对“洞”和“非洞”刺激的视知觉研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长久以来,在视知觉的研究中,一直存在整体特征优先加工和局部特征优先加工两种理论之争,前者以格式塔理论作为代表,后者以特征整合理论作为代表。1982年,陈霖提出了拓扑知觉理论,从而为整体特征优先加工找到了更切实的证据。我们以陈霖的工作作为出发点,提出了视知觉在早期阶段对“洞”敏感,是形成拓扑知觉的原因之一。我们从以下三个方面讨论了在视知觉中“洞”的敏感性:
     1.相对于“非洞”,“洞”诱发较低的知觉负载,这个结论得到了两方面的证据支持:从行为学上,干扰刺激的变化对“洞”有显著干扰,而对“非洞”的干扰没有显著性,说明“非洞”相对“洞”占据了更多知觉空间,从而使得干扰刺激进入不了知觉范围;从ERP上,“非洞”诱发出比“洞”更大的N1成分,说明对“非洞”的觉知需要更多的注意资源。
     2.对“洞”的图形一背景分离任务比“非洞”要容易,这是由反向掩蔽的实验得出的结论。行为学结果表明,在相同的掩蔽条件下,“洞”比“非洞”要更容易看清。ERP的结果表明,颞叶视皮层对“洞”的反应更大,从而加强了腹侧视觉通道的反向投射,使得“洞”更容易从背景中分离出来。
     3.我们将“洞”和“非洞”图形进行不同角度的反转,记录他们诱发的脑电。结果发现N1的潜伏期对“洞”的反转效应更为敏感,结合对面孔识别的N1研究结果,我们认为在结构编码阶段,对“洞”的处理更偏向于整体加工,对“非洞”的处理更偏向于特征加工。
     以上三个研究从不同的角度研究了在视知觉的早期阶段“洞”的敏感性,结果发现在视知觉中,“洞”比“非洞”要更容易识别。这种“洞”的敏感性正是造成拓扑知觉的原因之一。
In the research of visual perception, there is a debate between global-first and local-first theories. The former is represented by Gestalt psychology, while the latter is represented by feature-integration theory. In 1982, Chen Lin proposed a theory named topological perception, which is substantial evidence to global-first theory. Original from Chen's work, we proposed the property of 'hole' is important and is one of the reasons to cause topological perception. We discussed the sensitivity of 'hole' in visual perception from three different studies:
     1. Compared to 'no-hole', 'hole' evokes lower perceptual load. This is supported by two evidences: the behavioral study showed that, alteration of distractor can disturb 'hole' significantly but cannot disturb 'no-hole', indicating 'no-hole' costs more perceptual capacity than 'hole', and prevents the entrance of distractor to perception. The ERP study showed that, 'no-hole' evokes enhanced N1 than 'hole', indicating more attention is demanded for 'no-hole'.
     2. In figure-ground-segregation task, 'hole' is easier to be segregated than 'no-hole'. Utilizing backward masking paradigm, it's found that under same masking effect, 'hole' is more visible than 'no-hole'. The REP results showed that, temporal visual cortex responded strongly to 'hole' than to 'no-hole', thus facilitate the feedback connection in ventral visual pathway. So the segregation of 'hole' from its background is easier than 'no-hole'.
     3. We reversed 'hole' and 'no-hole' figures with different directions, and EEG was recorded. The results showed that, the latency of N1 is more sensitive to the reverse effect of 'hole' compared to 'no-hole'. According to the research on face recognition, we concluded that the process of 'hole' is global-first, while the process of 'no-hole' is local-first.
     The above studies focus on the sensitivity of 'hole' at the early stage of visual perception. The results convergently showed that, 'hole' is easier to be perceived than 'no-hole'. The sensitivity of 'hole' is one of the reasons to cause topological perception. From a neuroscientific approach, we found new substantial evidence to global-first theory.
引文
1.Hubel,D.H.and T.N.Wiesel,Receptive fields of single neurones in the cat's striate cortex.J Physiol,1959.148:p.574-91.
    2.Ungerleider,L.G.and J.V.Haxby,'What' and 'where' in the human brain.Curr Opin Neurobiol,1994.4(2):p.157-65.
    3.Ungerleider,L.G.,S.M.Courtney,and J.V.Haxby,A neural system for human visual working memory.Proc Natl Acad Sci U S A,1998.95(3):p.883-90.
    4.Ungerleider,L.G.,Functional brain imaging studies of cortical mechanisms for memory.Science,1995.270(5237):p.769-75.
    5.F.Bear;,M.,B.W.Connors;,and M.A.Paradiso,Neuroscience:Exploring the Brain 2005:Lippincott Williams & Wilkins
    6.Treisrnan,A.M.and G.Gelade,A feature-integration theory of attention.Cognit Psychol,1980.12(1):p.97-136.
    7.刘建忠.人脑是怎样认知图像的?2007:Available from:http://hi.baidu.com/liujianz/blog/item/5dc2f73d25abf003baa167e4.html.
    8.Wolfe,J.M.and K.R.Cave,The psychophysical evidence for a binding problem in human vision.Neuron,1999.24(1):p.11-7,111-25.
    9.Engel,A.K.,P.Fries,and W.Singer,Dynamic predictions:oscillations and synchrony in top-down processing.Nat Rev Neurosci,2001.2(10):p.704-16.
    10.Singer,W.and C.M.Gray,Visual feature integration and the temporal correlation hypothesis.Annu Rev Neurosci,1995.18:p.555-86.
    11.陈霖,拓扑性质检测--计算理论的一朵司能的乌云.in关于思维科学.1986,上海人民出版社:上海.p.250-231.
    12.Hoffman,J.E.,Hierarchical stages in the processing of visual information.Perception & Psychophysics,1975.18:p.348-354.
    13.Chen,L.,The topological approach to perceptual organization.VISUAL COGNITION,2005.12(4):p.553-701.
    14.Chen,L.,Topological structure in visual perception.Science,1982.218(4573): p.699-700.
    15.刘志华and金志成,视觉特征捆绑的认知机制研究,心理科学,2006.29(3):p.635-638.
    16.Chen,L.,Perceptual organization:To reverse back the inverted(upside-down)question of feature binding.VISUAL COGNITION,2001.8(3):p.287-303.
    17.Chen,L.,S.Zhang,and M.V.Srinivasan,Global perception in small brains:topological pattern recognition in honey bees.Proc Natl Acad Sci U S A,2003.100(11):p.6884-9.
    18.Zhuo,Y.,et al.,Contributions of the visual ventral pathway to long-range apparent motion.Science,2003.299(5605):p.417-20.
    19.Wang,B.,et al.,Global topological dominance in the left hemisphere.Proc Natl Acad Sci U S A,2007.104(52):p.21014-9.
    20.Fujita,I.,The inferior temporal cortex:architecture,computation,and representation.J Neurocytol,2002.31(3-5):p.359-71.
    21.Orban,G.A.,D.Van Essen,and W.Vanduffel,Comparative mapping of higher visual areas in monkeys and humans.Trends Cogn Sci,2004.8(7):p.315-24.
    22.Tsao,D.Y.,et al.,Faces and objects in macaque cerebral cortex.Nat Neurosci,2003.6(9):p.989-95.
    23.Liddell,B.J.,et al.,A direct brainstem-amygdala-cortical 'alarm' system for subliminal signals of fear.Neuroimage,2005.24(1):p.235-43.
    24.Stoerig,P.,Blindsight,conscious vision,and the role of primary visual cortex.Prog Brain Res,2006.155:p.217-34.
    25.Stoerig,P.and A.Cowey,Blindsight in man and monkey.Brain,1997.120(Pt 3):p.535-59.
    26.Ren,P.,et al.,Topological perception of Amblyopic Subjects.Progress in Biochemistry and Biophysics,2007.34:p.127.
    27.Leventhal,A.G.,et al.,GABA and its agonists improved visual cortical function in senescent monkeys.Science,2003.300(5620):p.812-5.
    28.Leopold,D.A.and N.K.Logothetis,Multistable phenomena:changing views in perception.Trends Cogn Sci,1999.3(7):p.254-264.
    29.Marcus,D.S.and D.C.Van Essen,Scene segmentation and attention in primate cortical areas V1 and V2.J Neurophysiol,2002.88(5):p.2648-58.
    30.Sheinberg,D.L.and N.K.Logothetis,The role of temporal cortical areas in perceptual organization.Proc Natl Acad Sci U S A,1997.94(7):p.3408-13.
    31.Schmolesky,M.T.,et al.,Signal timing across the macaque visual system.J Neurophysiol,1998.79(6):p.3272-8.
    32.Noesselt,T.,et al.,Delayed striate cortical activation during spatial attention.Neuron,2002.35(3):p.575-87.
    33.Marr,D.,Vision.1982,San Francisco:W.H.Freeman and Company.
    34.马颂德and张正友,计算机视觉-计算理论与算法基础.2003,北京:科学出版社.
    35.Minsky,M.L.and S.A.Papert,Perceptrons.1969,Cambridge,MA:MIT Press.
    36.L.G.Kiloh,A.J.M.,J.W.Osselton,A.R.M.Upton.,Clinical Electroen-cephalography Forth Edition ed.1981:Butterworths.
    37.沈钧贤,人类脑计划与神经信息学.生物物理学报,2001.17(12):p.607-612.
    38.De Schutter,E.,G.A.Ascoli,and D.N.Kennedy,On the future of the human brain project.Neuroinformatics,2006.4(2):p.129-30.
    39.Xiong,X.and Y.Chen,Extracting ERP by combination of Subspace Method and Lift Wavelet Transform.Conf Proc IEEE Eng Med Biol Soc,2005.6:p.5938-41.
    40.Rossignol,M.,et al.,Categorical perception of anger and disgust facial expression is affected by non-clinical social anxiety:an ERP study.Brain Res,2007.1132(1):p.166-76.
    41.Phillips,N.A.,et al.,ERP measures of auditory word repetition and translation priming in bilinguals.Brain Res,2006.1125(1):p.116-31.
    42.Holtz,U.,J.Falck,and EH.Franken,[ERP and pancreatic sonography,a critical comparison(proceedings)].Z Gastroenterol,1977.15(10):p.600.
    43.Shen,M.,et al.,Effective Approach for Detecting the Single Trial ERP Using Rational Gaussian Neural Network.Conf Proc IEEE Eng Med Biol Soc,2005.1:p.33-6.
    44.赵仑,ERP实验教程.2004,天津:天津社会科学院出版社.
    45.Gaillard,A.W.,Problems and paradigms in ERP research.Biol Psychol,1988.26(1-3):p.91-109.
    46.Gerez,M.and A.Tello,Selected quantitative EEG(QEEG) and event-related potential(ERP) variables as discriminators for positive and negative schizophrenia.Biol Psychiatry,1995.38(1):p.34-49.
    47.Casati,R.,Does topological perception rest on a misconception about topology?.Philosophical Psychology,2009.22(1):p.77-81.
    48.Komatsu,H.and Y.Ideura,Relationships between color,shape,and pattern selectivities of neurons in the inferior temporal cortex of the monkey.J Neurophysiol,1993.70(2):p.677-94.
    49.Odom,J.V.,et al.,Visual evoked potentials standard(2004).Doc Ophthalmol,2004.108(2):p.115-23.
    50.Bentin,S.,et al.,Processing the trees and the forest during initial stages of face perception:electrophysiological evidence.J Cogn Neurosci,2006.18(8):p.1406-21.
    51.Allison,T.,et al.,Electrophysiological studies of human face perception.I:Potentials generated in occipitotemporal cortex by face and non-face stimuli.Cereb Cortex,1999.9(5):p.415-30.
    52.Bentin,S.,et al.,Electrophysiological studies of face perception in humans.Journal of Cognitive Neuroscience,1996.8:p.551-565.
    53.Bruce,V.and A.Young,Understanding face recognition.Br J Psychol,1986.77(Pt 3):p.305-27.
    54.Thierry,G.,et al.,An event-related potential component sensitive to images of the human body.Neuroimage,2006.32(2):p.871-9.
    55.Rossion,B.,et al.,Expertise training with novel objects leads to left-lateralized facelike electrophysiological responses.Psychol Sci,2002.13(3):p.250-7.
    56.Tarr,M.J.and I.Gauthier,FFA:a flexible fusiform area for subordinate-level visual processing automatized by expertise.Nat Neurosci,2000.3(8):p.764-9.
    57.Large,M.E.,I.Kiss,and P.A.McMullen,Electrophysiological correlates of object categorization:back to basics.Brain Res Cogn Brain Res,2004.20(3):p.415-26.
    58.Tanaka,J.,et al.,Tracking the time course of object categorization using event-related potentials.Neuroreport,1999.10(4):p.829-35.
    59.VanRullen,R.and S.J.Thorpe,The time course of visual processing:from early perception to decision-making.J Cogn Neurosci,2001.13(4):p.454-61.
    60.Pernet,C.,et al.,Neural timing of visual implicit categorization.Brain Res Cogn Brain Res,2003.17(2):p.327-38.
    61.Treisman,A.and G.Geffen,Selective attention:perception or response? Q J Exp Psychol,1967.19(1):p.1-17.
    62.Norman,D.A.,Towards a theory of memory and attention.Psychological Review,1968.75:p.522-536.
    63.Lavie,N.,Distracted and confused?:selective attention under load Trends Cogn Sci,2005.9(2):p.75-82.
    64.Lavie,N.and Y.Tsal,Perceptual load as a major determinant of the locus of selection in visual attention.Percept Psychophys,1994.56(2):p.183-97.
    65.Handy,T.C.,M.Soltani,and G.R.Mangun,Perceptual load and visuocortical processing:event-related potentials reveal sensory-level selection.Psychol Sci,2001.12(3):p.213-8.
    66.Rorden,C.,et al.,Event Related Potentials Reveal that Increasing Perceptual Load Leads to Increased Responses for Target Stimuli and Decreased Responses for Irrelevant Stimuli.Front Hum Neurosci,2008.2:p.4.
    67.Rees,G.,C.D.Frith,and N.Lavie,Modulating irrelevant motion perception by varying attentional load in an unrelated task.Science,1997.278(5343):p.1616-9.
    68.Schwartz,S.,et al.,Attentional load and sensory competition in human vision: modulation of fMRI responses by load at fixation during task-irrelevant stimulation in the peripheral visual field.Cereb Cortex,2005.15(6):p.770-86.
    69.O'Connor,D.H.,et al.,Attention modulates responses in the human lateral geniculate nucleus.Nat Neurosci,2002.5(11):p.1203-9.
    70.Handy,T.C.and G.R.Mangun,Attention and spatial selection:electrophysiologieal evidence for modulation by perceptual load.Percept Psychophys,2000.62(1):p.175-86.
    71.Lavie,N.,Perceptual load as a necessary condition for selective attention.J Exp Psychol Hum Percept Perform,1995.21(3):p.451-68.
    72.Fu,S.,et al.,When and where perceptual load interacts with voluntary visuospatial attention:an event-related potential and dipole modeling study.Neuroirnage,2008.39(3):p.1345-55.
    73.Scholte,H.S.,et al.,Feedforward and Recurrent Processing in Scene Segmentation:Electroencephalography and Functional Magnetic Resonance Imaging.J Cogn Neurosci,2008.
    74.Heinen,K.,J.Jolij,and V.A.Lamme,Figure-ground segregation requires two distinct periods of activity in Ⅵ:a transcranial magnetic stimulation study.Neuroreport,2005.16(13):p.1483-7.
    75.Thielscher,A.,et al.,Texture segmentation in human perception:a combined modeling and fMRI study.Neuroseience,2008.151(3):p.730-6.
    76.Haynes,J.D.,J.Driver,and G.Rees,Visibility reflects dynamic changes of effective connectivity between V1 and fusiform cortex.Neuron,2005.46(5):p.811-21.
    77.Appelbaum,L.G.,et al.,Cue-invariant networks for figure and background processing in human visual cortex.J Neurosei,2006.26(45):p.11695-708.
    78.Schira,M.M.,et al.,Differential contribution of early visual areas to the perceptual process of contour processing.J Neurophysiol,2004.91(4):p.1716-21.
    79.Altmann,C.F.,H.H.Bulthoff,and Z.Kourtzi,Perceptual organization of local elements into global shapes in the human visual cortex.Curr Biol,2003.13(4):p.342-9.
    80.Kastner,S.,P.De Weerd,and L.G.Ungerleider,Texture segregation in the human visual cortex:A functional MRI study.J Neurophysiol,2000.83(4):p.2453-7.
    81.Bach,M.and T.Meigen,Electrophysiological correlates of texture segregation in the human visual evoked potential.Vision Res,1992.32(3):p.417-24.
    82.Rossi,A.F.,R.Desimone,and L.G.Ungerleider,Contextual modulation in primary visual cortex of macaques.J Neurosci,2001.21(5):p.1698-709.
    83.Zipser,K.,V.A.Lamme,and P.H.Schiller,Contextual modulation in primary visual cortex.J Neurosci,1996.16(22):p.7376-89.
    84.Roelfsema,P.R.,et al.,Figure-ground segregation in a recurrent network architecture.J Cogn Neurosci,2002.14(4):p.525-37.
    85.Macknik,S.L.,Visual masking approaches to visual awareness.Prog Brain Res,2006.155:p.177-215.
    86.Breitmeyer,B.G,T.Ro,and H.Ogrnen,A comparison of masking by visual and transcranial magnetic stimulation:implications for the study of conscious and unconscious visual processing.Conscious Cogn,2004.13(4):p.829-43.
    87.Enns,J.T.and V.Di Lollo,What's new in visual masking? Trends Cogn Sci,2000.4(9):p.345-352.
    88.Fahrenfort,J.J.,H.S.Scholte,and V.A.Lamme,Masking disrupts reentrant processing in human visual cortex.J Cogn Neurosci,2007.19(9):p.1488-97.
    89.Bacon-Mace,N.,et al.,The time course of visual processing:backward masking and natural scene categorisation.Vision Res,2005.45(11):p.1459-69.
    90.Lamme,V.A.,K.Zipser,and H.Spekreijse,Masking interrupts figure-ground signals in V1.J Cogn Neurosci,2002.14(7):p.1044-53.
    91.Bach,M.and T.Meigen,Electrophysiological correlates of human texture segregation,an overview.Doc Ophthalmol,1998.95(3-4):p.335-47.
    92.Heinrich,S.P.,M.Andres,and M.Bach,Attention and visual texture segregation.J Vis,2007.7(6):p.6.
    93.Lamme,V.A.,V.Rodriguez-Rodriguez,and H.Spekreijse,Separate processing dynamics for texture elements,boundaries and surfaces in primary visual cortex of the macaque monkey.Cereb Cortex,1999.9(4):p.406-13.
    94.Caputo,G.and C.Casco,A visual evoked potential correlate of global figure-ground segmentation.Vision Res,1999.39(9):p.1597-610.
    95.Ro,T.,et al.,Feedback contributions to visual awareness in human occipital cortex.Curr Biol,2003.13(12):p.1038-41.
    96.Vinberg,J.and K.Grill-Spector,Representation of shapes,edges,and surfaces across multiple cues in the human visual cortex.J Neurophysiol,2008.99(3):p.1380-93.
    97.Bachmann,T.,I.Luiga,and E.Poder,Variations in backward masking with different masking stimuli:Ⅱ.The effects of spatially quantised masks in the light of local contour interaction,interchannel inhibition,perceptual retouch,and substitution theories.Perception,2005.34(2):p.139-53.
    98.Pomerantz,J.R.,L.C.Sager,and R.J.Stoever,Perception of wholes and of their component parts:some configural superiority effects.J Exp Psychol Hum Percept Perform,1977.3(3):p.422-35.
    99.Navon,D.,Forest before trees:The precedence of global features in visual perception.Cognitive Psychology,1977.9:p.353-383..
    100.魏景汉and阎克乐,认知神经科学基础.2008:人民教育出版社.
    101.Moscovitch,M.,G.Winocur,and M.Behrmann,What is special about face recognition? nineteen experiments on a person with visual object agnosia and dyslexia but normal face recognition.Journal of Cognitive Neuroscience 1997.9(5):p.555-604
    102.Maurer,D.,R.L.Grand,and C.J.Mondloch,The many faces of configural processing.Trends Cogn Sci,2002.6(6):p.255-260.
    103.Boutsen,L.,et al.,Comparing neural correlates of configural processing in faces and objects:an ERP study of the Thatcher illusion.Neuroimage,2006. 32(1):p.352-67.
    104.Rossion,B.,et al.,The N170 occipito-temporal component is delayed and enhanced to inverted faces but not to inverted objects:an electrophysiological account of face-specific processes in the human brain.Neurorcport,2000.11(1):p.69-74.
    105.Rossion,B.,et al.,Spatio-temporal localization of the face inversion effect:an event-related potentials study.Biol Psychol,1999.50(3):p.173-89.
    106.Rossion,B.,et al.,Early lateralization and orientation tuning for face,word,and object processing in the visual cortex.Neuroimage,2003.20(3):p.1609-24.
    107.Itier,R.J.and M.J.Taylor,Inversion and contrast polarity reversal affect both encoding and recognition processes of unfamiliar faces:a repetition study using ERPs.Neuroimage,2002.15(2):p.353-72.
    108.Sagiv,N.and S.Bentin,Structural encoding of human and schematic faces:holistic and part-based processes.J Cogn Neurosci,2001.13(7):p.937-51.
    109.Eimer,M.,Effects of face inversion on the structural encoding and recognition of faces.Evidence from event-related brain potentials.Brain Res Cogn Brain Res,2000.10(1-2):p.145-58.
    110.Rebai,M.,et al.,Event-related potentials for category-specific information during passive viewing of faces and objects.Int J Neurosci,2001.106(3-4):p.209-26.
    111.Rossion,B.,T.Curran,and I.Gauthier,A defense of the subordinate-level expertise account for the N170 component.Cognition,2002.85(2):p.189-96.
    112.Bentin,S.,et al.,ERP manifestations of processing printed words at different psycholinguistic levels:time course and scalp distribution.J Cogn Neurosci,1999.11(3):p.235-60.
    113.Di Russo,F.,et al.,Cortical sources of the early components of the visual evoked potential.Hum Brain Mapp,2002.15(2):p.95-111.
    114.Di Russo,F.,A.Martinez,and S.A.Hillyard,Source analysis of event-related cortical activity during visuo-spatial attention.Cereb Cortex,2003.13(5):p. 486-99.
    115.Mangun,G.R.,et al.,ERP and fMRI measures of visual spatial selective attention.Hum Brain Mapp,1998.6(5-6):p.383-9.
    116.Gauthier,I.,et al.,Training 'greeble' experts:a framework for studying expert object recognition processes.Vision Res,1998.38(15-16):p.2401-28.
    117.Tanaka,J.W.and T.Curran,A neural basis for expert object recognition.Psychol Sci,2001.12(1):p.43-7.
    118.Caharel,S.,et al.,The effects of inversion and eye displacements of familiar and unknown faces on early and late-stage ERPs.Int J Psyehophysiol,2006.62(1):p.141-51.
    119.Caharel,S.,et al.,ERPs associated with familiarity and degree of familiarity during face recognition.Int J Neurosci,2002.112(12):p.1499-512.
    120.Zhang,J.,et al.,Masking effect on different topological visual stimuli.Progress in Biochemistry and Biophysics,2007.34:p.153.