SOCS3及Eotaxin-2在变应性鼻炎中的表达及意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:变应性鼻炎是Th2细胞及其细胞因子占优势的变态反应。Th2细胞主要合成和分泌IL-4、IL-5、IL-6、IL-10、IL-13等细胞因子。SOCS(suppressor of cytokine singnaling,细胞因子信号转导抑制因子)是近年来新发现的一类负向调节蛋白,可抑制多种细胞因子的信号通路,且大多数成员可被细胞因子和生长因子所诱导产生。其中SOCS3在Th2细胞中的表达是Th1细胞的23倍。IL-4等细胞因子能诱导SOCS3在Th2细胞上的表达,而SOCS3蛋白通过对IL-12/STAT4等通路的抑制可抑制Th1细胞及其细胞因子的产生。
     嗜酸性粒细胞增多是变应性鼻炎主要病理表现之一,Eotaxin-2为嗜酸性粒细胞趋化因子之一。Eotaxin-2(CCL24)与Eotaxin-1(CCL11) Eotaxin-3(CCL26)同属于趋化因子CC亚家族成员,他们均选择性的专一的与其共同的受体CCR3结合进而趋化并激活嗜酸性粒细胞。三种趋化因子的生物学作用相似,与嗜酸性粒细胞表面的受体CCR3结合后可促使嗜酸性粒细胞合成LTC4、产生活性氧、脱颗粒释放炎性介质等从而发挥其效应器功能。
     研究发现在鼻息肉患者和哮喘患者中,IL-4、IL-13等细胞因子能诱导鼻黏膜和支气管黏膜单核细胞、上皮细胞等表达Eotaxin-2增多,其中IL-4诱导鼻黏膜和支气管黏膜表达Eotaxin-2能力较强。
     目的:本实验通过应用免疫组化技术研究SOCS3及Eotaxin-2在变态反应性鼻炎鼻粘膜中的表达,通过二者相关性,分析SOCS3对Eotaxin-2的影响,进一步探讨SOCS3在变态反应性鼻炎发病机制中的作用及对临床症状的影响。
     方法:按照2004年兰州会议关于变态反应性鼻炎的诊断标准,选取20例AR患者鼻粘膜为实验组和15例单纯鼻中隔偏曲患者鼻粘膜为对照组,应用免疫组织化学技术分别检测SOCS3及Eotaxin-2的表达,结果以(x±s)表示,组间差异性比较用t检验,并用直线相关分析法对SOCS3及Eotaxin-2表达的相关性进行分析。
     结果:在AR患者鼻黏膜中,SOCS3及Eotaxin-2的表达上调,在鼻黏膜炎性细胞、上皮细胞、腺体细胞、血管内皮细胞呈显著性表达。平均光密度值SOCS3为0.2401±0.01463, Eotaxin-2为0.2398±0.01423,与对照组相比,均P<0.01,差异有统计学意义。AR患者鼻黏膜中SOCS3及Eotaxin-2的表达具相关性(r=0.951,P<0.01)。
     结论:AR患者SOCS3及Eotaxin-2在鼻黏膜组织中表达增高,且二者呈正相关。此结果可能由于SOCS3增强Th2细胞反应,间接导致Eotaxin-2增多。也可能是SOCS3与Eotaxin-2直接相互诱导所致。确切机制有待进一步研究。
Background:Th2 cells and their cytokines is dominant in allergic rhinitis. Th2 cells synthesize and secrete mainly IL-4, IL-5, IL-6, IL-10, IL-13 and other cytokines. SOCS (suppressor of cytokine singnaling) is a class of negative regulatory proteins had been discovered recently, can inhibit a variety of cytokine signal pathway, and the majority of the members can be induced by cytokines and growth factors. SOCS3 in Th2 cells is 23 times more than in Thl cells. IL-4 and other cytokines can induce SOCS3 expression in Th2 cells.SOCS3 protein can decrease Thl cells and their cytokine through inhibiting IL-12/STAT4 pathways.
     An increase in Eosinophils is a major pathological manifestations of allergic rhinitis, Eotaxin-2 is one of the Eosinophil Chemotactic Factors. Eotaxin-2 (CCL24) as well as Eotaxin-1 (CCL11), Eotaxin-3 (CCL26) belongs to the CC chemokine subfamily members. They only combine with their common receptor CCR3 in order to attract and activate Eosinophils. They play similar biological roles. After combining with the eosinophil cell surface receptors CCR3,they can promote Eosinophils to synthesize LTC4, generate reactive oxygen species, degranulation and release inflammatory mediators, and so on, to play its effector function.
     Study shows that in nasal polyps patients and Asthma patients, IL-4, IL-13 and so on could induce Mononuclear cells and Epithelial cells of nasal mucosa and bronchus mucosa increasing the expression of Eotaxin-2, in which IL-4 play more important role.
     Objective:In this research, immunohistochemisty was performed to study the expression of SOCS3 and Eotaxin-2 in allergic rhinitis nasal mucosa. By analyzing the correlation between SOCS3 and Eotaxin-2, we try to know the importance of the SOCS3 in allergic rhinitis pathogenesis and its effects on clinical symptoms.
     Methods:According to the diagnostic criteria revised by 2004 Lanzhou meeting on allergic rhinitis, twenty cases of allergic rhinitis nasal mucosa tissues were collected as experimental groups and fifteen cases of deviation of nasal septum nasal mucosa tissues as control. Immunohistochemisty was performed to detect the expression of SOCS3 and Eotaxin-2 respectively. The experimental date was expessed with x±s and the comparison of difference between the groups was detected by t-test. The linear correlation analysis method was used to analyze the relationship between SOCS3 and Eotaxin-2 expression.
     Results:SOCS3 and Eotaxin-2 expression were both increased in the AR patients. There were positive staining not only in inflammatory cells and vascular endothelial cells but also in epithelial cells and glandular epithelium cells, compared with control group. The expression of SOCS3 (0.2401±0.01463) and Eotaxin-2 (0.2398±0.01423) were significantly higher than that in control group (P<0.01). The difference was statistically significant. The SOCS3 expression was closely related to Eotaxin-2 expression(r=0.951, P<0.01).
     Conclusions:The increased expression of SOCS3 and Eotaxin-2 in allergic rhinitis is well evidenced. SOCS3 shows positive correlation with Eotaxin-2. This result may be due to SOCS3 enhanced Th2 cell response, indirectly leading to an increase in Eotaxin-2. SOCS3 may also be a direct correlation with Eotaxin-2 by inducing with each other. The exact mechanism remains to be further studied.
引文
1.黄选兆,汪吉宝,孔维佳等.实用耳鼻咽喉头颈外科学[M].人民卫生出版社,2008:218-225.
    2. Grossman J. One airway, one disease[J]. Chest,1997;111(2):11-16.
    3. Bousquet J, van Cauwenberge P, Khaltaev N, et al. Allergic rhinitis and its impact on asthma [J]. Journal of Allergy and Clinical Immunology, 2001;108:S147-S334.
    4.孔维佳,董震等.耳鼻咽喉头颈外科学[M].人民卫生出版社,2005;75-80.
    5.孙汶生,王福庆等.医学免疫学[M].科学出版社,2004;139-147.
    6.Strachan DP. Hay fever, hygiene, and household size [J]. BMJ,1989; 299: 1259-1260.
    7. Yoshimura A, Ohkubo T, Kiguchi T, et al. A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine -phosphorylated interleukin 3 and erythropoietin receptors[J]. EMBO J,1995:14(12):2816-2826.
    8. Imada K, Leonard WJ. The Jak-STAT pathway[J]. MOLECULAR IMMUNOLOGY, 2000; 37(1-2):1-11.
    9. Egwuagu C E, Yu C R, Zhml M, et al. Suppressors of cytokine signaling proteins are differentially expressed in Thl and Th2 cells:implications for Th cell lineage commitment and maintenance [J]. J Immumol,2002; 168(7):3181-3187.
    10. Forssmann U, Uguccioni M, Loetscher P, et al. Eotaxin-2, a novel CC chemokine that is selective for the chemokine receptor CCR3, and acts like eotaxin on human eosinophil and basophil leukocytes[J]. Journal of Experimental Medicine,1997;185(12):2171-2176.
    11. Komiya A, Nagase H, Yamada H, Sekiya T, et al. Concerted expression of eotaxin-1, eotaxin-2, and eotaxin-3 in human bronchial epithelial cells[J]. Cellular Immunology,2003;225(2):91-100.
    12. Zimmermann N, Hogan SP, Mishra A, et al. Murine eotaxin-2:A constitutive eosinophil chemokine induced by allergen challenge and IL-4 overexpression[J]. Journal of Immunology,2000;165(10):5839-5846.
    13.中华耳鼻咽喉头颈外科杂志编辑委员会中华医学会耳鼻咽喉科分会.变应性鼻炎的诊治原则和推荐方案(2004年,兰州)[J].中华耳鼻咽喉头颈外科杂志,2005:40(3):166-167.
    14. Handel ML, McMorrow LB, Gravallese EM. Nuclear factor-kappa B in rheumatoid synovium. Localization of p50 and p65[J]. Arthritis Rheum, 1995; 38(12):1762-1770.
    15. Starr R, Willson TA, Viney EM, et al. A family of cytokine-inducible inhibitors of signalling[J]. Nature,1997; 387(6636):917-921.
    16.Naka T, Narazaki M, Hirata M, et al. Structure and function of a new STAT-induced STAT inhibitor[J]. Nature,1997;387(6636):924-929.
    17. Endo TA, Masuhara M, Yokouchi M, et al. A new protein containing an SH2 domain that inhibits JAK kinases[J]. Nature,1997; 387 (6636):921-924.
    18.Minamoto S, Ikegame K, Ueno K, et al. Cloning and functional analysis of new members of STAT induced STAT inhibitor (SSI) family:SSI-2 and SSI-3[J]. Biochemical and Biophysical Research Communications,1997; 237(1):79-83.
    19. Masuhara M, Sakamoto H,Matsumoto A, et al. Cloning and characterization of novel CIS family genes[J]. Biochemical and Biophysical Research Communications,1997;239(2):439-446.
    20. Hilton DJ, Richardson RT, Alexander WS, et al. Twenty proteins containing a C-terminal SOCS box form five structural classes [J]. Proceedings of the National Academy of Sciences of the United States of America,1998; 95(1):114-119.
    21. Yoshimura A. The CIS/JAB family:novel negative regulators of JAK signaling pathways[J]. LEUKEMIA,1998; 12(12):1851-1857.
    22. Hilton DJ. Negative regulators of cytokine signal transduction[J]. CELLULAR AND MOLECULAR LIFE SCIENCES,1999:55(12):1568-1577.
    23. Haan C, Kreis S, Margue C, et al. Jaks and cytokine receptors-An intimate relationship[J]. BIOCHEMICAL PHARMACOLOGY,2006;72(11): 1538-1546.
    24. Pellegrini S, DusanterFourt I. The structure, regulation and function of the Janus kinase (JAKs) and the signal transducers and activators of transcription (STATs) [J]. European Journal of Biochemistry,1997; 248(3):615-633.
    25. Wilks AF, Harpur AG. Cytokine signal transduction and the JAK family of protein tyrosine kinases[J]. Bioessays,1994; 16(5):313-320.
    26. Kisseleva T, Bhattacharya S, Braunstein, et al. Signaling through the JAK/STAT pathway, recent advances and future challenges[J]. Gene, 2002; 285 (1-2):1-24.
    27. Horvath CM. STAT proteins and transcriptional responsesto extracellular signals[J]. TRENDS IN BIOCHEMICAL SCIENCES,2000;25(10): 496-502.
    28.胡欣,万大方.JAK/STAT信号转导途径研究进展及其与肿瘤的关系[J].肿瘤,2005:25(4):404-406.
    29.李清刚.细胞因子受体介导的信号传递JAK. STAT研究新进展[J].国外医学免疫学分册,2000:23(1):26-29.
    30. Darnell JE, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins[J]. Science,1994;264(5164):1415-1421.
    31. Ihle JN, Kerr IM. Jaks and Stats in signaling by the cytokine receptor superfamily[J]. Trends Genet,1995;11 (2):69-74.
    32. Krebs DL, Hilton DJ. SOCS proteins:Negative regulators of cytokine signaling[J]. Stem Cells,2001;19(5):378-387.
    33. Zhang JG, Farley A, Nicholson SE, et al. The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation[J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA,1999; 96 (5): 2071-2076.
    34. Nicola NA, Greenhalgh CJ. The suppressors of cytokine signaling (SOCS) proteins:Important feedback inhibitors of cytokine action[J]. EXPERIMENTAL HEMATOLOGY,2000;28(10):1105-1112.
    35. Kile BT, Schulman BA, Alexander WS, et al. The SOCS box:a tale of destruction and degradation[J]. TRENDS IN BIOCHEMICAL SCIENCES, 2002;27 (5):235-241.
    36. Masters SL, Palmer KR, Stevenson WS, et al. Genetic deletion of murine SPRY domain-containing SOCS box protein 2 (SSB-2) results in very mild thrombocytopenia[J]. MOLECULAR AND CELLULAR BIOLOGY,2005;25(13): 5639-5647.
    37. Sasaki A, Yasukawa H, Suzuki A, et al. Cytokine-inducible SH2 protein-3 (CIS3/SOCS3) inhibits Janus tyrosine kinase by binding through the N-terminal kinase inhibitory region as well as SH2 domain [J]. Genes to Cells,1999;4(6):339-351.
    38. Haan S, Ferguson P, Sommer U, et al. Tyrosine phosphorylation disrupts elongin interaction and accelerates SOCS3 degradation[J]. JOURNAL OF BIOLOGICAL CHEMISTRY,2003; 278(34):31972-31979.
    39. Senn JJ, Klover PJ, Nowak IA, et al. Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes[J]. JOURNAL OF BIOLOGICAL CHEMISTRY 2003:278(16):13740-13746.
    40. Shirota H, Gursel M, Klinman D M. Suppressive oligodeoxynucleotides inhibit Thl differentiation by blocking IFN-gamma- and IL-12-mediated signaling[J]. J Immunol,2004; 173(8):5002-5007.
    41. Kaplan M H, Schindler U, Smiley S T, et al. Stat6 is required for mediating responses to IL-4 and for the development of Th2 cells[J]. Immunity,1996;4(3):313-319.
    42. Kelly-Welch AE, Hanson EM, Boothby MR, et al. Interleukin-4 and interleukin-13 signaling connections maps[J]. SCIENCE,2003:300(5625): 1527-1528.
    43. Seki Y, Inoue H, Nagata N, et al. SOCS-3 regulates onset and maintenance of T(H)2-mediated allergic responses [J]. Nat Med,2003,9(8):1047-1054.
    44. Losman JA, Chen, X P, Hilton, D. et al,.Cutting edge:SOCS-1 is a potent inhibitor of IL-4 signal transduction [J]. Immunol,1999; 162 (7):3770-3774.
    45. Gimcher LH, Murphy KM. Lineage commitment in the immunesystem:the T helper lymphocyte grows up [J]. Genes Dev.2000,14(14):1693-1711.
    46. Pezet A, Favre H, Kelly PA, et al. Inhibition and restoration of prolactin signal transduction by suppressors of cytokine signaling[J]. Biol Chem,1999; 274(35):24497-24502.
    47. Kinjyo I, Inoue H, Hamano S, Fukuyama S, et al. Loss of SOCS3 in T helper cells resulted in reduced immune responses and hyperproduction of interleukin 10 and transforming growth factor-beta 1[J]. Journal of Experimental Medicine,2006; 203(4):1021-1031.
    48.Kubo M, Inoue H. Suppressor of cytokine signaling 3 (SOCS3) in Th2 cells evokes Th2 cytokines, IgE, and eosinophilia[J]. Curr Allergy Asthma Rep, 2006; 6(1):32-39.
    49. Song MM, Shuai K. The suppressor of cytokine signaling (SOCS) 1 and SOCS3 but not SOCS2 proteins inhibit interferon-mediated antiviral and antiproliferative activities [J]. JOURNAL OF BIOLOGICAL CHEMISTRY,1998; 273(52):35056-35062.
    50. Suzuki R, Sakamoto H, Yasukawa H, et al. CIS3 and JAB have different regulatory roles in interleukin-6 mediated differentiation and STAT3 activation in M1 leukemia cells[J]. ONCOGENE,1998:17(17):2271-2278.
    51. Yamamoto K, Yamaguchi M, Miyasaka N, et al. SOCS-3 inhibits IL-12-induced STAT4 activation by binding through its SH2 domain to the STAT4 docking site in the IL-12 receptor beta 2 subunit [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS,2003;310 (4):1188-1193.
    52. Takatori H, Nakajima H, Kagami SI, et al. Stat5a inhibits IL-12-Induced Thl cell differentiation through the induction of suppressor of cytokine signaling 3 expression[J]. JOURNAL OF IMMUNOLOGY,2005;174(7): 4105-4112.
    53. Yoshimura A. The CIS family:Negative regulators of JAK-STAT signaling[J]. CYTOKINE & GROWTH FACTOR REVIEWS, 1998;9(3-4):197-204.
    54. Griffiths-Johnson DA, Collins PD, Jose PJ, et al. The chemokine, eotaxin, activates guinea-pig eosinophils in vitro and causes their accumulation into the lung in vivo[J]. Biochem Biophys Res Commun,1993; 197(3):1167-1172.
    55. Shinkai A, Yoshisue H, Koike M, et al. A novel human CC chemokine, eotaxin-3, which is expressed in IL-4-stimulated vascular endothelial cells, exhibits potent activity toward eosinophils[J]. Journal of Immunology,1999;163(3):1602-1610.
    56. Jose PJ, Griffiths-Johnson DA, Collins PD, et al. Eotaxin:a potent eosinophil chemoattractant cytokine detected in a guinea pig model of allergic airways inflammation[J]. J Exp Med,1994;179(3):881-887.
    57. Berkman N, Ohnona S, Chung FK, et al. Eotaxin-3 but not eotaxin gene expression is upregulated in asthmatics 24 hours after allergen challenge [J]. American Journal of Respiratory Cell and Molecular Biology, 2001;24(6):682-687.
    58. Ravensberg AJ, Ricciardolo FLM, van Schadewi jk A, et al. Eotaxin-2 and eotaxin-3 expression is associated with persistent eosinophilic bronchial inflammation in patients with asthma after allergen challenge[J]. Journal of Allergy and Clinical Immunology,2005; 115(4): 779-785.
    59. Lezcano-Meza D, Davila-Davila B, Vega-Miranda A, et al. Interleukin (IL)-4 and to a lesser extent either IL-13 or interferon-gamma regulate the production of eotaxin-2/CCL24 in nasal polyps[J]. Allergy,2003; 58(10):1011-1017.
    60. Watanabe K, Jose P J, Rankin S M. Eotaxin-2 generation is differentially regulated by lipopolysaccharide and IL-4 in monocytes and macrophages[J]. J Immunol,2002; 168(4):1911-1918.