猪瘟病毒感染猪外周血白细胞转录组变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究首次用Affymetrix猪全基因组表达谱芯片对猪感染猪瘟病毒(classical swine fever virus,CSFV)前和感染后临床症状明显期外周血白细胞(peripheral blood leucocyte,PBL)中基因表达变化进行了分析,获得了迄今最为完整的CSFV感染猪PBL差异表达基因数据库;在完成对CSFV感染差异基因生物学功能分类后,着重分析了涉及细胞凋亡相关基因功能组,初步推测了CSFV感染白细胞诱导的凋亡基因相互作用网络;在病毒蛋白和宿主相互作用研究方面,阐明了多功能蛋白血红素加氧酶1(heme oxygenase 1,HO-1)和CSFV E2相互作用对PK-15细胞中病毒复制、感染滴度的影响。
     课题研究中,利用Affymetrix猪全基因组表达谱芯片分析了感染CSFV后宿主基因表达水平的变化,对CSFV抗体及病毒基因组检测阴性的3头60日龄长白猪颈部肌肉注射104 TCID50/头CSFV石门株血毒,以攻毒前和攻毒后CSF临床症状明显期自体PBL作为对照。提取3头猪攻毒前后白细胞样品总RNA,基因芯片分析转录表达差异。结果表明攻毒前和后样品相比,共筛选到PBL中1745个基因的转录水平上调或下调表达2倍以上。根据这些基因的生物学功能可分为9个功能组:细胞增殖和细胞周期(3.6 %);免疫反应(2.1 %);细胞凋亡(1.4 %);酶和激酶活性(1.4 %);信号转导(1.4 %);转录(0.7 %);受体活性(0.7 %);细胞因子/趋化因子(0.4 %);未知功能基因(88.3 %)。这些表达差异基因的数据为深入研究CSFV感染的致病机理提供了基础。
     在掌握了CSFV感染PBL差异基因表达谱的基础上,进一步深入分析了CSFV感染引起猪白细胞凋亡的分子机制。感染猪的PBL中共筛选到24个发生2倍以上变化细胞凋亡相关基因,并随机挑选差异表达的12个白细胞凋亡相关基因用SYBR greenⅠ荧光定量RT-PCR进行了验证。经过对24个基因的功能分析,初步推测了CSFV感染诱导PBL凋亡基因的相互作用网络。CSFV感染诱导的PBL细胞凋亡涉及了线粒体、内质网应激和死亡受体途径。提出CSFV感染猪后诱导的PBL凋亡是一种凋亡和抗凋亡共存在的过程。检测到caspase-3、6和7基因表达变化但未检测到caspase-8,可以说明CSFV感染宿主临床症状明显期细胞凋亡已处于晚期阶段,而非凋亡的启始阶段。另外还有许多重要的凋亡有关蛋白如,组织蛋白酶(Cathepsin)D、B1,MAPKAPK 3(Mitogen-activated protein kinase-activated protein kinase 3),PNAS-5,RPL6,细胞色素P450,HSP27和HSP90等在细胞凋亡中发挥的具体作用需待进一步研究。
     在病毒蛋白和宿主相互作用的研究中鉴定了一个新奇的和CSFV E2相互作用、影响病毒复制的宿主蛋白-HO-1。激光共聚焦显微镜分析HO-1和病毒E2蛋白共定位于感染病毒的PK-15细胞质中,聚集在细胞核周围。CSFV感染细胞后HO-1蛋白的表达随感染时间逐渐升高。应用siRNA技术沉默PK-15细胞中HO-1蛋白表达后,细胞中CSFV的复制水平显著降低,细胞内和细胞培养上清中病毒的感染滴度也显著下降。最终鉴定出PK-15细胞模型中HO-1受E2蛋白调控表达。
     本研究鉴定的大量差异表达基因体现着CSFV和宿主细胞相互作用的结果,从宿主全基因组表达差异水平反应了CSFV的致病机理,为分阶段、有层次的探索CSFV的致病机理,逐步阐明CSFV感染的分子机制揭开了序幕。
Classical swine fever virus (CSFV) is a small enveloped virus with a positive stranded RNA genome which belongs in the genus Pestivirus, together with two bovine viral diarrhea viruses (BVDV) and border disease virus (BDV), within the family Flaviviridae. The viral genome is approximately 12.5 kb in size and contains a single large open reading frame that encodes a 3,898 amino acid polyprotein. CSFV has a particular tropism for cells of the immune system and is known to cause severe leukopenia, in particular lymphopenia, featuring atrophy of primary lymphoid tissue and bone marrow, and depletion of different subsets of leukocytes (T- and B-lymphocytes, monocytes-macrophages and granulocytes) in infected pigs. All leukocytes are depleted during CSFV infection, but B-lymphocytes are particularly susceptible. Besides the reduction in leukocyte numbers, lymphocyte activation and function during virulent CSFV infection are severely impaired, thereby significantly decreasing antibody production and host defenses. The destruction of leukocytes following CSFV infection is largely associated with apoptosis in thymus, spleen, lymph nodes and bone marrow.
     DNA microarray technology, in combination with bioinformatics, has proved to be a very efficient high-throughput tool and offers great advantages in the study of genomic expression profiles of cells. The present study provides the first pan-genomic microarray analysis of pig transcriptional responses to CSFV infection, in which the genomic transcriptional levels of porcine PBL prepared from CSFV-inoculated pigs with severe clinical symptoms were analyzed using the Affymetrix porcine GeneChip. Total RNA was extracted from PBL collected before and after infection. Results showed that expression of 2,919, 2,859 and 2,995 genes from the 3 pigs were altered post-infection, of which altered expression of 2,662 genes was identified in two or three animals and subsequently subjected to one-way ANOVA statistical analysis (p<0.05). In all, 1,745 genes (8.64 % of all genes present in the array) were confirmed as having a greater than twofold altered expression, with 877 up-regulated and 868 down-regulated. Of 877 up-regulated genes, 24.3% (213/877) were found in all three animals, 61.2% (537/877) found up-regulated in two animals while not changed in another, 14.5% (127/877) found up-regulated in two animals while down-regulated in another. Of 868 down-regulated genes, 37.2% (323/868) were found in all three animals, 55.6% (483/868) found down-regulated in two animals while not changed in one, 7.2% (62/868) found down-regulated in two animals while up-regulated in the third. The functions of the 1,745 genes were observed by the Gene Ontology tool, available from the Affymetrix web site. Surprisingly, 88.3 % (1,540/1,745) were not functionally annotated, with only 205 genes (11.7 %) showing clear functional annotation. These clustered into 8 functional groups: cell proliferation and cycle (62/1745; 3.6 %), immune response (37/1745; 2.1 %), protein kinase activity (25/1745; 1.4 %) , apoptosis (24/1745; 1.4 %), signal transduction (24/1745; 1.4 %), transcription (13/1745; 0.7 %), receptor activity (13/1745; 0.7 %), cytokine/ chemokine (7/1745; 0.4 %).
     Viral infections are generally associated with numerous changes in host gene expression that determine the fate of the infected cells and the eventual outcome of the viral infection. Molecular pathogenetic studies of viral infection involve the investigation of these specific changes within the host cell or, more completely, within a specific tissue or organ. The blood samples used in the study were collected at day 7 p.i., the most severe phase of the disease. Real time RT-PCR showed that the numbers of gene copies of CSFV replicating in PBL of the infected pigs were 106.03±526 copies 100/ng total RNA (mean±SD), indicating that a high proportion of the leukocytes were infected. A rapid onset of leukopenia was detected with levels of PBL in all 3 infected animals declining from 20,667±1,379 cells/μl before infection to 12,000±1,646 cells/μl at day 4 p.i. This loss of PBL further progressed until day 10 p.i., reaching levels as low as 7,100±1,176 cells/μl. This result confirms the depletion of PBL in the infected pigs. To investigate further loss of lymphocytes - the main target of CSFV during infection - the T-cell subpopulations of the 3 pigs were analyzed by FACS at days 4, 7 and 10. Results showed that the severest depletion of CD3+CD4+ and CD3+CD8+ T-cell subsets (P <0.05) were observed by day 7 p.i. This is consistent with the findings of a previous study, showing that CD3+CD4+ cells and CD3+CD8+ cytotoxic T-cell subsets were strongly influenced by the viral infection. To explore the factors causing leukopenia apoptosis analysis was applied to PBL using the Annexin V: FITC Apoptosis Detection Kit and FACScan flow cytometry and using the manufacturers’protocols. Results clearly showed that apoptosis was observed in PBL from the same blood samples of the 3 pigs used for microarray with the proportion of apoptotic cells in a total of 10,000 leucocytes per test being significantly increased from 7.03 % before infection to 25.56 % (P<0.05) afterwards, while cell death increased correspondingly, from 1.48 % to 6.46 % (P<0.05). This increase in apoptotic PBL is consistent with the observations of a previous study. Analyzed the 24 apoptotic genes showed that the significant differences were observed in cellular apoptosis genes expression post-infection (p.i.) and the network of apoptosis was concluded. This study provided a valuable information for further exploring the molecular mechanism of apoptosis caused by CSFV infection.
     In this study we defined Heme oxygenase 1 (HO-1) as a novel CSFV E2 action partner in PK-15 cells. E2 binding was confined to productively infected PK-15. We demonstrate that the CSFV E2 interaction likely occurs at the limiting membranes of late endosomes/multivesicular bodies and that HO-1 depletion is associated with a significant decline in the viral replication and infectivity of released virions; this don’t coincided with the increasing of apoptosis occurred in PK-15 inoculated CSFV compared to contrals. Cumulatively, our data suggest that HO-1 is essential for the proper life cycle of CSFV in target cells.
     In conclusion, the present study has described a complete transcriptional response of pigs to CSFV infection. Microarray analysis has shown that expression of 1,745 genes in PBL were altered following CSFV infection, This work has established a most comprehensive differential transcriptional profile of CSFV-infected pigs, although the application of these data to elucidate the viral pathogenesis is still limited. Further functional investigation of the altered genes may facilitate understanding of the pathogenic mechanisms and molecular responses of host cells to CSFV infection.
引文
[1] HEINZ F X,COLLETT M S,PURCEKK R H,et al.2004.Family Flaviridae. In: Fauquet,C.M., Mayo,M., Maniloff,J.,Desselberger,U., Ball,L.A.,(Eds.), Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Virus, Academic Press, San Diego, pp, 981-998.
    [2] PLOWRIGHT W. Joint Campaign Against Rinderpest. First Technical Review Meeting, Phase IV, 1969[C].Mogadiscio:Kenya.
    [3] BECHER P, ORLICH M, KOSMIDOU A, et al. Genetic diversity of pestiviruses: identification of novel groups and implications for classification[J]. Virology, 1999,262(1):64:71.
    [4] WANG X,TU C,LI H,et al. Detection and isolation of bovine viral diarrhea virus from classical swine fever suspected pigs[J]. Chin J Vet Sci,1996,16: 341:345.
    [5] CRANWELL M P,OTTER A,ERRINGTON J,et al. Detection of Border disease virus in cattle[J]. Vet Rec,2007, 161(6):211:212.
    [6] MENNIG V.Pestivirus: a review[J].Vet Microbiol,1990,23(1-4):35:54.
    [7] MEYERS G, RUMENAMPF T,THIEL H J.Molecular cloning and nucleotide sequence of the genome of hog cholera virus[J].Virology, 1989,171(2): 555: 567.
    [8] RüMENAPF T,UNGER G,STRAUSS J H,et al.Processing of the envelope glycol- proteins of pestiviruses[J].J Virol,1993,67(6): 3288:3294.
    [9] PAN I C,HUANG T S,PAN C H,et al.The skintongue and brain as favorable organs for hog cholera diagnosis by immunofluorescence[J]. Arch Virol, 1993,131(3-4): 475:481.
    [10] SUSA M, KNIG M, SAALMLLER A, REDDEHASE M J,et al. Pathogenesis of classical swine fever:B-lymphocyte deficiency caused by hog cholera virus[J].J Virol.1992,66(2):1171:1175.
    [11] CHEVILLE N F,MENGELING W L.The pathogenesis of chronic hog cholera (swine fever) Histologic, immunofluorescent,and electron microscopic studies[J].Lab Invest 1969,20(3):261:274.
    [12] RESSANG A A.Studies on the pathogenesis of hog cholera.II. Virus distribution in tissue and the morphology of the immune response[J]. Zentralbl Veterinarmed B,1973,20(4):272:288.
    [13] SHUBINA N G,GUSEV A A,TOLOKNOV A S,et al. Natural killers and cytotoxic lymphocytes in classical hog cholera[J].Vopr Virusol,1995, 40(4): 182:186.
    [14] GOMEZ-VILLAMANDOS J C,SALGUERO F J,RUIZ-VILLAMOR,et al. Classical swine fever: pathology of bonemarrow[j]. Vet Pathol, 2003,40(2): 157:163.
    [15] PAULT T,K?NIG M,THIEL H J,et al. Infection with classical swine fever virus: effects on phenotype and immune responsiveness of porcine T lymphocytes[J]. J Gen Virol,1998,79( Pt 1):31:40.
    [16] SANCHEA-CORDON P J, ROMANINI,S,SALGUERO,F J,et al.Apoptosis of thymocytes related to cytokine expression in experimental classical swine fever[J].J Comp Pathol,2002,127(4):239:248.
    [17] SUMMERFIELD A,KNOETIG,S M,TSCHUDIN R,et al.Pathogenesis of granulocytopenia and bone marrow atrophy during classical swine fever involves apoptosis and necrosis of uninfected cells[J]. Virology,2000, 272 (1): 50:60.
    [18] SUMMERFIELD A,ZINGLE K,INUMARU S,et al.Induction of apoptosis in bone marrow neutrophil-lineage cells by classical swine fever virus[J].J Gen Virol,2001,82(Pt 6):1309:1318.
    [19] GóMEZ-VILLAMANDOS J C,RUIZ-VILLAMOR E,BAUTISTA M J,et al. Morphological and immunohistochemical changes in splenic macrophages of pigs infected with classical swine fever[J].J Comp Pathol,2001, 125(2-3): 98: 109.
    [20] SáNCHEZ-CORDóN P J,ROMANINI S,SALGUERO F J,et al. A histopathologic,immunohistochemical, and ultrastructural study of theintestine in pigs inoculated with classical swine fever virus[J]. Vet Pathol, 2003,40(3):254:262.
    [21] TRAUTWEIN G.Pathology and pathogenesis of the disease[M]In Classical Swine Fever and Related Infections, 1988, Edited by B. Liess,Boston: Martinus Nijhoff Publishing.pp:27–54.
    [22] KNOETIG S M,SUMMERFIELD A,SPAGNUOLO-WEAVER M,et al. Immunopathogenesis of classical swine fever: role of monocytic cells[J]. Immunology,1999,97(2):359:366.
    [23] LEE W C,WANG C S, CHIEN M S.Virus antigen expression and alterations in peripheral blood mononuclear cell subpopulations after classical swine fever virus infection[J].Vet Microbiol,1999,67(1):17:29.
    [24] PAULY T, K?NIG M,THIEL H J,et al.Infection with classical swine fever virus: effects on phenotype and immune responsiveness of porcine T lymphocytes[J].J Gen Virol,1998,79(Pt1):31:40.
    [25] SAALMLLER A,HIRT W,REDDEHASE M J.Phenotypic discrimination between thymic and extrathymic CD4?CD8? and CD4+CD8+ porcine T lymphocytes[J].Eur J Immunol,1989,19(11):2011:2016.
    [26] YAMANE D,NAGAI M,OGAWA Y,et al.Enhancement of apoptosis via an extrinsic factor, TNF-alpha, in cells infected with cytopathic bovine viral diarrhea virus[J].Microbes Infect,2005,7(15):1482:1499.
    [27] JORDAN R,WANG L,GRACZYK T M,et al.Replication of a cytopathic strain of bovine viral diarrhea virus activates PERK and induces endoplasmic reticulum stress-mediated apoptosis of MDBK cells[J].J Virol,2002, 76(19): 9588:9599.
    [28] YAMANE D,KATO K,TOHYA Y,et al.The double-stranded RNA-induced apoptosis pathway is involved in the cytopathogenicity of cytopathogenic Bovine viral diarrhea virus[J].J Gen Virol,2006,87(Pt 10):2961:2970.
    [29] RUGGLI N, BIRD B H,LIU L,et al.N(pro) of classical swine fever virus is an antagonist of double-stranded RNA-mediated apoptosis and IFN-alpha/betainduction[J].Virology,2005,340(2):265:276.
    [30] CHOI C,HWANG K K,CHAE C.Classical swine fever virus induces tumor necrosis factor-alpha and lymphocyte apoptosis[J]. Arch Virol,2004, 149(5): 875:889.
    [31] Bensaude E,Turner J L,Wakeley P R,et al.Classical swine fever virus induces proinflammatory cytokines and tissue factor expression and inhibits apoptosis and interferon synthesis during the establishment of long-term infection of porcine vascular endothelial cells[J].2004,85(Pt4):1029:1137.
    [32] RUGGLI N,TRATSCHIN J D,SCHWEIZER M,et al.Classical swine fever virus interferes with cellular antiviral defense: evidence for a novel function of N(pro)[J].J Virol,2003,77(13):7645:7654.
    [33] TANAKA N,SATO M,LAMPHIER M S,et al.Type 1 interferons are essential mediators of apoptotic death in virally infected cells[J].Genes Cells 1998,3 (1):29:37.
    [34] SáNCHEZ-CORDóN P J,Nú?EZ A,SALGUERO F J,et al.Lymphocyte Apoptosis and Thrombocytopenia in Spleen during Classical Swine Fever: Role of Macrophages and Cytokines[J].Vet Pathol,2005,42(4):477:488.
    [35] SCHWEIZER M,PETERHANS E.Noncytopathic bovine viral diarrhea virus inhibits double-stranded RNA-induced apoptosis and interferon synthesis[J].J Virol,2001,75(10):4692:4698.
    [36] CHARLESTON B,BRACKENBURY L S,CARR B V,et al.Alpha/beta and gamma interferons are induced by infection with noncytopathic bovine viral diarrhea virus in vivo[J].J Virol,2002,76(2):923:927.
    [37] SPINK C F,GRAY L C,DAVIES F E,et al.Haplotypic structure across the I kappa B alpha gene (NFKBIA) and association with multiple myeloma[J]. Cancer Lett,2007,246(1-2):92:99.
    [38] NARITA M,KAWASHIMA K,SHIMIZU M.Viral antigen and B and T lymphocytes in lymphoid tissues of gnotobiotic piglets infected with hog cholera virus[J].Journal of Comparative Pathology,1996,114(3):257:263.
    [39] SUMMERFIELD A,KN?ETIG S M,MCCULLOUGH K C.Lymphocyte apoptosis during classical swine fever: implication of activation-induced cell death[J].J Virol,1998,72(3):1853:1861.
    [40] SATO M,MIKAMI O,KOBAYASHI M,et al.Apoptosis in the lymphatic organs of piglets inoculated with classical swine fever virus[J].Vet Microbiol,2000, 75(1):1:9.
    [41] BRUSCHKE C J,HULST M M,MOORMANN R J,et al.Glycoprotein Erns of pestiviruses induces apoptosis in lymphocytes of several species[J]. J Virol, 1997,71(9):6692:6696.
    [42] GOMEZ-VILLAMANDOS J C,SALGUERO F J,RUIZ-VILLAMOR,et al.Classical Swine Fever:pathology of bone marrow[J].Vet Pathol,2003,40(2): 157:163.
    [43] CARRASCO C P,RIGDEN R C,VINCENT I E,et al.Interaction of classical swine fever virus with dendritic cells[J].J Gen Virol,2004,85(Pt 6): 1633:1641.
    [44] OURA C A,POWELL P P,PARKHOUSE R M.African swine fever: a disease characterized by apoptosis[J].J Gen Virol,1998,79(Pt6):1427:1438.
    [45] KRAMMER P H,DHEIN J,WALCZAK H,et al.The role of APO-1-mediated apoptosis in the immune system[J].2006,142:175:91.
    [46] LYNCH D H,RAMSDELL F,ALDERSON M R.Fas and FasL in the homeostatic regulation of immune responses[J].Immunol Today,1995,16(12), 569- 574.
    [47] DHEIN J,WALCZAK H,B?UMLER C,et al.Autocrine T-cell suicide mediated by APO-1/(Fas/CD95)[J].Nature,1995,373(6513):438:441.
    [48] TANAKA M,SAWADA M,YOSHIDA S, et al.Insulin prevents apoptosis of external granular layer neurons in rat cerebellar slice cultures[J]. Neurosci Lett,1995,199(1):37:40.
    [49] COHEN J J.Glucocorticoid-induced apoptosis in the thymus[J].Semin Immunol, 1992,4(6):363:369.
    [50] RAZVI E S,WELSH R M.Programmed cell death of T lymphocytes duringacute viral infection: a mechanism for virus-induced immune deficiency[J].J Virol, 1993,67(10):5754:5765.
    [51] SCOTT D W,LAMERS M,K?HLER G,et al. Role of c-myc and CD45 in spontaneous and anti-receptor-induced apoptosis in adult murine B cells[J].Int Immunol,1996,8(9):1375:1385.
    [52] AKBAR A N,SALMON M,SAVILL J,et al.A possible role for bcl-2 in regulating T-cellmemory--a'balancing act'between cell death and survival[J]. Immunol Today,1993,14(11):526:532.
    [53] AKBAR A N,BORTHWICK N,SALMON M,et al.The significance of low bcl-2 expression by CD45RO T cells in normal individuals and patients with acute viral infections. The role of apoptosis in T cell memory[J].J Exp Med,1993 178(2),427:438.
    [54] GUMMULURU S,NOVEMBRE F J,LEWIS M,et al.Apoptosis correlates with immune activation in intestinal lymphoid tissue from macaques acutely infected by a highly enteropathic simian immunodeficiency virus, SIV smmPBj14[J].Virology,1996,225(1):21:32.
    [55] MURO-CACHO C A,PANTALEO G,FAUCI A S.Analysis of apoptosis in lymph nodes of HIV-infected persons. Intensity of apoptosis correlates with the general state of activation of the lymphoid tissue and not with stage of disease or viral burden[J].J Immunol,1995,154(10):5555:5566.
    [56] MADDOX B R,SCOTT D W.Differential susceptibility to anti-receptor induced apoptosis in adult murine B-cells: role of B1 cells[J].Front Biosci, 1996,1:a39:45.
    [57] MOENNING V. Pestiviruses: a review[J].Vet icrobiol,1990, 23 (1-4):35:54.
    [58] SHIMIZU M,YAMADA S,NISHIMORI T.Cytocidal infection of hog cholera virus in porcine bone marrow stroma cell cultures[J].Vet Microbiol,1995, 47 (3-4): 395:400.
    [59] GLEW E J,CARR B V,BRACKENBURY L S,et al.Differential effects of bovine viral diarrhoea virus on monocytes and dendritic cells[J].J Gen Virol,2003, 84(Pt7):1771:1780.
    [60] SURADHAT S,SADA W,BURANAPRADITKUN S,et al.The kinetics of cytokine production and CD25 expression by porcine lymphocyte subpopulations following exposure to classical swine fever virus (CSFV) [J]. Vet Immunol Immunopathol,2005,106(3-4):197:208.
    [61] JAMIN A,GORIN S,CARIOLET R,et al.Classical swine fever virus induces activation of plasmacytoid and conventional dendritic cells in tonsil, blood, and spleen of infected pigs[J].Vet Res,2008,39(1):7.
    [62] MOORE K W,DE WAAL MALEFYT R,COFFMAN R L,et al.Interleukin-10 and the interleukin-10 receptor[J].Annu Rev Immunol,2001,19:683:765.
    [63] REDPATH S,GHAZAL P,GASCOIGNE N R.Hijacking and exploitation of IL-10 by intracellular pathogens[J].Trends Microbiol,9(2):86:92.
    [64] DOLGANIUC A,KODYS K,KOPASZ A,et al.Hepatitis C virus core and non-structural protein 3 proteins induce pro- and anti-inflammatory cytokines and inhibit dendritic cell differentiation[J].J Immunol,2003,170(11): 5615: 5624.
    [65] SURADHAT S,THANAWONGGUWECH R,POOVORAWAN Y.Upregulation of IL-10 gene expression in porcine peripheral blood mononuclear cells by porcine reproductive and respiratory syndrome virus[J].J Gen Virol,2003, 84(pt2):453:459.
    [66] ALMONTI J B,BALL T B,FOWKE K R.Mechanisms of CD4+T lymphocyte cell death in human immunodeficiency virus infection and AIDS[J].J Gen Virol, 2003,84(Pt7):1649:1661.
    [67] LA ROCCA S A,HERBERT R J,CROOKE H,et al.Loss of interferon regulatory factor 3 in cells infected with classical swine fever virus involves the N-terminal protease, Npro[J].J Virol,2005,79(11):7239:7247.
    [68] BAUHOFER O,SUMMERFIELD A,SAKODA Y,et al.Classical swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteasomal degradation[J].J Virol,2007,81(7):3087:3096.
    [69] SRIKIATKHACHORN A,AJARIYAKHAJORN C,ENDY T P,et al.Virus induced decline in soluble vascular endothelial growth receptor 2 is associated with plasma leakage in dengue hemorrhagic Fever[J]. J Virol,2007,81(4): 1592:1600.
    [70] TERZI? S,SVER L,VALPOTI? I,et al.Proportions and phenotypic expression of peripheral blood leucocytes in pigs vaccinated with an attenuated C strain and a subunit E2 vaccine against classical swine fever[J].J Vet Med B Infect Dis Vet Public Health,2003,50(4): 166:171 .
    [71] TERZI? S,JEMERSIC L,LOJKIC M,et al.Leukocyte subsets and specific antibodies in pigs vaccinated with a classical swine fever subunit (E2) vaccine and the attenuated ORF virus strain D1701[J].Acta Vet Hung, 2004, 52(2): 151:161.
    [72] GALLEI A,RMENAPF T,THIEL H J,et al.Characterization of Helper Virus Independent Cytopathogenic Classical Swine Fever Virus Generated by an In Vivo RNA Recombination System[J].J Virol,2005,79(4):2440:2448.
    [73] AOKI H,ISHIKAWA K,SAKODA Y,et al.Characterization of classical swine fever virus associated with defective interfering particles containing a cytopathogenic subgenomic RNA isolated from wild boar[J]. J Vet Med Sci, 2001,63(7):751:758.
    [74] KOSMIDOU A,BUTTNER M,MEYERS G.Isolation and characterization of cytopathogenic classical swine fever virus (CSFV)[J]. Arch Virol, 1998, 143(7):1295:1309.
    [75] HAMERS C,DEHAN P,COUVREUR B,et al.Diversity among bovine pestiviruses[J].Vet J,2001,161(2):112:122.
    [76] MOSER C,STETTLER P,TRATSCHIN J D,et al.Cytopathogenic and Non cytopathogenic RNA Replicons of Classical Swine Fever Virus[J].J Virol, 1999,73(9):7787:7794.
    [77] MEYERS G,THIEL H J.Cytopathogenicity of classical swine fever virus caused by defective interfering particles[J].J Virol, 1995, 69(6): 3683:3689.
    [78] GISLER A C, NARDI N B, NONNIG R B, et al.Classical swine fever virus in plasma and peripheral blood mononuclear cells of acutely infected swine[J]. Zentralbl Veterinarmed B,1999,46(9):585-93.
    [79] SUMMERFIELD A,MCCULLOUGH K C.Porcine bone marrow myeloid cells: phenotype and adhesion molecule expression[J]. J Leukoc Biol,1997, 62(2): 176:185.
    [80] SUMMERFIELD A, HOFMANN MA, MCCULLOUGH KC. Low density blood granulocytic cells induced during classical swine fever are targets for virus infection[J]. Vet Immunol Immunopathol,1998, 63(3):289:301.
    [81] NANICHE D, OLDSTONE M B. Generalized immunosuppression: how viruses undermine the immune response[J]. Cell Mol Life Sci, 2000, 57(10): 1399:1407.
    [82] RUMENAPF T, STARK R, MEYERS G, et al.Structural proteins of hog cholera virus expressed by vaccinia virus: further characterization and induction of protective immunity[J].J Virol,1991,65(2):589:597.
    [83] SCHNEIDER R, UNGER G, STARK R, et al.Identification of a structural glycoprotein of an RNA virus as a ribonuclease[J].Science,1993, 261(5125): 1169:1171.
    [84] VAN DER MOLEN E J,VAN OIRSCHOT J T.Pathomorphological lesions in lymphoid tissues, kidney and adrenal of pigs with congenital persistent swine fever[J].Zentralbl Veterinarmed B,1981,28(2):89:101.
    [85] SUMMERFIELD A,MCNEILLY F,WALKER I,et al.Depletion of CD4(+) and CD8(high+) T-cells before the onset of viraemia during classical swine fever[J].Vet Immunol Immunopathol,2001,78(1):3:19.
    [86] VON FREYBURG M,EGE A,SAALMüLLER A,et al.Comparison of the effects of RNase-negative and wild-type classical swine fever virus on peripheral blood cells of infected pigs[J].J Gen Virol,2004,85(Pt7):1899:1908.
    [87] SáNCHEZ-CORDóN P J,ROMANINI S,SALGUERO F J,et al.Apoptosis of thymocytes related to cytokine expression in experimental classical swinefever[J].J Comp Pathol,2002,127(4):239:248.
    [88] SOLIS M,WILKINSON P,ROMIEU R,et al.Gene expression profiling of the host response to HIV-1 B, C, or A/E infection in monocyte-derived dendritic cells[J].Virology,2006,352(1):86:99.
    [89] FINK J,GU F,LING L,et al.Host gene expression profiling of dengue virus infection in cell lines and patients.PLoS Negl Trop Dis,2007,1(2):e86.
    [90] SATO H,HONMA R,YONEDA M,et al.Measles virus induces cell-type specific changes in gene expression[J].Virology,2008,375(2):321:330.
    [91] MUNIR S,SHARMA J M,KAPUR V.Transcriptional response of avian cells to infection with Newcastle disease virus[2005].Virus Res,2005,107(1): 103:108.
    [92] UBOL S,KASISITH J,PITIDHAMMABHORN D,et al..Screening of pro- apoptotic genes upregulated in an experimental street rabies virus-infected neonatal mouse brain[J].Microbiol Immunol,2005, 49(5): 423:431.
    [93] GEORGE M D,SANKARANA S,REAYA E,et al.High-throughput gene expression profiling indicates dysregulation of intestinal cell cycle mediators and growth factors during primary simian immunodeficiency virus infection[J].Virology,2003,312(1):84:94.
    [94] JI Q,LIU P I,CHEN P K,et al.Follicle stimulating hormone-induced growth promotion and gene expression profiles on ovarian surface epithelial cells[J].Int J Cancer,2004,112(5):803:814.
    [95] SHHAH G,AZIZIAN M,BRUCH D,et al.Cross-species comparison of gene expression between human and porcine tissue, using single microarray platform--preliminary results[J].Clin Transplant,2004,18 Suppl 12:76:80.
    [96] ZHAO S,RECKNOR J,LUNNEY J K,et al.Validation of a first-generation long-oligonucleotide microarray for transcriptional profiling in the pig[J]. Genomics,2005,86(5):618:625.
    [97] TSAI J M,WANG H C,LEU J H,et al.Genomic and proteomic analysis of thirty-nine structural proteins of shrimp white spot syndrome virus[J]. J Virol, 2004,78(20):11360:11370.
    [98] WANG Y,QU L,UTHE J J,et al.Global transcriptional response of porcine mesenteric lymph nodes to Salmonella enterica serovar Typhimurium[J]. Genomics,2007,90(1):72:84.
    [99] GENINI S,DELPUTTE P L,MALINVERNI R,et al.Genome-wide transcript- tional response of primary alveolar macrophages following infection with porcine reproductive and respiratory syndrome virus[J].J Gen Virol, 2008, 89(Pt10):2550:2564.
    [100] SHI Z,XU X,TU C.Detection of classical swine fever virus by real-time RT- PCR[J].Chin J Prevent Vet Med, 2007,6(29):467:470.
    [101] http://www.affymetrix.com/products/arrays/specific/mgu74.affx.
    [102] LOCKHART D J,DONG H,BYRNE M C,et al.Expression monitoring by hybridization to high-density oligonucleotide arrays[J]. Nat Biotechnol,1996,14(13):1675:1680.
    [103] WINER J,JUNG C K,SHACKEL I,et al.Development and validation of real-time quantitative reverse transcriptase polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro[J].Anal. Biochem.1999,270(1):41:49.
    [104] LIVAK K J,SCHMITTGEN T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2(Delta Delta C(T)) method[J]. Methods,2001,25(4):402:428.
    [105] GREWAL A,STOCHTON J,BOLGER C.Tools for discovery: gene expression enterprise solutions[J].Curr Opin Drug Discovery Dev,2003,6(3):333:338.
    [106] SPYROU G,ENMARK E,MIRANDA-VIZUETE A,et al.Cloning and expres- sion of a novel mammalian thioredoxin[J].J Biol Chem, 1997, 272(5): 2936: 2341.
    [107] TANKA T,HOSOI F,YAMAGUCHI IWAI Y,et al.Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosis[J].EMBO J, 2002,21(7):1695:1703.
    [108] LI S S,IVANOFF A,BERGSTR?M S E,et al.T lymphocyte expression ofthrombospondin-1 and adhesion to extracellular matrix components[J]. Eur J Immunol,2002,32(4):1069:1079.
    [109] LI Z,CALZADA M J,SIPES J M,et al.Interactions of thrombospondins with alpha4beta1 integrin and CD47 differentially modulate T cell behavior[J].J Cell Biol,2002,157(3):509-519.
    [110] VALLEJO A N,MUGGE L O,KLIMIUK P A,et al.Central role of thrombo- spondin-1 in the activation and clonal expansion of inflammatory T cells[J].J Immunol,2000,164(6):2947:2954.
    [111] LAWLER J,SUNDAY M,THIBERT V,et al.Thrombospondin-1 is required for normal murine pulmonary homeostasis and its absence causes pneumonia[J].J Clin Invest,1998,101(5):982:992.
    [112] ZIEGLER W H,LIDDINGTON R C,CRITCHLEY D R.The structure and regulation of vinculin[J].Trends Cell Biol,2006,16(9 ):453:460.
    [113] SUBAUSTE M C,PERTZ O,ADAMSON E D,et al.Vinculin modulation of paxillin-FAK interactions regulates ERK to control survival and motility[J].J Cell Biol,2004,165(3):371:381.
    [114] PROPATO A, CUTRONA G, FRANCAVILLA V,et al.Apoptotic cells over- express vinculin and induce vinculin-specific cytotoxic T-cell cross- priming[J].Nat Med,2001,7(7):807:813.
    [115] RODRíGUEZ FERNáNDEZ J L,GEIGER B,SALOMON D,et al.Suppression of tumorigenicity in transformed cells after transfection with vinculin cDNA [J]. J Cell Biol.1992,119(2):427:438.
    [116] BEG A A,BALTIMORE D.An essential role for NF-kappaB in preventing TNF-alpha-induced cell death[J].Science,1996,274(5288):782:784.
    [117] LIU Z G,HSU H,GOEDDEL D V,KARIN M.Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death[J].Cell,1996,87(3):565:576.
    [118] YUROCHKO A D,KOWALIK T F,HUONG,S M,et al.Human cytomegalovirus upregulates NF-kappa B activity by transactivating the NF-kappa B p105/p50and p65 promoters[J].J Virol,1995,69(9):5391:5400.
    [119] GOODKIN,M L,TING A T,BLAHO,J A.NF-kappaB is required for apoptosis prevention during herpes simplex virus type 1 infection[J].J Virol, 2003, 77(13):7261:7280.
    [120] EHRNST A, SUNDQVIST K G.Polar appearance and nonligand induced spreading of measles virus hemagglutinin at the surface of chronically infected cells[J].Cell,1975,5(4):351:359.
    [121] TYRRELL D L, EHRNST A.Transmembrane communication in cells chronically infected with measles virus[J].J Cell Biol,1979,81(2), 396:402.
    [122] BOHN W, RUTTER G, HOHENBERG H, Mannweiler K, et al.Involvement of actin filaments in budding of measles virus: studies on cytoskeletons of infected cells[J].Virology,1986,149(1):91:106.
    [123] SMITH G A,ENQUIST L W.Break ins and break outs: viral interactions with the cytoskeleton of mammalian cells[J].Annu Rev Cell Dev Biol, 2002,18: 135: 161.
    [124] KAUFFMANN-ZEH A,RODRIGUEZ-VICIANA P, ULRICH E, et al.Suppression of c-Myc-induced apoptosis by Ras signaling through PI(3)K and PKB[J]. Nature,1997,385(6616):544:548.
    [125] SAMALI A,ROBERTSON J D,PETERSON E,et al.Hsp27 protects mitochondria of thermotolerant cells against apoptotic stimuli[J].Cell Stress and Chaperones,2001,6(1):49:58.
    [126] CONCANNON C G,ORRENIUS S,SAMALI A.Hsp27 inhibits cytochrome c-mediated caspase activation by sequestering both pro-caspase-3 and cytochrome c.Gene Expr,2001,9(4-5):195-201.
    [127] BRUEY J M,DUCASSE C,BONNIAUD P,et al.Hsp27 negatively regulates cell death by interacting with cytochrome c[J].Nat Cell Biol,2000,2(9): 645:652.
    [128] OCHEL H J ,EICHHORN K,GADEMANN G.Geldanamycin:the prototype of a class of antitumor drugs targeting the heat shock protein 90 family of molecular chaperones[J].Cell Stress Chaperones,2001,6(2):105:112.
    [129] VIDAL S,TREMBLAY M L,GOVONI G, et al.The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene[J].J Exp Med,1995,182(3):655:566.
    [130] ZWILLING B S,KUHN D E,WIKOFF,L, et al.Role of iron in Nramp1- mediated inhibition of mycobacterial growth[J].Infect Immun,1999, 67(3): 1386:1392.
    [131] GRUENHEID S,PINNER E,DESJARDINS M,et al.Natural resistance to infection with intracellular pathogens: the Nramp1 protein is recruited to the membrane of the phagosome[J].J Exp Med,1997, 192(9):1237:1248.
    [132] JABADO N,JANKOWSKI A,DOUGAPARSAD S,et al.Natural resistance to intracellular infections:natural resistance-associated macrophage protein 1 (Nramp1) functions as a pH-dependent manganese transporter at the phagosomal membrane[J].J Exp Med,2000,192(9):1237:1248.
    [133] CAPPARELLI R,ALFANO F,AMOROSO M G, et al.Protective effect of the Nramp1 BB genotype against Brucella abortus in the water buffalo (Bubalus bubalis)[J].Infect Immun,2007,75(2):988:996.
    [134] MIHAYLOVA I,DERUYTER M,RUMMENS J L,et al.Decreased expression of CD69 in chronic fatigue syndrome in relation to inflammatory markers: evidence for a severe disorder in the early activation of T lymphocytes and natural killer cells[J].Neuro Endocrinol Lett,2007,28(4): 477: 483.
    [135] BEHAR S M,PORCELLI S A.CD1-restricted T cells in host defense to infectious diseases[J].Curr Top Microbiol Immunol,2007,314:215:250.
    [136] DRUST D S,CREUTZ C E.Aggregation of chromaffin granules by calpactin at micromolar levels of calcium[J].Nature,1988,331(6151):88:91.
    [137] MA G,GREENWELL-WILD T,LEI K,et al.Secretory leukocyte protease inhibitor binds to annexin II, a cofactor for macrophage HIV-1 infection[J].J Exp Med,2004,200(10):1337:1346.
    [138] RYZHOVA E V,VOS R M,ALBRIGHT A V, et al.Annexin 2: a novel human immunodeficiency virus type 1 Gag binding protein involved in replication inmonocyte-derived macrophages[J].J Virol,2006, 80(6):2694:26704.
    [139] MALHOTRA R, WARD M, BRIGHT H, et al. Isolation and characterisation of potential respiratory syncytial virus receptor(s) on epithelial cells[J].Microbes Infect,2003,5(2):123:133.
    [140] SUN J,JIANG Y, SHI Z, et al.Proteomic alteration of PK-15 cells after infection by classical swine fever virus[J].J Proteome Res, 2008, 7(12):5263:5269.
    [141] WEBB N R,CONNELL P M, GRAF G A, et al.SR-BII, an isoform of the scavenger receptor BI containing an alternate cytoplasmic tail, mediates lipid transfer between high density lipoprotein and cells[J]. J Biol Chem, 1998, 273 (24):15241:15248.
    [142] GROVE J,HUBY T,STAMATAKI Z, et al.Scavenger receptor BI and BII expression levels modulate hepatitis C virus infectivity[J].J Virol, 2007,81 (7): 3162:3169.
    [143] BARTOSCH B,DUBUISSON J,COSSET F L.Infectious hepatitis C virus pseudo-particles containing functional E1-E2 envelope protein complexes[J].J Exp Med,2003,197(5):633:642.
    [144] WANG Z,NIE Y, WANG P, et al.Characterization of classical swine fever virus entry by using pseudotyped viruses: E1 and E2 are sufficient to mediate viral entry[J].Virology,2004,330(1):332:341.
    [145] HOLMGREN A.Thioredoxin[J].Annu Rev Biochem,1985,54:237:271.
    [146] TANAKA T,HOSOI F,YAMAGUCHI IWAI Y,et al.Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosis[J].EMBO J, 2002,21(7):1695:1703.
    [147] HITOMI J,KATAYAMA T,TANIGUCHI M.Apoptosis induced by endoplasmic reticulum stress depends on activation of caspase-3 via caspase-12[J]. Neurosci Lett,2004,357(2):127:130.
    [148] LASTER S M,WOOD J G,GOODING L R.Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis[J].J Immunol, 1988, 141(8): 2629-2634.
    [149] GEORGOPOULOS N T,MERRICK A,SCOTT N,et al.CD40-mediated death and cytokine secretion in colorectal cancer: a potential target for inflammatory tumour cell killing[J].Int J Cancer,2007, 121(6):1373:1381.
    [150] DEMARCHI F,BERTOLI C,COPETTI T,et al.Calpain is required for macroautophagy in mammalian cells[J].J Cell Biol,2006, 175(4):595:605.
    [151] MAINES M D.The heme oxygenase system: a regulator of second messenger gases[J].Annu Rev Pharmacol Toxicol,1997,37:517:554.
    [152] TOBIASCH E,GUNTHER L,BACH F H.Heme oxygenase-1 protects pancreatic beta cells from apoptosis caused by various stimuli[J].J Investig Med,2001,49(6):566:571.
    [153] SHANNAN B,SEIFERT M,BOOTHMAN D A,et al.Clusterin and DNA repair: a new function in cancer for a key player in apoptosis and cell cycle control[J].J Mol Histol,2006,37(5-7):183:188.
    [154] BRESGEN N,OHLENSCHL?GER I,FIEDLER B,et al.Ferritin--a mediator of apoptosis?[J].J Cell Physiol,2007,212(1):157:164.
    [155] DUFOUR V,ARNAULD C, LANTZ O,et al.Quantification of porcine cytokine gene expression using RT-PCR, a homologous internal control and chemiluminescence for microplate detection[J].J Immunol Methods,1999, 229(1-2):49:60.
    [156] FOSS D L,BAARSCH M J,MURTAUGH M P,et al.Regulation of hypoxanthine phosphoribosyltransferase, glyceraldehyde-3-phosphate dehydrogenase and b-actin mRNA expression in porcine immune cells and tissues[J].Anim Biotechnol,1998,9(1):67:78.
    [157] VEZINA S A,ROBERGE D,FOURNIER M, et al.Cloning of porcine cytokine-specific cDNAs and detection of porcine tumor necrosis factor a, interleukin 6 (IL-6),and IL-1 h gene expression by reverse transcription PCR and chemiluminescence hybridization[J].Clin Diagn Lab Immunol, 1995,2 (6):665:671.
    [158] MEYERS G,SAALMüLLER A,BüTTNER M.Mutations abrogating the RNaseactivity in glycoprotein E(rns) of the pestivirus classical swine fever virus lead to virus attenuation[J].J Virol,1999,73(12): 10224:10235.
    [159] HULST M M, HIMES G,NEWBIGIN E, et al.Glycoprotein E2 of classical swine fever virus: expression in insect cells and identification as a ribonuclease[J].Virology,1994,200(2):558:565.
    [160] XUE W, MINOCHA H C.Identification of the cell surface receptor for bovine diarrhoea virus by using anti-idiotypic antibodies[J].J Gen Virol, 1993, 74 (Pt1),73:79.
    [161] HULST M M,WESTRA D F,WENSVOORT G,et al.Glycoprotein E1 of hog cholera virus expressed in insect cells protects swine from hog cholera[J].J Virol,1993,67(9):5435:5442
    [162] VAN ZIJL M,WENSVOORT G,DE KLUYVER E,et al.Live attenuated pseudorabies virus expressing envelope glycoprotein E1 of hog cholera virus protects swine against both pseudorabies and hog cholera[J].J Virol,1991, 65(5):2761:2765.
    [163] K?NIG M,LENGSFELD T,PAULY T,et al.Classical swine fever virus: independent induction of protective immunity by two structural glycoproteins[J].J Virol,1995,69(10):6479:6486.
    [164] VAN GENNIP H G,BOUMA A,VAN RIJN PA,et al.Experimental non-transmissible marker vaccines for classical swine fever (CSF) by trans-complementation of E(rns) or E2 of CSFV[J].Vaccine, 2002,20 (11-12): 1544:1556.
    [165] RISATTI G R,HOLINKA L G, FERNANDEZ SAINZ I,et al.Mutations in the carboxyl terminal region of E2 glycoprotein of classical swine fever virus are responsible for viral attenuation in swine[J].Virology, 2007,364(2):371:382.
    [166] LIANG D,SAINZ I F,ANSARI I H,et al.The envelope glycoprotein E2 is a determinant of cell culture tropism in ruminant pestiviruses[J].J Gen Virol, 2003,84(Pt5):1269:1274.
    [167] HULST M M,MOORMANN R J.Inhibition of pestivirus infection in cellculture by envelope proteins E(rns) and E2 of classical swine fever virus: E(rns) and E2 interact with different receptors[J].J Gen Virol, 1997, 78(Pt11): 2779:2787.
    [168] LEE S H,KIM Y K,KIM C S,et al.E2 of hepatitis C virus inhibits apoptosis[J].J Immunol,2005,175(12):8226:8235.
    [169] SHI Z X, SUN J F,GUO H C.Expression profiles of apoptotic genes of pig peripheral blood leukocytes caused by classical swine fever virus infection [J]. Chin J Virol,2008,24(6):456:463.
    [170] Tenhunen R,Marver H S,Schmid R.Microsomal heme oxygenase. Characteriza- tion of the enzyme[J].J Biol Chem,1969, 244(23): 6388: 63 94.
    [171] BARANANO D E,WOLOSKER H,BAE B I,et al.A mammalian iron ATPase induced by iron[J].J Biol Chem,2000,275(20):15166:15173.
    [172] TENHUNEN R,MARVER H S,SCHMID R.The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase[J].Proc Natl Acad Sci USA,1968, 61(2):748:745.
    [173] SHIBAHARA S,MULLER R M,TAGUCHI H.Transcriptional control of rat heme oxygenase by heat shock[J].J Biol Chem,1987, 262(27): 12889: 12892.
    [174] KEYSE S M, TYRRELL R M.Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite[J].Proc Natl Acad Sci USA,1989, 262(27): 12889: 12892.
    [175] DURANTE W,KROLL M H,CHRISTODOULIDES N, et al.Nitric oxide induces heme oxygenase-1 gene expression and carbon monoxide production in vascular smooth muscle cells[J].Circ Res,1997,80(4):557:564.
    [176] CLARK J E,FORESTI R,GREEN C J,et al.Dynamics of haem oxygenase-1 expression and bilirubin production in cellular protection against oxidative stress[J].Biochem J,2000,348:(Pt3):615:619.
    [177] KAPTURCZAK M H,WASSERFALL C,BRUSKO T,et al.Heme oxygenase-1 modulates early inflammatory responses: evidence from the hemeoxygenase-1 deficientmouse[J].Am J Pathol,2004,165(3):1045:1053.
    [178] DENG Y M,WU B J,WITTING P K,et al.Probucol protects against smooth muscle cell proliferation by upregulating heme oxygenase-1[J]. Circulation, 2004,110(13):1855:1860.
    [179] CHOI B M, PAE H O,JEONG Y R,et al.Overexpression of heme oxygenase (HO)-1 renders Jurkat T cells resistant to fas-mediated apoptosis: involvement of iron released by HO-1[J].Free Radic Biol Med,2004, 36(7):858:871.
    [180] MINAMINO T,CHRISTOU H, HSIEH C M,et al.Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia[J].Proc Natl Acad Sci USA,2001,98(15):8798:8803.
    [181] YU X,TU C,LI H, et al.DNA-mediated protection against classical swine fever virus[J].Vaccine,2001,19(11-12):1520:1525.
    [182] TAKAHASHI T,MORITA K,AKAGI R,et al.Protective role of heme oxygenase-1 in renal ischemia[J].Antioxid Redox Signal,2004,6(5):867:877.
    [183] NGUYEN D G, HILDRETH J E.Involvement of macrophage mannose receptor in the binding and transmission of HIV by macrophages[J].Eur J Immunol, 2003,33(2):483:493.
    [184] PELCHEN-MATTHEWS A,KRAMER B,MARSH M.Infectious HIV-1 assembles in late endosomes in primary macrophages[J].J Cell Biol,2003, 162(3):443:455.
    [185] RAPOSO G,MOORE M,INNES D, et al. Human macrophages accumulate HIV-1 particles in MHC II compartments[J].Traffic,2002,3(10):718:729.
    [186] SIOW R C,SATO H,MANN G E.Heme oxygenase-carbon monoxide signalling pathway in atherosclerosis: anti-atherogenic actions of bilirubin and carbon monoxide?[J].Cardiovasc Res,1999,41(2):385:394.
    [187] VACHHARAJANI T J,WORK J, ISSEKUTZ A C, et al.Heme oxygenase modulates selectin expression in different regional vascular beds[J].Am J Physiol Heart Circ Physiol,2000,278(5):H1613: H1617.
    [188] SUZUMA K,MANDAI M,KOGISHI J,et al.Role of P-selectin in endotoxin-induced uveitis[J].Invest Ophthalmol Vis Sci,1997, 38(8):1610:1618.
    [189] SOARES M P,SELDON M P,GREGOIRE I P, et al.Heme oxygenase-1 modulates the expression of adhesion molecules associated with endothelial cell activation[J].J Immunol,2004,172(6):3553:3563.
    [190] ELBIRT K K,BONKOVSKY H L.Heme oxygenase: recent advances in understanding its regulation and role[J].Proc Assoc Am Physicians, 1999,111 (5):438:447.
    [191] VERMA A,HIRSCH D J,GLATT C E, et al.Carbon monoxide: a putative neural messenger[J].Science,1993,259(5093):381:384.
    [192] NISHIMURA R N,DWYER B E,LU S Y.Localization of heme oxygenase in rat retina: effect of light adaptation[J].Neurosci Lett,1996,205 (1): 13:16.
    [193] MAINES M D.Heme oxygenase:function, multiplicity, regulatory mechanisms, and clinical applications[J].FASEB J,1988,2(10): 255 7:2568.
    [194] MCCOUBREY WK JR,HUANG T J, MAINES M D.Isolation and characteriza- tion of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3 [J].Eur J Biochem,1997,247(2):725:732.
    [195] OTTERBEIN L E,CHOI A M.Heme oxygenase: colors of defense against cellular stress[J].Am J Physiol Lung Cell Mol Physiol,2000,279(6): L1029: L1037.
    [196] LEE T S,CHAU L Y.Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice[J].Nat Med,2002,8(3):240:246.