchi K, Tsubota N, Kawashima Y. A study on optimal temperature for isolated lung preservation[J]. Ann Thorac Surg, 1992;53 (1):101-108.
    [25]Siepe M, Goebel U, Mecklenburg A, et al. Pulsatile pulmonary perfusion during cardiopulmonary bypass reduces the pulmonary inflammatory response[J]. Ann Thorac Surg,2008;86 (1):115-122.
    [26]Suzuki T, Fukuda T, Ito T, Inoue Y, Cho Y, Kashima I. Continuous pulmonary perfusion during cardiopulmonary bypass prevents lung injury in infants[J]. Ann Thorac Surg,2000;69 (2):602-606.
    [27]Gabriel EA, Fagionato Locali R, Katsumi Matsuoka P, et al. Lung perfusion during cardiac surgery with cardiopulmonary bypass:is it necessary?[J]. Interact Cardiovasc Thorac Surg,2008;7 (6):1089-1095.
    [28]Zheng JH, Xu ZW, Wang W, et al. Lung perfusion with oxygenated blood during aortic clamping prevents lung injury [J]. Asian Cardiovasc Thorac Ann,2004; 12 (1):58-60.
    [29]Sakata J, Morishita K, Ito T, Koshino T, Kazui T, Abe T. Comparison of clinical outcome between histidine-triptophan-ketoglutalate solution and cold blood cardioplegic solution in mitral valve replacement[J]. J Card Surg,1998;13 (1):43-47.
    [30]Yamazaki F, Yokomise H, Keshavjee SH, et al. The superiority of an extracellular fluid solution over Euro-Collins' solution for pulmonary preservation[J]. Transplantation,1990;49 (4):690-694.
    [31]Kelly RF, Murar J, Hong Z, et al. Low potassium dextran lung preservation solution reduces reactive oxygen species product ion[J]. Ann Thorac Surg,2003;75 (6):1705-1710.
    [32]Luh SP, Yang PC, Lee CJ, Tsai TP, Wang YH. Comparison of histidine-tryptophan-ketoglutarate and Euro-Collins solutions for lung preservation using the minipig in situ warm ischemia model[J]. J Formos Med Assoc, 2004;103 (4):292-296.
    [33]Li JA, Liu YL, Liu JP, Li XF. Pulmonary artery perfusion with HTK solution prevents lung injury in infants after cardiopulmonary bypass[J]. Chin Med J (Engl),2010;123 (19):2645-2650. [34] Struber M, Hohlfeld JM, Fraund S, Kim P, Warnecke G, Haverich A. Low-potassium dextran solution ameliorates reperfusion injury of the lung and protects surfactant function[J]. J Thorac Cardiovasc Surg,2000;120 (3)-.566-572.
    [35]Simoes EA, Cardoso PF, Pego-Fernandes PM, et al. An experimental rat model of ex vivo lung perfusion for the assessment of lungs regarding histopathological findings and apoptosis:low-potassium dextran vs. histidine-tryptophan-ketoglutarate[J]. Jornal brasileiro de pneumologia: publicacao oficial da Sociedade Brasileira de Pneumologia e Tisilogia, 2012;38 (4):461-469.
    [36]Warnecke G, Struber M, Hohlfeld JM, Niedermeyer J, Sommer SP, Haverich A. Pulmonary preservation with Bretscheider's HTK and Celsior solution in minipigs[J]. Eur J Cardiothorac Surg,2002;21 (6):1073-1079.
    [37]Fan X, Liu Y, Wang Q, Yu C, Wei B, Ruan Y. Lung perfusion with clarithromycin ameliorates lung function after cardiopulmonary bypass [J]. Ann Thorac Surg,2006; 81 (3):896-901.
    [38]Liu Y, Wang Q, Zhu X, et al. Pulmonary artery perfusion with protective solution reduces lung injury after cardiopulmonary bypass[J]. Ann Thorac Surg,2000;69 (5):1402-1407.
    [39]Wei B, Liu Y, Wang Q, et al. Lung perfusion with protective solution relieves lung injury in corrections of Tetralogy of Fallot[J]. Ann Thorac Surg,2004; 77 (3):918-924.
    [40]Suzuki T, Ito T, Kashima I, Teruya K, Fukuda T. Continuous perfusion of pulmonary arteries during total cardiopulmonary bypass favorably affects levels of circulating adhesion molecules and lung function[J]. J Thorac Cardiovasc Surg,2001;122 (2):242-248.
    [41]Zhang R, Wang Z, Wang H, Song H, Zhang N, Fang M. Optimal pulmonary artery perfusion mode and perfusion pressure during cardiopulmonary bypass[J]. J Cardiovasc Surg (Torino),2010;51 (3):435-442.
    [42]Verheij J, van Lingen A, Raijmakers PG, et al. Pulmonary abnormalities after cardiac surgery are better explained by atelectasis than by increased permeability oedema[J]. Acta Anaesthesiol Scand, 2005;49 (9):1302-1310.
    [43]De Leyn PR, Lerut TE, Schreinemakers HH, Van Raemdonck DE, Mubagwa K, Flameng W. Effect of inflation on adenosine triphosphate catabolism and lactate production during normothermic lung ischemia[J]. Ann Thorac Surg,1993;55 (5):1073-1078; discussion 1079.
    [44]John LC, Ervine IM. A study assessing the potential benefit of continued ventilation during cardiopulmonary bypass[J]. Interact Cardiovasc Thorac Surg,2008;7 (1):14-17.
    [45]Badellino MM, Morganroth ML, Grum CM, Lynch MJ, Bolling SF, Deeb GM. Hypothermia or continuous ventilation decreases ischemia-reperfusion injury in an ex vivo rat lung model[J]. Surgery,1989;105 (6):752-760.
    [46]Imura H, Caputo M, Lim K, et al. Pulmonary injury after cardiopulmonary bypass:beneficial effects of low-frequency mechanical ventilation[J]. J Thorac Cardiovasc Surg,2009;137 (6):1530-1537.
    [47]Schreiber JU, Lance MD, de Korte M, Artmann T, Aleksic I, Kranke P. The effect of different lung-protective strategies in patients during cardiopulmonary bypass:a meta-analysis and semiquantitative review of randomized trials[J]. Journal of cardiothoracic and vascular anesthesia, 2012;26 (3):448-454.
    [48]Macedo FI, Panos AL, Andreopoulos FM, Salerno TA, Pham SM. Lung perfusion and ventilation during implantation of left ventricular assist device as a strategy to avoid postoperative pulmonary complications and right ventricular failure[J]. Interact Cardiovasc Thorac Surg,2013;17 (5):764-766.
    [49]Dolinay T, Szilasi M, Liu M, Choi AM. Inhaled carbon monoxide confers antiinflammatory effects against ventilator-induced lung injury[J]. Am J Respir Crit Care Med,2004;170 (6):613-620.
    [50]Liu XM, Chapman GB, Peyton KJ, Schafer Al, Durante W. Carbon monoxide inhibits apoptosis in vascular smooth muscle cells[J], Cardiovascular research,2002;55 (2):396-405.
    [51]Goebel U, Siepe M, Mecklenburg A, et al. Reduced pulmonary inflammatory response during cardiopulmonary bypass:effects of combined pulmonary perfusion and carbon monoxide inhalation[J]. Eur J Cardiothorac Surg,2008;34 (6):1165-1172.
    [52]Yu Y, Gao M, Li H, Zhang F, Gu C. Pulmonary artery perfusion with anti-tumor necrosis factor alpha antibody reduces cardiopulmonary bypass-induced inflammatory lung injury in a rabbit model[J]. PloS one,2013;8 (12):e83236.
    [53]Mei SH, McCarter SD, Deng Y, Parker CH, Liles WC, Stewart DJ. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1[J]. PLoS medicine,2007;4 (9):e269.