稻瘟病菌MgATG9基因的克隆与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻瘟病菌(Magnaporthe grisea)能引起水稻上的一种重要病害-稻瘟病,了解其致病过程和机理对于防治稻瘟病菌有重要作用。近年研究表明细胞自噬可能参与了稻瘟病菌侵染水稻过程中分生孢子体死亡的过程。细胞自噬是细胞中一种物质降解方式,在一些特定情况下,自噬被诱导,一些长寿蛋白质和细胞器被运送到液泡/溶酶体中被降解,从而能量和物质得以重新利用。此过程在许多生物体中是保守的,一些参与过程的基因也是保守的。稻瘟病菌中存在与啤酒酵母自噬相关基因ScATG1和ScATG8同源的两个基因MgATG1和MgATG8,它们的缺失突变子表型与野生型存在很大差异。本文则分离和克隆了ScATG9在稻瘟病菌中的同源基因MgATG9,通过基因敲除的方法初步分析了MgATG9在致病及相关过程中的作用。研究结果如下:
     1.利用ScATG9基因预测的氨基酸序列在稻瘟病菌基因组数据库中检索序列相似的基因,定名为MgATG9。
     2.PCR扩增获得cDNA克隆。测序分析CDS长2754nt,编码918aa。
     3.构建MgATG9基因置换载体,得到基因MgATG9缺失突变体⊿mgatg9。
     4.基因MgATG9缺失后,细胞自噬过程中断,在液泡中未见自噬泡的积累。
     5.突变子在CM培养基上生长时菌丝稀疏,产孢量显著下降。
     6.突变子分生孢子发育受到影响。
     7.突变子附着胞膨压显著下降。
     8.突变子致病性几乎完全丧失,在水稻和大麦叶片上不能形成可见病斑;在有伤口的大麦叶片上只能产生微弱的病斑。
     9.突变子在OMA培养基上与2539菌株交配,产生子囊壳时间推迟并且数量明显减少,育性受到影响。
Magnaporthe grisea(Hebert)Barr,is well-known as the efficient and devastatingagent of rice blast.A deep understanding of the molecular background of this fungusis beneficial for the control of rice blast.Ever more powerful molecular geneticanalysis of the rice blast fungus brings to a comprehensive understanding of themolecular basis of host-pathogen interactions in rice blast.Blast is thus developed as amodel system for the study of interactions between an economically important cropplant and a damaging fungal pathogen.
     Recent research demonstrated the involvement of autophagy within the processof the cell death of the conidium during the appressorium development.Autophagy isa ubiquitous degradation process.Only under some instances,autophagy is induced.Long-lived proteins and organelles are sequestered within double-membrane vesiclesthat deliver the contents to the lysosome/vacuole for degradation and recycling of theresulting macromolecules.Autophagy is a conserved process among many species,andsome genes related to autophagy could be conserved either.Here,in this paper,weisolated and cloned MgATG9 gene,which is a homolog of ATG9 gene inSaccharomyces cerevisiae.The functional analysis of MgATG9 gene in the infectionprocess of rice blast were discussed.
     A sequence homologue was isolated by using the amino acid sequence ofScATG9 searching against M.grisea genome databases,assigned MgATG9.The fulllength of MgATG9 ORF and cDNA clones were obtained by PCR strategy.Nucleotidesequence analysis revealed a coding sequence of 2754 nt,putatively coding a 918amino acid peptide,containing a conserved apg9 domain.
     Autophagy was blocked in the△mgatg9 mutant,in which MgATG9 gene wasdeleted by targeted gene replacement;the mutant△mgatg9 also showed delayedgermination of conidia,lower turgor pressure of the appressorium.The△mgatg9 lostits ability to penetrate and infect the two tested host,namely rice and barley.Theseproperties were restored when re-introduced MgATG9 coding sequence into themutants.
     In summary,MgATG9 plays a significant role in autophagy of M.grisea,which isnecessary for normal development of conidia and appressoria and pathogenicity of M.grisea.
引文
[1] Adachi K & Hamer JE Divergent cAMP Signaling Pathways Regulate Growth and Pathogenesis in the Rice Blast Fungus Magnaporthe grisea. The Plant Cell Online 10: 1361-1374.
    [2] Bechinger C, Giebel KF, Schnell M, Leiderer P, Deising HB & Bastmeyer M (1999) Optical Measurements of Invasive Forces Exerted by Appressoria of a Plant Pathogenic Fungus. Science 285: 1896-1899.
    [3] Bourett TM & Howard RJ (1990) In vitro development of penetration structures in the rice blast fungus Magnaporthe grisea. Canadian journal of botany 68: 329-342.
    [4] Budovskaya YV, Stephan JS, Reggiori F, Klionsky DJ & Herman PK (2004) The Ras/cAMP-dependent Protein Kinase Signaling Pathway Regulates an Early Step of the Autophagy Process in Saccharomyces cerevisiae. J. Biol. Chem. 279: 20663-20671.
    [5] Choi W & Dean RA (1997) The Adenylate Cyclase Gene MAC1 of Magnaporthe grisea Controls Appressorium Formation and Other Aspects of Growth and Development. The Plant Cell Online 9: 1973-1983.
    [6] Chumley FG & Valent B (1990) Genetic analysis of melanin-deficient, nonpathogenic mutants of Magnaporthe grisea. Molecular plant-microbe interactions 3: 135-143.
    [7] Clergeot PH, Gourgues M, Cots J, et al. (2001) PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea. Proceedings of the National Academy of Sciences of the United States of America 98: 6963-6968.
    [8] Crotzer VL & Blum JS (2005) Autophagy and intracellular surveillance: Modulating MHC class II antigen presentation with stress. PNAS 102: 7779-7780.
    [9] Davis DJ, Burlak C & Money NP (2000) Biochemical and biomechanical aspects of appressorial development in Magnaporthe grisea. Advances in Rice Blast Research 248-256.
    [10] deJong JC, McCormack BJ, Smirnoff N & Talbot NJ (1997) Glycerol generates turgor in rice blast. Nature 389: 244-245.
    [11] DeZwaan TM, Carroll AM, Valent B & Sweigard JA (1999) Magnaporthe grisea Pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell 11: 2013-2030.
    [12] Dixon KP, Xu JR, Smirnoff N & Talbot NJ (1999) Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. Plant Cell 11: 2045-2058.
    [13] Dufresne M & Osbourn AE (2001) Definition of tissue-specific and general requirements for plant infection in a phytopathogenic fungus. Molecular Plant-Microbe Interactions 14: 300-307.
    [14] Epple UD, Suriapranata I, Eskelinen E-L & Thumm M (2001) Aut5/Cvt17p, a Putative Lipase Essential for Disintegration of Autophagic Bodies inside the Vacuole. J. Bacteriol, 183: 5942-5955.
    [15] Farre J-C & Subramani S (2004) Peroxisome turnover by micropexophagy: an autophagy-related process. Trends in Cell Biology 14: 515-523.
    [16] Foster AJ, Jenkinson JM & Talbot NJ (2003) Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea. Embo Journal 22: 225-235.
    [17] Foster AJ, Jenkinson JM & Talbot NJ (2003) Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea. The EMBO Journal 22: 225-235.
    [18] Gilbert RD, Johnson AM & Dean RA (1996) Chemical signals responsible for appressorium formation in the rice blast fungus Magnaporthe grisea. Physiological and Molecular Plant Pathology 48: 335-346.
    [19] Gustin MC, Albertyn J, Alexander M & Davenport K (1998) MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews 62: 1264-+.
    [20] Hamer JE, Valent B & Chumley FG (1989) Mutations at the SMO Genetic Locus Affect the Shape of Diverse Cell Types in the Rice Blast Fungus. Genetics 122: 351-361.
    [21] Hamer JE, Howard RJ, Chumley FG & Valent B (1988) A Mechanism for Surface Attachment in Spores of a Plant Pathogenic Fungus. Science 239: 288-290.
    [22] Hochstrasser M (1996) UBIQUITFN-DEPENDENT PROTEIN DEGRADATION. Annual Review of Genetics 30: 405-439.
    [23] Howard RJ (1997) Breaching the outer barriers-cuticle and cell wall penetration. The Mycota 5: 43-60.
    [24] Howard RJ & Valent B (1996) BREAKING AND ENTERING: Host Penetration by the Fungal Rice Blast Pathogen Magnaporthe grisea. Annual Review of Microbiology 50: 491-512.
    [25] Howard RJ, Ferrari MA, Roach DH & Money NP (1991)Penetration of Hard Substrates by a Fungus Employing Enormous Turgor Pressures. PNAS 88: 11281-11284.
    [26] Hutchins MU, Veenhuis M & Klionsky DJ (1999) Peroxisome degradation in Saccharomyces cerevisiae is dependent on machinery of macroautophagy and the Cvt pathway. Journal of Cell Science 112: 4079-4087.
    [27] Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M & Ohsumi Y (2000) Tor-mediated Induction of Autophagy Via an Apgl Protein Kinase Complex. J. CellBiol. 150: 1507-1513.
    [28] Kametaka S, Okano T, Ohsumi M & Ohsumi Y (1998) Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae. Journal of Biological Chemistry 273: 22284-22291.
    [29] Kershaw MJ & Talbot NJ (1998) Hydrophobins and Repellents: Proteins with Fundamental Roles in Fungal Morphogenesis. Fungal Genetics and Biology 23: 18-33.
    [30] Kihara A, Noda T, Ishihara N & Ohsumi Y (2001) Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. Journal of Cell Biology 152: 519-530.
    [31] Kim S, Ahn I-P, Rho H-S & Lee Y-H (2005) MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Molecular Microbiology 57: 1224-1237.
    [32] Klionsky C-WWaDJ (2003) The Molecular Mechanism of Autophagy. Mol Med. 9(3-4): 65-76.
    [33] Klionsky DJ (2004) Cell biology: Regulated self-cannibalism. Nature 431: 31-32.
    [34] Klionsky DJ, Cregg JM, Dunn WA, et al. (2003) A Unified Nomenclature for Yeast Autophagy-Related Genes. Developmental Cell 5: 539-545.
    [35] Lee SC & Lee YH (1998) Calcium/calmodulin-dependent signaling for appressorium formation in the plant pathogenic fungus Magnaporthe grisea. Molecules and Cells 8: 698-704.
    [36] Lee YH & Dean RA (1993) cAMP Regulates Infection Structure Formation in the Plant Pathogenic Fungus Magnaporthe grisea. Plant Cell 5: 693-700.
    [37] Lee YH & Dean RA (1994) Hydrophobicity of contact surface induces appressorium formation in Magnaporthe grisea. FEMS microbiology letters 115: 71-75.
    [38] Lengeler KB, Davidson RC, D'Souza C, et al. (2000) Signal transduction cascades regulating fungal development and virulence. Microbiology and Molecular Biology Reviews 64: 746-+.
    [39] Liang S, Wang ZY, Liu PJ & Li DB (2006) A G gamma subunit promoter T-DNA insertion mutant - A1-412 of Magnaporthe grisea is defective in appressorium formation, penetration and pathogenicity. Chinese Science Bulletin 51: 2214-2218.
    [40] Liu SH & Dean RA (1997) G protein alpha subunit genes control growth, development, and pathogenicity of Magnaporthe grisea. Molecular Plant-Microbe Interactions 10: 1075-1086.
    [41] Liu XH, Lu JP, Zhang L, Dong B, Min H & Lin FC (2007) Involvement of a Magnaporthe grisea Serine/Threonine Kinase Gene, Mg ATG1, in Appressorium Turgor and Pathogenesis? Eukaryotic Cell 6: 997-1005.
    [42] Liu ZM & Kolattukudy PE (1999) Early expression of the calmodulin gene, which precedes appressorium formation in Magnaporthe grisea, is inhibited by self-inhibitors and requires surface attachment. Journal of Bacteriology 181:3571-3577.
    [43] Mitchell TK & Dean RA (1995) The cAMP-Dependent Protein Kinase Catalytic Subunit Is Required for Appressorium Formation and Pathogenesis by the Rice Blast Pathogen Magnaporthe grisea. The Plant Cell Online 7: 1869-1878.
    [44] Mochly-Rosen D (1995) Localization of protein kinases by anchoring proteins: a theme in signal transduction. Science 268: 247.
    [45] Mortimore GE & Poso AR (1987) Intracellular Protein Catabolism and its Control During Nutrient Deprivation and Supply. Annual Review of Nutrition 7:539-568.
    [46] Nakamura N, Matsuura A, Wada Y & Ohsumi Y (1997) Acidification of Vacuoles Is Required for Autophagic Degradation in the Yeast, Saccharomyces cerevisiae. J Biochem (Tokyo) 121: 338-344.
    [47] Nishiura M, Park G & Xu JR (2003) The G-beta subunit MGB 1 is involved in regulating multiple steps of infection-related morphogenesis in Magnaporthe grisea. Molecular Microbiology 50: 231-243.
    [48] Noda T, Suzuki K & Ohsumi Y (2002) Yeast autophagosomes: de novo formation of a membrane structure. Trends in Cell Biology 12: 231-235.
    [49] Ohsumi Y (2001) Molecular dissection of autophagy: Two ubiquitin-like systems. Nature Reviews Molecular Cell Biology 2: 211-216.
    [50] Onodera J & Ohsumi Y (2004) Ald6p is a preferred target for autophagy in yeast, Saccharomyces cerevisiae. Journal of Biological Chemistry 279: 16071-16076.
    [51] Park G, Xue GY, Zheng L, Lam S & Xu JR (2002) MST12 regulates infectious growth but not appressorium formation in the rice blast fungus Magnaporthe grisea. Molecular Plant-Microbe Interactions 15: 183-192.
    [52] Schmelzle T & Hall MN (2000) TOR, a Central Controller of Cell Growth. Cell 103: 253-262.
    [53] Sesma A & Osbourn AE (2004) The rice leaf blast pathogen undergoesdevelopmental processes typical of root-infecting fungi. Nature 431: 582-586.
    [54] Shi Z & Leung HEI (1995) Genetic analysis of sporulation in Magnaporthe grisea by chemical and insertional mutagenesis. Molecular plant-microbe interactions 8: 949-959.
    [55] Shi ZX, Christian D & Leung H (1998) Interactions between spore morphogenetic mutations affect cell types, sporulation, and pathogenesis in Magnaporthe grisea. Molecular Plant-Microbe Interactions 11: 199-207.
    [56] Silue D, Tharreau D, Talbot NJ, Clergeot PH, Notteghem JL & Lebrun MH (1998) Identification and characterization of apfl(-) in a non-pathogenic mutant of the rice blast fungus Magnaporthe grisea which is unable to differentiate appressoria. Physiological and Molecular Plant Pathology 53: 239-251.
    [57] Soundararajan S, Jedd G, Li X, Ramos-Pamplona M, Chua NH & Naqvi NI(2004) Woronin Body Function in Magnaporthe grisea Is Essential for Efficient Pathogenesis and for Survival during Nitrogen Starvation Stress. The Plant Cell Online 16: 1564-1574.
    [58] Suriapranata I, Epple UD, Bernreuther D, Bredschneider M, Sovarasteanu K & Thumm M (2000) The breakdown of autophagic vesicles inside the vacuoledepends on Aut4p. J Cell Sci 113: 4025-4033.
    [59] Sweigard JA, Chumley FG & Valent B (1992) Cloning and analysis of CUT1, a cutinase gene from Magnaporthe grisea. Molecular Genetics and Genomics 232:174-182.
    [60] Sweigard JA, Carroll AM, Farrall L, Chumley FG & Valent B (1998) Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol. Plant-Microbe Interact 11: 404-412.
    [61] Sweigard JA, Carroll AM, Kang S, Farrall L, Chumley FG & Valent B (1995) Identification, Cloning, and Characterization of PWL2, a Gene for Host Species Specificity in the Rice Blast Fungus. Plant Cell 7: 1221-1233.
    [62] Takeshige K, Baba M, Tsuboi S, Noda T & Ohsumi Y (1992) Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J. Cell Biol. 119:301-311.
    [63] Talbot NJ (1995) Having a blast: exploring the pathogenicity of Magnaporthe grisea. Trends Microbiol 3: 9-16.
    [64] Talbot NJ (1995) Having a blast: exploring the pathogenicity of Magnaporthe grisea. Trends in Microbiology 3: 9-16.
    [65] Talbot NJ, Ebbole DJ & Hamer JE (1993) Identification and Characterization of MPG1, a Gene Involved in Pathogenicity from the Rice Blast Fungus Magnaporthe grisea. The Plant Cell Online 5: 1575-1590.
    [66] Talbot NJ, Kershaw MJ, Wakley GE, de Vries OMH, Wessels JGH & Hamer JE (1996) MPG1 Encodes a Fungal Hydrophobin Involved in Surface Interactions during Infection-Related Development of Magnaporthe grisea. The Plant Cell Online 8: 985-999.
    [67] Talloczy Z, Jiang W, Virgin Iv HW, et al (2002) Regulation of starvation-and virus-induced autophagy by the eIF2alpha kinase signaling pathway. Proceedings of the National Academy of Sciences 99: 190.
    [68] Thines E, Weber RWS & Talbot NJ (2000) MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. Plant Cell 12: 1703-1718.
    [69] Thines E, Eilbert F, Sterner O & Anke H (1997) Signal transduction leading to appressorium formation in germinating conidia of Magnaporthe grisea: effects of second messengers diacylglycerols, ceramides and sphingomyelin. Ferns Microbiology Letters 156: 91-94.
    [70] Tucker SL & Talbot NJ (2001) Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annual Review of Phytopathology 39: 385-417.
    [71] Urban M, Bhargava T & Hamer JE (1999) An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease. Embo Journal 18: 512-521.
    [72] Valent B & Chumley FG (1991) Molecular Genetic Analysis of the Rice Blast Fungus, Magnaporthe Grisea. Annual Review of Phytopathology 29: 443-467.
    [73] Veneault-Fourrey C, Barooah M, Egan M, Wakley G & Talbot NJ (2006) Autophagic Fungal Cell Death Is Necessary for Infection by the Rice Blast Fungus. ed.@@@eds.), p.@@@pp. American Association for the Advancement of Science.
    [74] Veneault-Fourrey C, Barooah M, Egan M, Wakley G & Talbot NJ (2006) Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science 312: 580-583.
    [75] Wang ZY, Thornton CR, Kershaw MJ, Li DB & Talbot NJ (2003) The glyoxylate cycle is required for temporal regulation of virulence by the plant pathogenic fungus Magnaporthe grisea. Molecular Microbiology 47: 1601-1612.
    [76] Wang ZY, Jenkinson JM, Holcombe LJ, Soanes DM, Veneault-Fourrey C, Bhambra GK & Talbot NJ (2005) The molecular biology of appressorium turgor generation by the rice blast fungus Magnaporthe gasea. Biochemical Society Transactions 33: 384-388.
    [77] Wawrzak Z, Sandalova T, Steffens JJ, Basarab GS, Lundqvist T, Lindqvist Y & Jordan DB (1999) High-Resolution Structures of Scytalone Dehydratase-Inhibitor Complexes Crystallized at Physiological pH. Proteins Structure Function and Genetics 35: 425-439.
    [78] Weber RW, Wakley GE, Thines E & Talbot NJ (2001) The vacuole as central element of the lytic system and sink for lipid droplets in maturing appressoria of Magnaporthe grisea. Protoplasma 216: 101-112.
    [79] Wessels JG (1997) Hydrophobins: proteins that change the nature of the fungal surface. Adv Microb Physiol 38: 1-45.
    [80] Wosten HAB, Schuren FHJ & Wessels JGH (1994) Interfacial self-assembly of a hydrophobin into an amphipathic protein membrane mediates fungal attachment to hydrophobic surfaces. EMBO J13: 5848-5854.
    [81] Wu SC, Kauffmann S, Darvill AG & Albersheim P (1995) Purification, cloning and characterization of two xylanases from Magnaporthe grisea, the rice blast fungus. Mol Plant Microbe Interact 8: 506-514.
    [82] Xiao JZ, Watanabe T, Kamakura T, Ohshima A & Yamaguchi I (1994) Studies on cellular differentiation of Magnaporthe grisea. Physicochemical aspects of substratum surfaces in relation to appressorium formation. Physiological and molecular plant pathology 44: 227-236.
    [83] Xu JR (2000) MAP kinases in fungal pathogens. Fungal Genetics and Biology 31: 137-152.
    [84] Xu JR & Hamer JE (1996) MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev. 10: 2696-2706.
    [85] Xu JR, Staiger CJ & Hamer JE (1998) Inactivation of the mitogen-activated protein kinase Mps1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses. Proceedings of the National Academy of Sciences of the United States of America 95: 12713-12718.
    [86] Xu JR, Urban M, Sweigard JA & Hamer JE (1997) The CPKA gene of Magnaporthe grisea is essential for appressorial penetration. Molecular plant-microbe interactions 10: 187-194.
    [87] Yamada T, Carson AR, Caniggia I, Umebayashi K, Yoshimori T, Nakabayashi K & Scherer SW (2005) Endothelial Nitric-oxide Synthase Antisense (NOS3AS) Gene Encodes an Autophagy-related Protein (APG9-like2) Highly Expressed in Trophoblast. Journal of Biological Chemistry 280: 18283-18290.
    [88] Zeigler RS (1998) RECOMBINATION IN MAGNAPORTHE GRISEA. Annual Review of Phytopathology 36: 249-275.
    [89] Zelter A, Bencina M, Bowman BJ & Read ND (2004) A comparative genomic analysis of the calcium signaling machinery in Neurospora crassa, Magnaporthe grisea, and Saccharomyces cerevisiae. Fungal Genetics and Biology 41:827-841.
    [90] Zhao XH, Kim Y, Park G & Xu JR (2005) A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea. Plant Cell 17: 1317-1329.