水稻每穗颖花数的遗传基础剖析及其主效QTLs精细定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
每穗颖花数是水稻产量性状的重要构成因子,因此,研究该性状具有重要理论和实际意义。然而,该性状是复杂的数量性状,同时受到多个微效和主效的QTL调控。利用分子标记连锁图和统计分析方法,可以实现QTL的定位。进一步的研究表明,水稻每穗颖花数同时受到QTL,上位性和环境的共同影响。通过构建目标区段QTL的近等基因系,可以消除遗传背景的干扰,使数量性状呈现质量性状的分离,从而实现QTL的精细定位和克隆。本研究利用两个重组自交系群体珍汕97/特青和明恢63/特青构建两张遗传图谱,分别收集两群体的两年度重复的表型数据,对包括每穗颖花数和每穗实粒数在内的一共9个农艺性状进行QTL定位,对两群体的6个每穗颖花数QTL和2个每穗实粒数构建近等基因系,进而近等基因系背景下重新分析了4个QTL的遗传效应,精细定位了3个QTL,利用图位克隆策略,分离确定了SPP7b的候选基因。具体结果如下:
     1、利用176个SSR标记构建珍汕97/特青的遗传图谱,总长1432.1 cM,标记间的平均距离为8.1 cM;利用133个标记构建了明恢63/特青群体,遗传连锁图总长1371.4 cM,标记间的平均距离为10.3 cM。两群体共有的标记为50对,标记的相对位置基本相同,且与已发表的图谱有较好的一致性。
     2、对两个群体分别收集了两个年度的表型数据,考察了包括每穗颖花数和每穗实粒数等的一共9个性状,并进行了QTL分析。珍汕97/特青群体在2004和2006年各检测到26个QTL,其中13个QTL两年共同检测到。而明恢63/特青群体分别在2005和2006年共检测到24和28个QTL,其中13个QTL两年都检测到。
     3、利用每穗实粒数和抽穗期数据,对两重组自交系群体的的每穗实粒数性状进行条件QTL分析。结果显示,在珍汕97/特青群体的8个QTL中的5个受到抽穗期的影响,而剩下的3个QTL以及所有明恢63/特青群体的5个QTL都不受抽穗期的影响。进而将每穗实粒数QTL分为两类,第一类仅控制每穗实粒数性状(typeⅠ),第二类则通过延长抽穗期来提高每穗实粒数(typeⅡ)。
     4、对6个每穗颖花数QTL,2个每穗实粒数QTL构建近等基因系。分别得到了BC_4F_2的分离群体种子。
     5、对SPP3b在近等基因系背景下重新估计了其遗传效应,在F_2和F_3代中分别检测到一个LOD值是12.8和8.8的QTL,加性效应分别是11.89和7.85,分别解释表型变异的29.1%和20.2%。同时也在该群体中检测到一个千粒重的QTL,F_2和F_3代的LOD值分别是26.2和17.0,加性效应分别是-1.81和-0.89,各自解释表型变异的50.4%和34.5%。通过后代测验发现这两个性状共分离,两基因被当作基因标记准确的定位在染色体相同的位置,与标记RM15855和W3D16分别相距1.6 cM和1.0 cM。很有可能是一个多效性QTL同时控制每穗颖花数和千粒重。
     6、利用SPPl近等基因系分析该QTL的遗传效应,在F_2和F_3代中分别检测到一个LOD值是23.95和35.52的QTL,加性效应分别是22.05和10.81,分别解释表型变异的51.1%和63.4%。利用2200株的分离群体,进一步将QTL精细定位在一个107 kb的区域,生物信息学预测该区间一共有17个基因。
     7、利用SPP6的NILs分析QTL的效应,发现三个性状,抽穗期,株高,每穗颖花数都存在分离。在F_2代中,株高,每穗颖花数性状的QTL LOD值分别是72.58,29.96,加性效应分别是7.72,22.14,解释表型变异的81.2%,50.9%。通过后代测验发现抽穗期,株高,每穗颖花数3个性状共分离,进一步把这个基因作为一个基因标记定位在染色体相同的座位,与RM19746和RM19795的距离分别是3.1和3.4 cM。SPP6很有可能是一个多效性QTL同时控制这3个性状。利用3300株的NILs的分离大群体,进一步将该QTL定位在一个约1Mb的区域。生物信息学预测1Mb的区域包含一个已克隆的抽穗期基因Hdl,然而Hdl与SPP6的显隐性关系恰好相反,因此可以确定SPP6并不是Hdl基因。
     8、利用SPP7b的NILs重新分析了QTL的遗传效应,发现在该群体中,株高,抽穗期和每穗颖花数都存在分离。在F_2和F_3代分别检测到LOD值为19.22和29.68的主效QTL,加性效应分别为18.86和17.04,解释表型变异的45.3%和50.6%的每穗颖花数的QTL。就株高,在两代中分别检测到QTL的LOD值分别为24.73和24.37,加性效应3.13和3.22,各自解释表型变异的50.2%和45.0%。抽穗期的LOD值分别为59.33和30.83,加性效应3.91和3.52,各自解释表型变异的76.9%和51.5%。利用8018株的大分离群体,发现三个性状共分离,进一步将其定位在19 kb的区域。生物信息学预测里面包含两个完整的基因和一个部分的基因。比较测序确定其中的Loc_Os07g48989是SPP7b的候选基因。RT-PCR结果显示,该候选基因确实存在转录本,因此进一步确证了该基因的真实存在。通过筛选特青的BAC文库,得到一个包含目的基因的BAC克隆12D18。酶切该BAC克隆将带目的基因的约6.9 kb片段分离克隆到载体pCAMBIA 1301上。
The number of spikelets per panicle or the number of grains per panicle is an important component of rice yield. It has a theoretical and practical significance to study spikelets per panicle. However, this trait is inherited in a quantitative manner and typically controlled by a number of major and minor quantitative trait loci (QTL) and affected by environment, which causes a challenge to characterize it. With the QTL analysis based on molecular makers, the spikelets per panicle QTL can be detected. Many reports have provided the evidences for very complicated genetic bases of yield traits, which are affected by QTL, epistasis and environments simultaneously in primary mapping populations. By developing near isogenic lines (NILs) which can avoid genetic background noise, the QTL can be visualized as a Mendelian factor, and make QTL fine mapping and cloning become easier. In this study, utilizing two sets recombinant inbred lines (RILs) Zhenshan 97/Teqing and Minghui 63/Teqing, their genetic linkage map were constructed. Collecting two years' phenotype data of two sets RILs, nine traits QTLs were detected. Eight QTL containing six spikelets per panicle QTL and two. grains per panicle QTL were developed for NILs. Genetic effects for Four QTLs' were re-estimated in NIL background and three QTLs were fine mapped. On the basis of map Based cloning strategy, the SPP7b candidate gene was cloned.
     1. The genetic linkage map of Zhenshan 97/Teqing population was constructed based on 176 loci, which covered a total of 1432.1 cM with an average interval of 8.1 cM between adjacent loci; the genetic linkage map of Minghui 63/Teqing population was constructed based on 133 loci, which covered a total of 1371.4 cM with an average interval of 10.3 cM between adjacent loci. There were 50 common SSR makers between two RILs with maker orders on chromosomes well according to that published in previous reports.
     2. Collecting two years' phenotype data of two sets RILs, all nine traits' QTL containing spikelets per panicle, grains per panicle et al were detected on basis of composite interval mapping. Totally, 26 QTLs were detected in Zhenshan 97/Teqing in both the years 2004 and 2006, of which 13 QTLs were commonly detected in two years. 24 and 28 QTLs were detected in Minghui 63/Teqing in 2005 and 2006 where 13 QTLs are commonly detected in two years.
     3. Combining the grains per panicle and heading date phenotype data, the conditional QTL analysis was executed in two RILs. The result showed that 5 QTL of 8 GPP QTL in Zhenshan 97/Teqing were affected by heading date of rice. The other 3 QTL in Zhenshan 97/Teqing and all 5 GPP QTL in Minghui 63/Teqing were not influenced by rice flowering time. Hence, the panicle size QTL can be differentiated two types: the type I only controls grain per panicle, and type II is a flowering time affecting QTL which increase grains per panicle by elongation of life cycle.
     4. Eight NILs of panicle size QTL containing 6 spikelets per panicle QTL and 2 grains per panicle QTL were developed. And all NILs BC4F2 material was attained.
     5. The genetic effect of SPP3b was re-estimated in NIL background. In the BC_3F_2 population and BC_3F_3 progeny test population, a main effect QTL were detected, which have a LOD value of 12.8 and 8.8, additive effect of 11.89 and 7.85, and contribution of 29.1% and 20.2% of phenotype variance, respectively. Also, a main effect QTL controlling 1000-grain weight were detected in this NILs, which have a LOD value of 26.2 and 17.0, additive effect of -1.81 and -0.89, and contribution of 50.4% and 34.5% of phenotype variance, respectively. The co-segregation between the spikelets per panicle and 1000-grain weight was found by progeny test analysis, and this two QTLs considering as a maker were exactly map in the locus 1.6 and 1.0 cM away from markers RM15855 and W3D16, respectively. These results suggested that it is possible that the SPP3b was pleiotropic QTL controlling panicle size and 1000-grain weight.
     6. Analysing the genetic effect of SPP1 in NILs of F_2 and F_3 progeny population showed that a main effect QTL was detected, which have a LOD value of 23.95 and 35.52, additive effect of 22.05 and 10.81, and contribution of 51.1% and 63.4% of phenotype variance in F_2 and F_3 respectively. Utilizing a segregating population which has 2200 individuals, the SPP1 was fine mapped to a 107 kb region which contains 17 putative genes by bioinformatics predicting.
     7. In SPP6 NILs F_2 pouplation, three traits containing heading date, plant height, spikelets per panicle were co-segregated. The QTL for plant height, spikelets per panicle explained 81.2% and 50.9%of phenotype variance with a LOD value of 72.58, 29.96 and an additive effect of 7.72, 22.14 in F_2, respectively. The co-segregation among the three traits including heanding date, plant height and spikelet number per panicle was found by progeny test analysis, and this four QTLs considering as a maker were exactly map in the locus 3.1 and 3.4 cM away from markers RM19746 and RM19795, respectively. Theses results suggested that it is possible that the SPP6 was pleiotropic QTL controlling these three traits. Utilizing a segregating population which has 3300 individuals, the SPP6 was fine mapped to a 1 Mb region which contains Hd1, a cloned gene for heading date of rice. Due to the dominance of flowering in Hd1, which was counter to SPP6, it was a novel gene which is different from Hd1.
     8. There is a segregation of heading date, plant height and spikelets per panicle in NILs of SPP7b. By re-estimating the genetic effects of QTLs for these three traits, the main effect QTL were detected which explained 76.9%, 50.2%, 45.3% of phenotype variance with a LOD value of 59.33, 24.73, 19.22 and an additive effect of 3.91, 3.13, and 18.86 in F_2, respectively. Also in F3 progeny test population, main effect QTLs were detected which explained 51.5%, 45.0%, 50.6% of phenotype variance with a LOD value of 30.83, 24.37, 29.68 and an additive effect of 3.52, 3.22 and 17.04, respectively. Utilizing a segregating population which has 8018 individuals, the SPP7b was delimited to a 19-kb region which contains 3 putative genes by bioinformatics predicting. Sequencing comparison of 19-kb region between Zhenshan 97 and Teqing, the candidate gene of SPP7b was ascertained as Loc_Os07g48989. By RT-PCR, the result showed that Loc_Os07g48989 was expressed in Teqing genome as a real gene. A BAC clone 12D18 which contained the 19-kb region was screened to the Teqing BAC clone library. By utilizing the vector pCAMBIA 1301, the candidate gene of SPP7b was cloned.
引文
1.崔克辉.水稻产量相关性状的形态生理分析和分子标记剖析.[博士学位论文].武汉:华中农业大学图书馆,2001
    2.高之仁.数量遗传学.重庆:四川大学出版社,1986
    3.何慈信,朱军,严菊强,Mebrouk B,吴平.水稻穗干物质重发育动态的QTL定位.中国农业科学,2000,33:24-32
    4.华金平.汕优63“永久F2“群体构建及其杂种优势的遗传研究.[博士学位论文].武汉:华中农业大学图书馆,2001
    5.黎裕,贾继增,王天宇.分子标记的种类及其发展.生物技术通报,1999,4
    6.李建雄.一个优良杂交组合的杂种优势遗传成因的分子标记分析.[博士学位论文].武汉:华中农业大学图书馆,1998
    7.李玉玲,董永彬,牛素贞.爆裂玉米3个膨爆特性的非条件和条件QTL分析.分子植物育种,2006,4(3):372-380
    8.林拥军.农杆菌介导的水稻转基因研究.[博士学位论文].武汉:华中农业大学图书馆,2001
    9.刘南.光敏核不育水稻基因pmsl物理图谱的构建及候选基因的确定.[硕士学位论文].武汉:华中农业大学图书馆,2000
    10.山燕.水稻光敏核不育基因pmsl目标BAC克隆的序列测定、分析及候选基因的确定.[硕士学位论文].武汉:华中农业大学图书馆,2000
    11.吴为人,李维明,卢浩然.数量性状基因座的动态定位策略.生物数学学报,1997,12:490-495
    12.邢永忠.用分子标记剖析水稻重要农艺性状的遗传基础.[博士学位论文].武汉:华中农业大学图书馆,1999
    13.薛为亚.水稻产量相关基因Ghd7的分离与鉴定.[博士学位论文].武汉:华中农业大学图书馆,2008
    14.余四斌.优良杂交水稻汕优63杂种优势遗传学基础的分子标记剖析.[博士学位论文].武汉:华中农业大学图书馆,1997
    15.岳兵.水稻后期抗旱性遗传基础研究.[博士学位论文].武汉:华中农业大学图书馆,2005
    16.张玉山.水稻重要农艺性状的QTL分析和主效QTL近等基因系的构建.[博士学位论文].武汉:华中农业大学图书馆,2006
    17.赵芳明,刘桂富,朱海涛,丁效华,曾瑞珍,张泽民,李文涛,张桂权.用单片段代换系对不同时期水稻分蘖数QTL的非条件和条件定位.中国农业科学,2008,41:322-330
    18.杨文钰,屠乃美.作物栽培学各论.北京:中国农业出版社,2003
    19.袁爱平,曹立勇,庄杰云,李润植,郑康乐,朱军,程式华.水稻株高、抽穗期和有效穗数QTL与环境的互作分析.遗传学报,2003,30:899-906
    20.Aluko G,Martinez C,Tohme J,Castano C,Bergman C,Oard HJ.QTL mapping of grain quality traits from the interspecific cross Oryza sativa×O.glaberrima.Theor Appl Genet,2004,109:630-639
    21.Ashikari M,Sakakibara H,Lin S,Yamamoto T,Takashi T,Nishimura A,Angeles ER,Qian Q,Kitano H,Matsuoka M.Cytokinin oxidase regulates rice grain production.Science,2005,309:741-745
    22.Baldet P,Hernould M,Laporte F,Mounet F,Just D,Mouras A,Chevalier C and Rothan C.The expression of cell proliferation-related genes in early developing flowers is affected by a fruit load reduction in tomato plants.Journal of Experimental Botany,2006,57:961-970
    23.Bassam BJ,Anolles GC,Gresshoff PM.Fast and sensitive silver staining of DNA in polyacrylamide gels.Anal Biochem,1991,196:80-83
    24.Beezhoid DH,Hickey VL,Kostyal DA,Puhl H,Zuidmeer L,van Ree R,Sussman GL.Lipid transfer protein from Hevea brasiliensis(Hev b 12),a cross-reactive latex protein.Ann Allergy Asthma Immunol,2003,90:439-445.
    25.Blanc G,Charcosset A,Mangin B,Gallais A,Moreau L.Connected populations for detecting quantitative trait loci and testing for epistasis:an application in maize.Theor Appl Genet,2006,113:206-224
    26.Botstein B,White RL,Skolnick M,Davis RW.Construction of a genetic linkage map using restriction fragment length polymorphism.Am J Hum Genet,1980,32:314-331
    27.Brummell DA,Hall B and Bennett AB.Antisense suppression of tomato endo-1,4-beta gucanase Cel2 mRNA accumulation increases the force required to break fruit abscission zones but does not affect fruit softening.Plant Mol Biol,1999,40:615-622
    28.Buckler ES,Thornsberry JM.Plant molecular diversity and applications to genomics.Current Option in Plant Biology, 2002, 5:107-111
    29. Cammue B, Thevissen K, Hendriks M , Kristel Eggermont K, Goderis I, Proost P, Damme J, Osborn R, Guerbette F, Kader J, Broekaert W. A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins. Plant Physiol, 1995, 109:445-455
    30. Causse MA, Fulton TM, Cho YG, Ann SN, Chunwongse J, Wu K, Xiao J, Yu Z H, Ronald P C, Hamington S E, Second G, Mccouch S R, Tanksley S D. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics, 1994, 138:1251-1274
    31. Chen X, Temnykh S, Xu Y, Cho YG, McCouch SR. Development of a microsatellite framework map providing genome wide coverage in rice (Oryza sativa L.). Theor Appl Genet, 1997, 95:553-567
    32. Cheng S, Zhuang J, Fan Y, Du J, Cao L. Progress in Research and Development on Hybrid Rice: A Super-domesticate in China. Annals of Botany, 2007, 1-8
    33. Chu Z, Yuan M, Yao J, Ge X, Yuan B, Xu C, Li X, Fu B, Li Z, Bennetzen L, Zhang Q and Wang S. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev, 2006, 20:1250-1255
    34. Coupland G, Igeno MI, Simon R, Schaffer R, Murtas G, Reeves P, Robson F, Pineiro M, Costa M, Lee K, Suarez-Lopez P. The regulation of flowering time by daylength in Arabidopsis. Symp Soc Exp Biol, 1998, 51:105-110
    35. Cui KH, Peng SB, Xing YZ, Yu SB, Xu CG, Zhang Q. Molecular dissection of the genetic relationships of source, sink and transport tissue with yield traits in rice. Theor Appl Genet, 2003, 106:649-658
    36. Dansen T, Westerman J, Wouters F, Wanders R, Hoek A, Gadella T, Wirtz K. High-affinity binding of very-long-chain fatty acyl-CoA esters to the peroxisomal non-specific lipid-transfer protein ( sterol carrier protein22). Biochemical J, 1999, 339:193-199
    37. Darvasi A, Weinreb A, Minke V, Weller JI, Soller M. Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics, 1993, 134:943-951
    38. del Campillo E and Bennett AB. Pedicel breakstrength and cellulase gene expression during tomato flower abscission. Plant Physiol, 1996, 111:813-820.
    39. Delseny M, Salses J, Cooke R, Christophe S, Regad F, Lagoda P, Guiderdoni E, Ventelon M, Brugidou C, Ghesquiere A. Rice genomics: present and future. Plant Physiol Biochem, 2001, 39:323-334
    40. Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev, 2004, 18:926-936
    41. Edqvist J, Ronnberg E, Rosenquist S, Blomqvist K, Viitanen L, TSalminen T, Nylund M, Tuuf J, and Mattjus P. Plants express a lipid transfer protein with high similarity to mammalian sterol carrier protein-2. J Biol Chem, 2004,279:53544-53553
    42. Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112:1164-1171
    43. Fan CC, Yu XQ, Xing XY, Xu CG, Luo LJ, Zhang QF. The main effects, epistatic effects and environmental interations of QTLs on the cooking and eating quality of rice in a double-haploid line population. Theor Appl Genet, 2005, 110:1445-1452
    44. Flint-Garcia SA, Thornsberry JM, Buckler IV. Structure of linkage disequilibrium in plants. Annu Rev Plant Biol, 2003, 54:357-374
    45. Flors V, Leyva M, Vicedo B, Finiti I, Real M, Garci'a-Agusti'n P, Bennett B and Gonza'lez-Bosch C. Absence of the endo-b-1, 4-glucanases Cel1 and Cel2 reduces susceptibility to Botrytis cinerea in tomato. The Plant J, 2007, 52:1027-1040
    46. Frary A, Nesbitt TC, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science, 2000,289:85-88
    47. Gamas P, Niebel FC, Lescure N, Cullimore JV. Use of a subtractive approach to identify new Medicago truncatula genes induced during root nodula development. Mol Plant Microbe Interact, 1996,9:233-242
    48. Garant D, Dodson JJ, Bernatchez L. Differential reproductive success and heritability of alternative reproductive tactics in wild Atlantic salmon (Salmo salar L.). Evolution Int J Org Evolution, 2003, 57:1133-1134
    49. Garris AJ, McCouch SR, Kresovich S. Population structure and its effect on haplotype diversity and linkage disequilibrium surrounding the xa5 locus of rice (Oryza sativa L.) Genetics, 2003, 165:759-769
    50. Gaudet D, Laroche A, Frick M, Huel R, Puchalski B. Cold induced expression of plant defensin and lipid transfer protein transcripts in winter wheat. Physiologia Plantarum, 2003, 117:1399-3054
    51. Goff SA, Ricke D, Lan TH, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 2002, 296:92-100.
    52. Goto N, Katoh N, Kranz AR. Morphogenesis of floral organs in Arabidopsis: predominant carpel formation of the pin-formed mutant. Jpn J Genet, 1991, 66:551-567
    53. Guillet C, Birolleau C, Manicacci D, Rogowsky PM, Rigau J, Murigneux A, Martinant JP, Barriere Y. Nucleotide diversity of the ZmPox3 maize peroxidase gene: relationships between a MITE insertion in exon 2 and variation in forage maize digestibility. BMC Genetics, 2004,5:19
    54. Guo LB, Xing YZ, Mei HW, Xu CG, Shi CH, Wu P and Luo LJ. Dissection of component QTL expression in yield formation in rice, Plant Breeding, 2005, 124:127-132
    55. Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin SY, Antonio BA, Parco A, Kajiya H, Huang N, Khush GS, Sasaki T. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics, 1998, 148:479-494
    56. He G, Luo X, Tian F, Li K, Zhu Z, Su W, Qian X, Fu Y, Wang X, Sun C, Yang J. Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice. Genes Dev, 2006, 16: 618-626
    57. Hittalmani S, Huang N, Courtois B, Venuprasad R, Shashidhar HE, Zhuang JY, Zheng KL, Liu GF, Wang GC, Sidhu JS, Srivantaneeyakul S, Singh VP, Bagali PG, Prasanna HC, McLaren G, Khush GS. Identification of QTL for growth- and grain yield-related traits in rice across nine locations of Asia. Theor Appl Genet, 2003, 107:679-690
    58. Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA, 2006, 103:12987-12992.
    
    59. Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol, 2008, 67:169-181
    60. Hua JP, Xing YZ, Wu WR, Xu CG, Sun XL, Yu SB, Zhang QF. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 2003, 100:2574-2579
    61. Huang N, Parco A, Mew T, Magpantay G, McCouch S, Guiderdoni E, Xu J, Subudhi P, Angeles ER, Khush GS. RFLP mapping of isozymes, RAPD and QTLs for grain shape, brown planthopper resistance in a doubled haploid rice population. Mol Breed, 1997,3:105-113
    62. International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature, 2005, 436
    63. Ishimaru K, Ono K, Kashiwagi T. Identification of a new gene controlling plant height in rice using the candidate-gene strategy. Planta, 2004, 218: 388-395
    64. Jander G, Norris SR, Roundsley SD, Bush DF, Levin IM, Last RL. Arabidopsis map-based cloning in the post-genome era. Plant Physiology, 2002, 129:440-450
    65. Jannink JL, Jansen R. Mapping epistatic quantitative trait loci with one-dimensional genome searches. Genetics, 2001, 157:445-454
    66. Jansen RC, Ooijen JW, Stam P, Lister C, Dean C. Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci. Theor Appl Genet, 1995,91:33-37
    67. Jansen RC, Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics, 1994, 136:1447-1455
    68. Jin J, Huang W, Gao JP, Yang J, Shi M, Zhu MZ, Luo D, Lin HX. Genetic control of rice plant architecture under domestication. Nat Genet, 2008, 40:1365-1369
    69. Joseph K, Gebisa E. Marker-assisted selection for early-season cold tolerance in sorghum: QTL validation across populations and environments. Theor Appl Genet, 2008, 116:541-53
    70. Kao CH, Zeng ZB, Teasdale RD. Multiple interval mapping for quantitative trait loci. Genetics, 1999, 152:1203-1216
    71. Kato T, Takeda K. Association among characters related to yield sink capacity in space-planted rice. Crop sci, 1996, 36:1135-39
    72. Kato T. variation in grain-filling process among grain positions within a panicle of rice (Oryza sativa L.). SABRAOJ, 1993, 25:1-10
    73. Kikuchi S, Satoh K, Nagat T. et al. Collection, mapping, and annotation of over 28 000 cDNA clones from japonica rice. Science, 2003, 301:376-379.
    74.Kobayashi M,Sakurai A,Saka H,Takahashi N.Fluctuation of the Endogenous IAA Level in Rice during its life cycle.Agric Biol Chem,1989,53:1089-1094
    75.Kojima S,Takahashi Y,Kobayashi Y,Monna L,Sasaki T,Araki T and Yano M.Hd3a,a rice ortholog of the arabidopsis FT gene,promotes transition to flowering downstream of Hdl under short-day conditions.Plant Cell Physiol,2002,43:1096-1105
    76.Komatsu K,Maekawa M,Ujiie S,Satake Y,Furutani I,Okamoto H,Shimamoto K and Kyozuka J.LAX and SPA:Major regulators of shoot branching in rice.Proc Natl Acad Sci USA,2003,100:11765-11770
    77.Konieczny A and Ausubel FM.A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers.Plant J,1993,4:403-410
    78.Kubo T,Nakamura K,Yoshimura A.Development of a series of Indica chromosome substitution lines in Japonica background office.Rice Genet Newsl,1999,16:104-106
    79.Kubo T,Takano-kai N,Yoshimura A.RFLP mapping of genes for long kernel and awn on chromosome 3 in rice.Rice Genet Newsl,2001,18:26-28
    80.Kurata N,Nagamura Y,Yamamoto K,Harushima Y,Sue N,Wu J,Antonio BA,Shomura A,Shimizu T,Lin SY,Inoue T,Fukuda A,Shimano T,Kuboki Y,Toyama T,Miyamoto Y,Kirihara T,Hayasaka K,Miyao A,Monna L,et al.A 300 kilobase interval genetic map of rice including 883 expressed sequences.Nature Genetic,1994,8:365-372
    81.Lander ES,Botstein D.Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps.Genetics,1989,121:185-200
    82.Lashbrook CC,Gonza' lez-Bosch C and Bennett AB.Two divergent endo-beta-1,4-glucanase genes exhibit overlapping expression in ripening fruit and abscising flowers.Plant Cell,1994,6:1485-1493
    83.Lemieux B.Overview of DNA chip technology.Mol Breed,1998,4:277-289
    84.Li J,Thomson M,McCouch SR.Fine mapping of a grain-weight quantitative trait locus in the pericentrometric region of rice chromosome 3.Genetics,2004,168:2187-2195
    85.Li X,Qian Q,Fu Z,Wang Y,Xiong G,Zeng D,Wang X,Liu X,Teng S,Hiroshi F,Yuan M,Luo,D,Han B,Li J.Control oftillering in rice.Nature,2003,422:618-621
    86.Li Z,Fu B,GaoY,Xu J,Ali J,Lafitte HR,Jiang Y,Rey JD,Vijayakumar CHM,Maghirang R,Zheng T and Zhu L.Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice (Oryza sativa L.). Plant Molecular Biology, 2005, 59:33-52
    87. Li Z, Pinson SRM, Park WD, Paterson AH, Stansel JW. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics, 1997, 145:453-465
    88. Li Z, Pinson SRM, Stansel JW, Paterson AH. Genetic dissection of the source-sink relationship affecting fecundity and yield in rice (Oryza sativa L.). Mol Breed, 1998, 4:419-426
    89. Liao CY, Wu P, Hu B, Yi KK. Effects of genetic background and environment on QTLs and epistasis for rice (Oryza sativa L.) panicle number. Theor Appl Genet, 2001,103:104-111
    90. Lin H, Ashikari M, Yamanouchi U, Sasaki T, and Yano M. Mapping quantitative trait locus, Hd9, controlling heading date in rice. Breed Sci, 2002, 52:35-41
    91. Lin HX, Liang ZW, Sasaki T and Yano M. Fine mapping and characterization of quantitative trait loci Hd4 and Hd5 controlling HD in rice. Breed Sci, 2003, 53:51-59
    92. Lin HX, Yamamoto T, Sasaki T and Yano M. Characterization and detection of epistatic interactions of 3 QTLs, Hd1, Hd2, and Hd3, controlling HD in rice using nearly isogenic lines. Theor Appl Genet, 2000, 101:1021-1028
    93. Lin SY, Sasaki T, and Yano M, Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa, using backcross inbred lines, Theor Appl Genet, 1998, 96:997-1003
    94. Lincoln S, Daly M, Lander E. Constructing genetics maps with MAPMAKER/EXP 3.0. Whitehead Institute Technical Report, Whitehead Institute, Cambridge, Massachusetts, USA, 1992
    95. Lincoln SE, Daly MJ, Lander ES. Mapping genes controlling quantitative traits with MAPMAKER/QTL1.1: a tutorial and reference manual, 2nd edn. Whitehead Institute Technical Report, Cambridge, 1993
    96. Litt M, Luty JA. Hypervariable microsatellite revealed by in vitro amplification of adinucleotide repeat within the cardiac muscle action gene. Am J Hum Genet,1989, 44:399-401
    97. McCouch SR, Kochert G, Yu ZH, Wang ZY, Khush GS, Coffman W, Tanksley SD. Molecular mapping of rice chromosome. Theor Appl Genet, 1988, 76:815-829
    98. McCouch SR, Teytelman L, Xu YB, Lobos KB, Clare K, Walton M, Fu BY, Maghirang R, Li ZK,Xing YZ,Zhang QF,Kono I,Yano M,Fjellstrom R,Declerck G,Schneider D,Cartinhour S,Ware D,Stein L.Development and mapping of 2240 new SSR markers for rice(Oryza sativa L.).DNA RES,2002,6:199-207
    99.Monna L,Kitazawa N,Yoshino R,Suzuki J,Masuda H,Maehara Y,Tanji M,Sato M,Nasu S,Minobe Y.Positional cloning of rice semidwarfing gene,sd-1:rice "green revolution gene" encodes a mutant enzyme involved in gibberellin synthesis.DNA Res,2002,9:11-17
    100.Monna L,Lin HX,Kojima S,Sasaki T,Yano M.Genetic dissection ofa genomic region for quantitative trait locus,Hd3,into two loci,Hd3a and Hd3b,controlling heading date in rice.Theor Appl Genet,2002,104:772-778
    101.Murray MG,Thompson WF.Rapid isolation of high molecular weight plant DNA.Nucleic Acids Res,1980,8:4321
    102.Nakagawa M,Shimamot K and Kyozuka J.Overexpression of RCN1 and RCN2,rice TERMINAL FLOWER1/CENTRORADIALIS homologs,confers delay of phase transition and altered panicle morphology in rice.The Plant Journal,2002,29:743-750
    103.Nordborg M,Borevitz JO,Bergelson J,Berry CC,Chory J,Hagenblad J,Kreitman M,Maloof JN,Noyes T,Oefner PJ,et al.The extent of linkage disequilibrium in Arabidopsis thaliana.Nat Genet,2002,30:190-193
    104.Okada K and Shimura Y.Genetic analyses of signalling in flower development using Arabidopsis.Plant Mol Biol,1994,26:1357-1377.
    105.Okada K,Ueda J,Komaki MK,Bell CJ and Shimura Y.Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation.Plant Cell,1991,3:677-684.
    106.Paterson A,Lander S,Hewitt J,Peterson S,Lincoln H,Tanksley S.Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphism.Nature,1988,335:721-726
    107.Paterson AH,Damon S,Hewitt JD,Zamir D,Rabinowitch HD,Lincoln SE,Lander ES,Tanksley SD.Mendelian factors underlying quantitative traits in tomato:comparison across species,generations,and environments.Genetics,1991,127:181-197
    108.Pflieger S,Lefebvre V,Causse M.The candidate gene approach in plant genetics:a review.Mol Breed,2001,7:275-291
    109. Pooni HS, Coombs DJ, Jines PS. Detection of epistasis and linkage of interacting genes in the presence of reciprocal difference. Heredity, 1987, 58:257-266
    110. Putterill J, Robson F, Lee K, Simon R, Coupland G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell, 1995, 80:847-857
    111. Rahman M, Chu S, Choi M, Qiao Y, Jiang W, Piao R, Khanam S, Cho Y, Jeung J, Jena K, Koh H. Identification of QTLs for Some Agronomic Traits in Rice Using an Introgression Line from Oryza minuta. Mol Cells, 2007, 24:16-26
    112. Redona ED, Mackill DJ. Quantitative trait locus analysis for rice panicle and grain characteristics. Theor Appl Genet, 1998,96:957-963
    113. Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES IV. Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA, 2001, 98:11479-11484
    114. Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet. 2005,37:1141-1146
    115. Saito A, Yano M, Kishimoto N, Nakagahra M, Yoshimura A, Saito K, Kuhara S, Ukai Y, Kawase M, Nagamine T, et al. Linkage map of restriction fragment length polymorphism loci in rice. Jpn J Breed, 1991, 41:665-670
    116. Samonte S, Wilson L, McClung A. Path analyses of yield and yield-related traits of fifteen diverse rice genotypes. Crop sci, 1998, 38:1130-1136
    117. Sax K. The association of size differences with seedcoat pattern and pigmentation in Phaseolus vulgaris. Genetics, 1923, 8:552
    118. Septiningsih EM, Prasetiyono J, Lubis E, Tai TH, Tjubaryat T, Moeljopawiro S, McCouch SR. Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet, 2003, 107:1419-1432
    119. Shen YJ, Jiang H, Jin JP, Zhang ZB, Xi B, He YY, Wang G, Wang C, Qian L, Li X, Yu QB, Liu HJ, Chen DH, Gao JH, Huang H, Shi TL, Yang ZN. Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol, 2004, 135:1198-1205
    120.Shomura A,lzawa T,Ebana K,Ebitani T,Kanegae H,Konishi S,Yano M.Deletion in a gene associated with grain size increased yields during rice domestication.Nat Genet,2008,40:1023-1028
    121.Song X,Huang W,Shi M,Zhu M,Lin H.A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase.Nat Genet,2007,39:623-630
    122.Spielmeyer W,Ellis M H,Chandler P M.Semidwarf(sd-1),"green revolution" rice,contains a defective gibberellin 20-oxidase gene.Proc Natl Acad Sci USA,2002,99:9043-9048
    123.StatSoft Inc.Statistica.Tulsa O K,1997
    124.Stumpf MPH.Haplotype diversity and the block structure of linkage disequilibrium.Trends in Genetics,2002,18:226-228
    125.Sujay R,Arunita R,Hideo M,Yoshihiro T,Yoshitaka H,Akiko I,Takashige I,Naohiko T,Miyashita,Ryohei T.Large-scale DNA polymorphism study of Oryza sativa and O.rufipogon reveals the origin and divergence of Asian rice.Theor Appl Genet,2007,114:731-743
    126.Sun X,Cao Y,Yang Z,Li X,Wang S,Zhang Q.Xa26,a gene conferring resistance to Xanthomonas oryzae pv.oryzae in rice,encodes an LRR receptor kinase-like protein.Plant J,2004,37:517-527
    127.Takagi M,Yokota T,Murofushi N,Ota Y,akahashi N.Fluctuation of Endogenous Cytokinin Contents in Rice during its Life Cycle-Quantification of Cytokinins by Selected Ion Monitoring Using Deuterium-labelled internal standards.Agric Biol Chem,1985,49:3271-3277
    128.Takahashi Y,Shomura A,Sasaki T and Yano M.Hd6,a rice quantitative trait locus involved in photoperiod sensitivity,encodes the a subunit of protein kinase CK2.Proc Natl Acad Sci USA,2001,98:7922-7927
    129.Takamure I,Hong MC,Kinoshita T.Genetic analyses for two kinds of mutants for long grain.Rice Genetics Newsletter,1995,12:199-201
    130.Tan LB,Li XR,Liu FX,SunXY,Li CG,Zhu ZF,Fu YC,Cai HW,Wang XK,Xie DX,Sun CQ.Control of a key transition from prostrate to erect growth in rice domestication.Nat Genet,2008,40:1360-1364
    131.Tan YF,Xing YZ,Zhang QF,Li JX,Yu SB.Genetic bases of appearance quality of rice grains in Shanyou 63,an elite rice hybrid.Theor Appl Genet,2000,101:823-829
    132.Tanksley SD,Grandillo S,Fulton MT,Zamir D,Eshed Y,Petiard V,Lopez J,Beck-Bunn T.Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L.pimpinellifolium.Theor Appl Genet,1996,92:213-224
    133.Tanksley SD.Mapping polygenes.Annu Rev Genet,1993,46:1210-1215134.Temnykh S,DeCklerck G,Lukashova A,Lipovich L,Cartinhiur S,McCouch S.Computaional and Experimental Analysis of Microsatellites in Rice(Oryza sativa L.):Frequency,Length,Variation,Transpon Associations,and Genetic Marker Potential.Genome Research,2001,11:1441-1452
    135.Temnykh S,Park WD,Ayres NM,Cartinhour S,Hauck N,Lipovich L,Cho YG,Ishii T,McCouch SR.Mapping and genome organization of microsatellite sequences in rice(Oryza sativa L.).Theor Appl Genet,2000,100:697-712
    136.Tenaillon MI,Sawkins MC,Long AD,Gaut RL,Doebley JF and Gaut BS.Pattems of DNA sequence polymorphism along chromosome 1 of maize(Zea mays ssp.mays L.).Proc Natl Acad Sci USA,2001,98:9161-9166
    137.Thomson M,Tai T,McCiung A,Xai XH,Hinga M,Lobos K,Xu Y,Martinez P,McCouch S.Mapping quantitative trait loci for yield,yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson.Theor Appl Genet,2003,107:479-493
    138.Tian F,Li D J,Fu Q,Zhu ZF,Fu YC,Wang XK,Sun CQ.Construction of introgression lines carrying wild rice(Oryza rufipogon GriV.) segments in cultivated rice(Oryza sativa L.)background and characterization of introgressed segments associated with yield-related traits.Theor Appl Genet,2006,112:570-580
    139.Tian F,Zhu Z,Zhang B,Tan L,Fu Y,Wang X,Sun C.Fine mapping of a quantitative trait locus for grain number per panicle from wild rice(Oryza rufipogon Griff.).Theor Appl Genet,2006,113:651-659
    140.Tuinstra MR,Ejeta G,Goidsbrough PB.Heterogeneous inbred family(HIF) analysis:a method for developing near-isogenic lines that differ at quantitative trait loci.Theor Appl Genet,1997,95:1005-1011
    141. Wan XY, Wan JM, Jiang L, Wang JK, Zhai HQ, Weng JF, Wang HL, Lei CL, Wang JL, Zhang X, Cheng ZJ, Guo XP. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor Appl Genet, 2006, 112:1258-1270
    142. Wang DL, Zhu J, Li ZK, Paterson AH. Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor Appl Genet, 1999, 99:1255-1264
    143. Wu G, Robertson AJ, Liu X, Zheng P, Wilen RW, Nesbitt NT, Gusta LV. A lipid transfer protein gene BG-14 is differentially regulated by abiotic stress, ABA, anisomycin , and sphingosine in bromegrass (Bromus inermis). Plant Physiol, 2004, 161:449-458.
    144. Wu J, Maehara T, Shimokawa T, Yamamoto S, Harada C, Takazaki Y, Ono N, Mukai Y, Koike K, Yazaki J, et al. A comprehensive rice transcript map containing 6591 expressed sequence tag sites. Plant Cell, 2002, 14:525-535
    145. Wu R, Zeng ZB. Linkage and linkage disequilibrium mapping in natural population. Genetics, 2001, 157:899-909
    146. Wu WR, Li WM, Tang DZ, Lu HR, Worland A J. Time-related mapping of quantitative trait loci underlying tiller number in rice. Genetics, 1999, 151:297-303
    147. Xi ZY, He FH, Zeng RZ, Zhang ZM, Ding XH, Li WT, Zhang GQ. Development of a wide population of chromosome single segment substitution lines (SSSLs) in the genetic background of an elite cultivar in rice (Oryza sativa L.). Genome, 2006, 49:476-484.
    148. Xiao J, Li J, Grandillo S, Ann SN, Yuan LP, Tanksley SD, McCouch SR. Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics, 1998, 150:899-909
    149. Xie X, Jin F, Song M, Suh J, Hwang H, Kim Y, McCouch SR, Ahn S. Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa × O. rufipogon cross. Theor Appl Genet, 2008, 116:613-22
    150. Xie X, Song M, Jin F, Ahn S, Suh J, Hwang H, McCouch SR. Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza ruWpogon. Theor Appl Genet, 2006, 113:885-894
    151. Xing YZ, Tan YF, Hua JP, Sun XL, Xu CG, Zhang Q. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet, 2002, 105:248-257
    152. Xing YZ, Tang WJ, Xue WY, Xu CG, Zhang Q. Fine mapping of a major quantitative trait loci, qSSP7, controlling the number of spikelets per panicle as a single Mendelian factor in rice. TheorAppl Genet, 2008, 116:789-96
    153. Xiong L, Liu K, Dai X, Xu C, Zhang Q. Identification of genetic factors controlling domestication-related traits of rice using an F_2 population of a cross between Oryza sativa and O. rufipogon. Theor Appl Genet, 1999, 98:243-251
    154. Xu Y. Quantitative trait loci: separating, pyramiding and cloning. Plant Breeding Reviews, 1997, 15:85-139
    155. Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40:761-767
    156. Yamamoto T, Kuboki Y, Lin SY, Sasaki T, Yano M. Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors. Theor Appl Genet, 1998,97:37-44
    157. Yamamoto T, Lin HX, Sasaki T, Yano M Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics, 2000, 154:885-891
    158. Yamamoto T, Sasaki T, Yano M. Genetic analysis of spreading stub using indica/japonica backcrossed progenies in rice. Breed Sci, 1997, 47:141-144
    159. Yan JQ, Zhu J, He CX, Benmoussa M, Wu P. Molecular dissection of developmental behavior of plant height in rice (Oryza sativa L.). Genetics, 1998, 150:1257-1265.
    160. Yan JQ, Zhu J, He CX, Benmoussa M, Wu P. Quantitative trait loci analysis for the developmental behavior of tiller number in rice (Oryza sativa L.). Theoretical and Applied Genetics, 1998,97:267-274.
    161. Yanagisawa T, Kiribuchi-Otobe C, Hirano H, Suzuki Y, Fujita M. Detection of single nucleotide polymorphism (SNP) controlling the waxy character in wheat by using a derived cleaved amplified polymorphic sequence (dCAPS) marker. Theor Appl Genet, 2003, 107:84-88.
    162. Yang G, Xing Y, Li S, Ding J, Yue B, Deng K, Li Y, Zhu Y. Molecular dissection of developmental behavior of tiller number and plant height and their relationship in rice (Oryza sativa L.). Hereditas, 2006, 143:236-245
    163. Yang Z, Sun X, Wang S, Zhang Q. Genetic and physical mapping of a new gene for bacterial blight resistance in rice. TheorAppl Genet, 2003,106:1467-1472
    164. Yano M, Harushima Y, Lin SY, Kuboki Y, Shomura A, Shimano T, Nagamura BA, Inoue T, Kajiya H, Kawamura Y, Kishida T, Nagamura Y. Strategy for genetic dissection of quantitative traits into single Mendelian factors using DNA markers. Rice Genome, 1994, 3:5
    165. Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y and Sasaki T. Identification of quantitative trait loci controlling HD in rice using a high-density linkage map. Theor Appl Genet, 1997, 95:1025-1032
    166. Yano M, Katayose Y, Ashikari M, Yamaniuchi U, Monna L,Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to Arabidopsis floweting time gene CONSTANS. The Plant cell, 2000, 12:2473-2483
    167. Yano M, Sasaki T. Genetic and molecular dissection of quantitative traits in rice. Plant Mol Biol, 1997,35:145-153
    168. You A, Lu X, Jin H, Ren X, Liu K, Yang G, Yang H, Zhu L, He G. Identification of QTLs across Recombinant Inbred Lines and Testcross Populations for Traits of Agronomic Importance in Rice. Genetics, 2006, 172:1287-1300
    169. Yu J, Hu S, Wang J, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 2002, 296:79-92.
    170. Yu SB, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, Zhang Q, Saghai Maroof MA. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 1997,94:9226-9231
    171. Yu SB, Li JX, Xu CG, Tan YF, Li XH, Zhang Q. Identification of quantitative trait loci and epistatic interactions for plant height and heading date in rice. Theor Appl Genet, 2002, 104:619-625
    172. Zeng ZB. Precision mapping of quantitative trait loci. Genetics, 1994, 136:1457-1468
    173. Zhang Q. Strategies for developing Green Super Rice. Proc Natl Acad Sci USA, 2007, 104:16402-16409
    174. Zhang Y, Luo L, Xu C, Zhang Q, Xing Y. Quantitative trait loci for panicle size, heading date and plant height co-segregating in trait-performance derived near-isogenic lines of rice (Oryza sativa). Theor Appl Genet, 2006, 113:361-368
    175. Zhang Yushan, Luo Lijun, Liu Touming, Xu Caiguo, Xing Yongzhong. Four rice QTL controlling number of spikelets per panicle expressed the characteristics of single Mendelian gene in near isogenic backgrounds. Theor Appl Genet, online
    176. Zhang Z, Li P, Wang L, Hu Z, Zhu L, Zhu Y. Genetic dissection of the relationships of biomass production and partitioning with yield and yield related traits in rice. Plant Sci, 2004, 167: 1-8
    177. Zhu J. Analysis of conditional genetic effects and variance components in developmental genetics. Genetics, 1995, 141:1633-1639
    178. Zhuang JY, Fan YY, Rao ZM, Wu JL, Xia YW, Zheng KL. Analysis on additive effects and additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice. Theor Appl Genet, 2002, 105:1137-1145
    179. Zhuang JY, Lin HX, Lu J, Qian HR, Hittalmani S, Huang N, Zheng KL. Analysis of QTL × environment interaction for yield components and plant height in rice. Theor Appl Genet, 1997,95:799-808