典型非碳化聚合物材料热解及逆流火蔓延实验和理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体可燃物热解及火蔓延是火灾初始和发展阶段的重要分过程,决定着后续火灾的发展,因此一直是国内外众多学者重点研究的对象。热解又是火蔓延的子过程,两者有着密切的关系。非碳化聚合物材料作为现代建筑中广泛应用的装饰材料,其在火灾中表现出的诸多特殊蔓延行为越来越多地受到研究者的关注。在外部热流作用下,非碳化聚合物材料受热后发生热解反应,热解产生的可燃气通过形成气泡等方式从材料内部传输到材料表面进而析出到外界空气中。热解释放出可燃性气体与空气混合形成可燃预混气,经点燃后会在材料表面发生燃烧化学反应形成火焰。燃烧产生的热量一部分用来加热燃烧产物,一部分通过辐射散失到环境中,剩下的一部分则通过对流、辐射和热传导的方式反馈回材料表面形成反馈热流而对未燃材料进行预加热,当未燃材料被加热后发生热解又进一步释放出热解可燃气以维持气相燃烧,如此不断的循环进而形成材料表面持续的火蔓延过程。与传统的碳化材料(如纸张、木材等)不同,非碳化材料在热解的过程中基本没有碳层形成,不会阻碍外部热流对材料的预加热,因此其热解速率要远大于碳化材料的热解。此外,材料的熔融和流动特性也会增加材料的蔓延速率。
     本文首先在锥型量热仪氮气气氛下对PMMA (Poly(methyl methacrylate))、 ABS(Poly(acrylonitrile butadiene styrene))和HIPS(High Impact Polystyren)三种典型非碳化聚合物材料进行了不同热流下的热解实验研究,在此基础上对非碳化聚合物材料有限尺寸自然条件下逆流火蔓延过程进行了实验和理论研究,其中包括材料厚度、宽度、环境压力和三维效应等参数对逆流火蔓延过程的影响。具体内容概括如下:
     热解方面,在低、中、高三种热流下对PMMA、ABS和HIPS的一维热解过程进行了实验研究。通过对比热电偶和红外热像仪材料背面温度的测量结果,验证了非接触测温方法的可行性。利用实验所测得的材料背面温度和质量损失速率,并结合Stanislav I. Stoliarov的ThermoKin模型得到材料的导热系数与温度的分段线性关系。进而在实验的基础上建立了一个考虑材料表面热流吸收方式和热解化学反应的非碳化聚合物材料的一维热解模型,模型对文献中广泛采用的深度吸收和表面吸收这两种假设分别进行了研究和对比,结果表明不同吸收方式对材料表面温度和热穿透层内温度分布有较大影响,这种不同在空气气氛下体现在着火时间的明显差异。而在宏观热解方面,即不考虑材料内部热解细节的情况下,两者的模拟结果均在可接受的范围之内。通过对比失重速率和背面温度的实验和模拟结果验证了此一维热解模型的正确性。
     火蔓延方面,在热解研究的基础上对自然对流和不同环境压力下的逆流火蔓延过程进行了实验和理论分析。结果表明在材料宽度较小的情况下,逆流火蔓延速率随厚度的增大而增加,这与二维无限宽条件下的结论有较大差别。主要原因是有限尺寸条件下,材料两侧的燃烧过程加速了蔓延速率。在厚度固定情况下,火蔓延速率反比于材料宽度。在合肥、西宁和拉萨不同环境压力条件下,失重速率、火焰高度和火蔓延速率均随压力的增大而增大。在低压条件下,气相化学反应动力学和火焰反馈热流是影响火蔓延速率的主要因素,当表征气相化学反应的Damkohler数小于一个临界值会产生熄火现象。本文还从传热和传质角度出发对火蔓延过程进行了理论分析并得到简化模型,模型中材料的火蔓延速率是材料尺寸、火焰前沿角度和材料热物理参数的函数。另外此模型还提供了通过测量火蔓延速率估算热解区和预热区火焰反馈热流大小的方法。同样,模型与实验结果较好的一致性说明了简化模型的正确性。
Pyrolysis and flame spread of solid combustible are important subprocedures in initial and development stage in fire which determine the subsequent process, and thus have been the focus of numerous researchers all over the world in the last decades. Pyrolysis is also the one of sub processes of flame spread, and mutual relation exists between both of them. More and more attention is paid by the investigators to the special spread behaviors in fire of non-charring polymers used extensively as structure and decorative materials in modern buildings. When sample is heated by external heat flux, thermal degradation reaction occurs in the non-charring material. Volatiles generated by the polymer are transferred from interior to the surface of samples by bubbles and then diffuse to the ambient environment. Combustible premixed gas fuel mixed by the volatiles and air is ignited at the surface of polymer on which combustion reaction take place and sustained flame is established over the material. Some of the energy produced by the combustion is used to heat the combustion products and some other is released to the environment by radiation. The rest, feedback heat flux, is used to preherat the virgin material by convection, radiation and conduction. Combustible fuel is released to maintain the gas phase combustion when the virgin polymer is heat. This continuous cyclic process leads to the sustained flame spread process over the polymer. The flame spread rate of non-charring polymer is much larger than that of charring polymer due to the absence of the char layer which emerges during the pyrolysis of traditional charring polymer, such as paper and wood, and block the external incident heat flux. Futhermore, the melt and flow characteristics of non-charring polymer will also enhance the spread rate.
     Experimental study and numerical simulation about pyrolysis of three typical non-charring polymers, Poly(methyl methacrylate)(clear PMMA), Poly(acrylonitrile butadiene styrene)(ABS) and High Impact Polystyrene (HIPS), under three different heat flux in cone calorimeter and nitrogen atmosphere are conducted in this thesis. Based on the study of pyrolysis, experimental and theoretical study on opposed flow flame spread over non-charring polymers under natural convection condition with finite dimension are performed, namely, the effect of thickness, width, ambient pressure and finite dimension on the flame spread process. Specific content is summarized as follows:
     For the prolysis, experimental investigation about one dimensional pyrolysis is conducted under low, medium and high heat flux in cone calorimeter and nitrogen atmosphere for PMMA, ABS and HIPS. The validity of the non-contact temperature measurement method is verified by the comparison between the bottom surface temperature measured by thermocouples and infrared thermal camera. The piecewise linear relationship between thermal conductivity of material and temperature is obtained through the measured bottom surface temperature and mass loss rate in experiments coupled with the ThermoKin model of Stanislav I. Stoliarov. Furthermore, an one dimension pyrolysis model of non-charring polymers, which considers the absorption methods of incident heat flux at the surface of sample and thermal degradation reaction in interior of solid, is developed based on the experiments. Investigation and comparison about surface and in-depth absorption hypotheses, commonly used in literatures, are conducted in the model, and the result indicates that different absorption methods have significant influence on top surface temperature and the temperature distribution in heat penetration layer, which can be reflected in the distinct discrepancy of ignition time in air atmosphere. Both simulation results with different absorption assumption are acceptable when the details of the micro pyrolysis in the polymers are not the focus. Also, the correctness of the established model is validated by the comparison between experimental and simulation results about mass loss rate and bottom surface temperature.
     For flame spread, experimental and theoretical analysis of opposed flow flame spread are performed under natural convection condition in different environmental pressure. The results show that the opposed flow flame spread rate increases with the increasing thickness when the width of sample is small, which is distinctly different with the conclusions of that two dimensional infinite width condition. The explanation is that the lateral combustion at the two sides accelerates the spread process for finite dimension material. With fixed thickness, the flame spread rate inversely proportional to the width of sample. In different environmental pressure, Hefei, Xining and Lhasa, the mass loss rate, flame height and spread rate increase with increasing ambient pressure. In low atmospheric pressure, chemical reaction kinetics and flame feedback heat flux in gas is the controlling mechanism for flame spread rate. When the Damkohle, which characterizes the gas phase chemical reactions, decreases below a critical value, no sustained flame can be maintained over the surface of polymer. A simplified model is developed in this thesis based on the theoretical analysis from the perspective of heat and mass transfer, in which the spread rate is a function of dimension of sample, leading edge angle and thermal and physical parameters of material. Meanwhile, the model provides the feedback heat flux measurement method for pyrolysis and preheated zone by measuring the flame spread rate and mass loss rate. Also, the good agreement between the experimental and analytical results verifies the validity of the simplified model.
引文
[1]J. Li, S.I. Stoliarov, Measurement of kinetics and thermodynamics of the thermal degradation for non-charring polymers, Combust. Flame 2013,160: 1287-1297.
    [2]H.C. Kung, A mathematical model of wood pyrolysis, Combustion and Flame, 1972,18:185-195.
    [3]V. Babrauskas, Ignition of wood:a review of the state of the art, Journal of Fire Protection Engineering.2002,12:163-189.
    [4]L.Z. Yang, X.J. Chen, X.D. Zhou, W.C. Fan, The pyrolysis and ignition of charring materials under an external heat flux, Combustion and Flame,2003, 133:407-413.
    [5]J.T. Kuo, C.L. His, Pyrolysis and ignition of single wooden spheres heated in high-temperature streams of air, Combustion and Flame,2005,142:401-412.
    [6]M. Delichatsios, Flammability properties for charring materials, Fire Safety Journal,2003,38:219-228.
    [7]N. Boonmee, J.G. Qumtiere, Glowing and flaming auto ignition of wood, Proceedings of the Combustion Institute,2002,29:289-296
    [8]J.E.J. Staggs, Ignition of char-forming polymers at a critical mass flux, Polymer Degradation and Stability,2001,74:433-439.
    [9]M.J. Spearpoint, J.G. Quintiere, Predicting the piloted ignition of wood in the cone calorimeter using an integral model-effect of species, grain orientation and heat flux, Fire Safety Journal,2001,36:391-415.
    [10]C.H. Bamford, J. Crank, D.H. Malan, The combustion of wood. Part I, Proceedings of the Cambridge philosophical society,1946,42:166-182.
    [11]C. Di Blasi, Modeling and simulation of combustion processes of charring and non-charring solid fuels, Progress of Energy and Combustion Science,1993,19: 71-104.
    [12]H.G. Landau, Heat conduction in a melting solid. Quart J. Appl. Math.,1950,8: 81.
    [13]M.J. Billings, L. Warren, R. Wilkins, Thermal erosion of electrical insulating materials, IEEE Trans, on Elect. ins.,1971,6:82.
    [14]J.G. Andrews, D.R. Atthey, Analytical and numerical techniques for ablation problems:Moving Boundary Problems in Heat and Diffusion, Clarendon Press, Oxford,1975:38.
    [15]N.S. Asaithambi, On a variable time-step method for the one-dimensional Stefan problem. Comp. Meth. in App. Mech. Eng.1988,71:1
    [16]D.J. Rasbash, D.D. Drysdale, D. Deepak, Critical heat and mass transfer at pilot ignition and extinction of a material. Fire Safety Journal,1986,10:1.
    [17]S. Rustcgar, M. Motamedi, A.J. Welch, L.J. Hayes, A theoretical study of the effect of optical properties in laser ablation of tissue, IEEE Trans. on Biomed. Eng.,1989,36:1180.
    [18]R. Ricci, Travelling wave solutions of the Stefan and the ablation problems, SIAM J. Math. Anal,1990,21:1386.
    [19]P. Whiting, J. M. Dowden, P.D. Kapadia, M.P. Davis, A one-dimensional mathematical model of laser induced thermal ablation of biological tissue. Lasers in Med. Sci.,1992,7:357.
    [20]M. A. Delichatsios, Y. Chen, Asymptotic, approximate and numerical solutions for the heatup and pyrolysis of materials including reradiation losses. Comb. and Flame,1993,92:292.
    [21]J.E.J. Staggs, A discussion of modeling idealized ablative materials with particular reference to fire.testing. To appear in the Fire Safety Journal.1996.
    [22]J.E.J. Staggs, Modeling thermal degradation of polymers using single-step first-order kinetics, Fire. Safety Journal,1999,32:17-34.
    [23]A.M. Melnick, E.J. Nolan, The design and development of a high-heating-rate thermo gravimetric analyzer suitable for use with ablative plastics. In "Ablative Plastics", Marcel Dekker Inc.,1971:315.
    [24]C. Vovelle, J. Delfau, M. Reuillon, Experimental and numerical study of thermal degradation of PMMA. Comb. Sci. Tech.,1987,53:187.
    [25]I.S. Wichman, A. Atreya, A simplified model for the pyrolysis of charring materials, Comb. Flame,1987,68:231.
    [26]C. Di Hlasi, I.S. Wichman, Effects of solid-phase properties on flames spreading over composite materials. Comb. Flame,1995,102:229.
    [27]A. Atreya, I.S. Wichman, Heat and mass transfer during piloted ignition of cellulosic solids, Trans ASME J. Heat Transfer,1989,111:719.
    [28]T. Ohlerniller, J. Shields, One and two-sided burning of thermally thin materials, Fire and Materials,1993,17:103.
    [29]W.J. Parker, R. Filipczak, R. Modeling the heat release rate of aircraft cabin panels, NIST report DOT/FAA/CT-92/3 (1993).
    [30]J. Rychly, L. Costa, Modeling of polymer ignition and burning adopted for cone calorimeter measurements:the correlation between rate of heat release and oxygen index, Fire and Materials,1995,19:215.
    [31]T. Kashiwagi, T. Hirrata, J.E. Brown, Thermal and oxidative degradation of Poly(methyl methacfylate):Molecular weight, Macromolecules,1985,18: 131-138.
    [32]T. Hirrata, T. Kashiwagi, J.E. Brown, Thermal and oxidative degradation of Poly(methyl methacfylate):weight loss, Macromolecules,1985,18:1410-1418.
    [33]T. Kashiwagi, A. Inaba, J.E. Brown, T. Hirrata, E. Masuda, Effects of weak linkages on the thermal and oxidative degradation of Poly(methyl methacrylate), Macromolecules,1986,19:2160-2168.
    [34]A. Inaba, T. Kashiwagi, Macromolecules, A calculation of thermal degradation initiated by random scission, unsteady radical concentration,1986,19: 2412-2419.
    [35]A. Inaba, T. Kashiwagi, A Calculation of Thermal degradation initiated by random scission, unsteady radical concentration, Eur. Polym. J.,1987,23: 871-881.
    [36]J.W. Martin, B. Dichens, D. Waksman, D.P. Bentz, W.E. Byrd, E. Embree, W.E. Roberts, Thermal Degradation of Poly(Methyl Methacrylate) at 50℃ to 12℃, J. Appl. Polym. Sci.,1987,34:377-393.
    [37]A.C. Fernandez-Pello, Controlling Mechanisms of Flame spread, Combustion Science and Technology,1983,32:1-31.
    [38]ASTM(E1354), Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter, 2007.
    [39]M. Janssens, Calorimetry, The SFPE Handbook of Fire Protection Engineering, 3rd ed.,1999, Section 3/Chapter 2.
    [40]http://www.tc.faa.gov/its/worldpac/techrpt/ar01-117.pdf
    [41]ASTM(E2058-09), Standard Test Methods for Measurement of Synthetic Polymer Material Flammability Using a Fire Propagation Apparatus (FPA), 2009.
    [42]Yafei Wang, Lizhong Yang. Analysis on correlation between the critical ignition energy of thermal-thick materials and the external heat flux. Journal of Applied Fire Science,2010,19:171-184
    [43]K. McGrattan, S. Hostikka, J. Floyd, H. Baum, R. Rehm, W. Mell, R. McDermott, Fire Dynamics Simulator (Version 5) Technical Reference Guide National Institute of Standards and Technology Special Publication,2007.
    [44]C. Lautenberger, G. Rein, C. Fernandez-Pello, The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data. Fire Safety Journal,2006,41:204-214.
    [45]S.I. Stoliarov, R.E. Lyon, Thermo-Kinetic Model of Burning, Federal Aviation Administration Technical Note,2008.
    [46]J.E.J. Staggs, A theoretical investigation into modeling thermal degradation of solids incorporating finite-rate kinetics, Combustion Science and Technology, 1997,123:261-285.
    [47]N. Bal, G. Rein, Relevant model complexity for non-charring polymer pyrolysis, Fire Safety Journal,2013,61:36-44.
    [48]ISO 5660e1:1993 Fire tests e reaction to fire e part 1:rate of heat release from building products (cone calorimeter method).
    [49]ASTME-1354-03. Standard test method for heat and visible smoke release rates for materials and products using an oxygen consumption calorimeter. Philadelphia:American Society for Testing and Materials; 2003
    [50]264:Standard method of test for heat and visible smoke release rates for material and products using an oxygen consumption calorimeter.1995 Ed. Quincy, MA:National Fire Protection Association; 1997.22p.
    [51]British Standard,476:fire tests on building materials and structures:Part 15. Method for measuring the rate of heat release of products; 1993.31p.
    [52]T. Kashiwagi, T.J. Ohlemiller, A study of oxygen effects on non-flaming transient gasification of PMMA and PE during thermal irradiation, Proceeding of combustion institutes,1982,19:815-823
    [53]T. Kashiwagi, A. Omori, Effects of polymer characteristics on flammability properties, U.S./Japan Government Cooperative Program on Natural Resources (UJNR). Fire Research and Safety.11th Joint Panel Meeting. October 19-24, 1989, Berkeley, CA, Jason, N. H.; Cramer, D. M., Editor(s)(s),54-62 pp,1990.
    [54]T. Kashiwagi, C.H. Waldman, R.B. Rothman, M. Summerfield, Ignition of polymers in a hot oxidizing gas, Combustion Science and Technology,1973,8: 121-131.
    [55]T. Kashiwagi, Polymer combustion and flammability-Role of the condensed phase, Proceeding of combustion institutes,1994,25:1423-1437.
    [56]I.S. Wichman, A model describing the steady-state gasification of bubble-forming thermoplastics in response to an incidant heat flux, Combustion and Flame,63:217-229.
    [57]C. Vovelle, R. Akrich, J.L. Delfau, Mass loss rate measurements on solid materials under radiative heating, Combustion Science and Technology,1984, 36:1.
    [58]C. Vovelle, R. Akrich, J.L. Delfau, Degradation of solid materials under a variable heat flux, Twentieth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh,1985, pp.1647-1654.
    [59]C. Vovelle, J.L. Delfau, M. Reuillon, Experimental and numerical study of the thermal degradation of PMMA, Combustion Science and Technology,1987,53: 187-201.
    [60]J.E.J. Staggs, R.H. Whiteley, Modeling the combustion of solid-phase fuels in cone calorimeter experiments, Fire and Materials,1999,23:63-69.
    [61]R.Carvel, T. Steinhaus, G. Rein, J.L. Torero, Determination of the flammability properties of polymeric materials:A novel method, Polymer Degradation and Stability,2011,96:314-319.
    [62]H. Gotoda, S.L. Manzello, T. Kashiwagi, Experimental study on effects of. sample orientation on non-piloted ignition of thin pmma sheets, Combustion Institute/Western States, Central States and Eastern States. Fourth (4th) Joint Meeting of the U.S. Sections. Hosted by The Eastern States Section of the Combustion Institute and Drexel University. Poster Session V and Reception. March 20-23,2005, Philadelphia, PA,2005, pp.1-6.
    [63]S.L. Manzello, H. Gotoda, T. Kashiwagi, Non-piloted ignition visualization on a thin poly(methylmethacrylate) (pmma) surface, Journal of Heat Transfer,2005, 127:811-811.
    [64]G. Agarwal, B. Lattimer, Method for measuring the standard heat of decomposition of materials, Thermochimica Acta,2012,545:34-37.
    [65]S. Vyazovkin, C.A. Wight, Kinetics in solids, Annual review of physical chemistry,1997,48:125-149.
    [66]S.I. Stoliarov, R.N.Walters, Determination of the heats of gasification of polymers using differential scanning calorimetry, Polymer Degradation and Stability,2008,93:422-427.
    [67]J. Li, S.I. Stoliarov, Measurement of kinetics and thermodynamics of the thermal degradation for non-charring polymers, Combustion and Flame,2013, 160:1287-1297.
    [68]J. Li, S.I. Stoliarov, Measurement of kinetics and thermodynamics of the thermal degradation for charring polymers, Polymer Degradation and Stability (2013), http://dx.doi.org/10.1016/j.polymdegradstab.2013.09.022
    [69]S.I. Stoliarov, S. Crowley, R.E. Lyon, G.T. Linteris, Prediction of the burning rates of non-charring polymers, Combustion and Flame,2009,156:1068-1083.
    [70]J. Li, J. Gong, S.I. Stoliarov, Infrared-camera-enabled gasification experiments for pyrolysis model parameterization.
    [71]X. Zhang, W. Hendro, M. Fujii, T. Tomimura, N. Imaishi, Measurements of the thermal conductivity and thermal diffusivity of polymer melts with the short-hot-wire method, International Journal of Thermophysics,2002,23: 1077-1090.
    [72]J. Brandrup, E.H. Immergut, E.A. Grulke, A. Abe, D.R. Bloch (Eds.), Polymer Handbook, fourth ed., John Wiley & Sons, New York,1999.
    [73]J.E. Mark (Ed.), Physical Properties of Polymers Handbook, American Institute of Physics, Woodbury, NY,1996.
    [74]G. Linteris, M. Zammarano, B. Wilthan, L. Hanssen, Absorption and reflection of infrared radiation by polymers in fire-like environments, Fire and Materials, 2012,36:537-553.
    [75]F. Jiang, J.L. De Ris, M.M. Khan, Absorption of thermal energy in PMMA by in-depth radiation. Fire Safety Journal,2009,44:106-112.
    [76]P.T. Tsilingiris, Comparative evaluation of the infrared transmission of polymer films, Energy Conversion and Management,2003,44:2839-2856.
    [77]N. Bal, G. Rein, Numerical investigation of the ignition delay time of a translucent solid at high radiant heat fluxes, Combustion and Flame,2011,158: 1109-1116.
    [78]K. Saito,M.A. Delichatsios, Venkatesh S, Alpert RL. Measurement and Evaluation of Parameters Affecting the Preheating and Pyrolysis of Noncharring Materials, Paper Prepared for Presentation at the Fall Technical Meeting, Eastern Section The Combustion Institute:Clearwater Beach, FL, December 1988.
    [79]P. Girods, N. Bal, H. Biteau, G. Rein, J.L. Torero. Comparison of pyrolysis behavior results between the cone calorimeter and the fire propagation apparatus heat sources. International Association for Fire Safety Science: Boston, MA,2011,625-636.
    [80]P.J. Austin, R.R. Buch, T. Kashiwagi, Gasification of silicone fluids under external thermal radiation. Part I, Gasification rate and global heat of gasification. Fire and Materials 1998,22:221-237.
    [81]L. Hanssen. Integrating-sphere system and method for absolute measurement of transmittance, reflectance, and absorptance of specular samples, Applied Optics, 2001,40:3196-3204.
    [82]G.F. D'Alelio, J.A. Parker, Ablative plastics, New York:Marcel Dekker Inc. 1971, p.3.
    [83]S. Carlslaw, J.C. Jaeger. Conduction of heat in solids. Oxford:Oxford University Press,1984.
    [84]P. Whiting, J.M. Dowden, P.D. Kapadia, M.P. Davis, A one-dimensional mathematical model of laser induced thermal ablation of biological tissue, Lasers Med. Sci.1992,7:357-368.
    [85]M.J. Billings, L. Warren, R. Wilkins, Thermal erosion of electrical insulating materials. IEEE Trans. Electron Ins.1971,6:82-90.
    [86]M.A. Delichatsios, Y. Chen, Asymptotic, approximate and numerical solutions for the heatup and pyrolysis of materials including reradiation losses. Combust Flame 1983,92:292-307.
    [87]J. Quintiere, N. Iqbal, An approximate integral model for the burning rate of a thermoplastic-like material, Fire Mater.1994,18:89-98.
    [88]J.E.J. Staggs. A discussion of modeling idealized ablative materials with particular reference to fire testing. Fire Safety J.1997,28:47-66.
    [89]A. Tewarson, R.F. Pion, Flammability of plastics-I. Burning intensity. Combust. Flame 1976,26:85-103.
    [90]S. Rastegar, M. Motamedi, A.J. Welch, L.J. Hayes, A theoretical study of the elect of optical properties in laser ablation of tissue, IEEE Trans Biomed Eng 1989,36:1180-1187.
    [91]Ricci, Travelling wave solutions of the Stefan and the ablation problems, SIAM J Math Anal 1990,21:1386.
    [92]M. Kindelan, F.A. Williams, Theory for endothermic gasification of a solid by a constant energy flux. Combustion Science and Technology 1975,10:1.
    [93]J.E.J. Staggs, A simple model of polymer pyrolysis including transport of volatiles, Fire Safety Journal,2000,34:69-80.
    [94]J.R. Hallman, J.R. Welker, C.M. Sliepcevich, Ignition of polymers (Ignition time depends on incident irradiance, the nature of the radiation source, and the optical properties of the material), SPE J.1972,28:43-47.
    [95]J.R. Hallman, C.M. Sliepcevich, J.R. Welker, Radiation absorption for polymers: the radiant panel and carbon arcs as radiant heat source, J. Fire Flammabl.1978, 9:353-366.
    [96]A. Linan, F.A. Williams, Radiant ignition of a reactive solid with in-depth absorption, Combust. Flame 1972,18:85-97.
    [97]H. Emmons, Z. Angew, The Film Combustion of Liquid Fuel. Math. Mech. 1956,60:71.
    [98]L. Lees, Laminar Heat Transfer Over Blunt-Nosed Bodies at Hypersonic Flight Speeds, Jet Propuls,1956,26:259-269.
    [99]J. N. De Ris, Spread of a laminar diffusion flame, Proc. Combust. Inst.1969,12: 241-252.
    [100]D. B Spalding, Combustion of Liquid Fuel in Gas Stream. Fuel 1950,29:2-7.
    [101]S. Merwin, K. Jeongbin, V. Joseph, J.R. Creeden. The dependence of flame propagation on surface heat transfer I:Downward burning. Combustion and Flame,1976,14:43-56.
    [102]F. A. Williams. A unified view of fire suppression. Journal of Fire and Flammability,1974,5:54-80.
    [103]M.B. Ayani, J.A. Esfahani, R. Mehrabian, Downward flame spread over PMMA sheets in quiescent air:experimental and theoretical studies, Fire Safety J.2006, 41:164-169.
    [104]M. Suzuki, R. Dobashi, T. Hirano, Behavior of fires spreading downward over thick paper, In:Proceedings of the 25th symposium on combustion 1994 p. 1439-1446.
    [105]Y. Pizzo, J.L. Consalvi, B. Porterie, A transient pyrolysis model based on the B-number for gravity-assisted flame spread over thick PMMA slabs, Combustion and Flame,2009,156:1856-1859.
    [106]G. Zheng, I.S. Wichman, A. Benard, Opposed-flow flame spread over polymeric materials:influence of phase change, Combustion and Flame,2001,124: 387-408.
    [107]J.S. Kim, J. De Ris, F.W. Kroesser, Laminar free-convection burning of fuel surfaces, Symposium(International) on Combustion,1971,13:949-961.
    [108]A.C. Fernandez-Pello, F.A. Williams, A theory of laminar flame spread over flat surface of solid combustibles, Combustion and Flame,1977,28:251-277.
    [109]A.S. Rangwala, S.G. Buckley, J.L. Torero, Analysis of the constant B-number assumption while modeling flame spread, Combustion and Flame,2008,152: 401-414.
    [110]A.C. Fernandez-Pello, Flame spread in a forward forced flow, Combustion and Flame,1979,36:63-78.
    [111]P.J. Pagni, Diffusion flame analyses, Fire Safety Journal,1981,3:273-285.
    [112]K. Annamalalt, M. Sibulkin, Flame spread over combustible surface for laminar flow systems part 1:Excess fuel and heat flux, Combustion Science and Technology,1979,19:167-183.
    [113]K.K. Wu, W.F. Fan, C.H. Chen, T.M. Liou, I.J. Pan, Downward flame spread over a thick PMMA slab in an opposed flow environment:experiment and modeling, Combust. Flame,2003,132:697-707.
    [114]M.B. Ayani, J.A. Esfahani, A.C.M. Sousa, The effect of surface regression on the downward flame spread over a solid fuel in a quiescent ambient, Thermal Science,2007,11:67-86.
    [115]P.H. Lin, C.H. Chen, Numerical analyses for radiative autoignition and transition to flame spread over a vertically oriented solid fuel in a gravitational field, Combustion Science and Technology,2000,151:157-187.
    [116]C.H. Chen, A numerical study of flame spread and blow-off over a thermally-thin solid fuel in an opposed air flow, Combustion Science and Technology,1990,69:63-83.
    [117]E. Alfred, J.R. Frey, J.S. T'ien, A theory of flame spead over solid fuel including finite-rate chemical kinetics, Combustion and Flmae,1979,36:263-289.
    [118]C.D. Blasi, G. Continillo, S. Crescitelli, G. Russo, Numerical simulation of opposed flow flame spread over a thermally thick solid fuel,1987,54:25-36.
    [119]A.C. Fernandez-Pello, F.A. Williams, Laminar flame spread over PMMA surfaces In:Proceedings of the 15th symposium on combustion 1975 pp. 217-231.
    [120]S. Bhattachariee, M.D. King, S. Takahashi, T. Nagumo, K. Wakai, Downward flame spread over poly(methly) methacrylate, Proceeding of the Combustion Institute,2000,28:2891-2897.
    [121]P.H. Lin, C.H. Chen, Numerical analyses for downward flame spread over thin and thick fuels in a gravitational field, Combustion and Flmae,1999,118: 744-746.
    [122]A. C. Fernandez-Pello, S. R. Ray, L. Glassman, Flame spread in an opposed forced flow:the effect of ambient oxygen concentration, Eighteenth symposium (International) on Combustion,1981, pp.579-589.
    [123]S. Bhattacharjee, Jeff West, Determination of the spread rate in opposed-flow flame spread over thick solid fuels in the thermal regime, Proc. Combust. Inst. 1996,26:1477-1485.
    [124]J.G. Quintiere. The effects of angular orientation on flame spread over thin materials. Fire Safety Journal,2001,36:291-312.
    [125]A. Ito, T. Kashiwagi, Characterization of flame spread over PMMA using holographic interferometry sample orientation effects, Combust. Flame,1988, 71:189-204.
    [126]A. Ito, T. Kashiwagi, Temperature measurement in PMMA during downward flame spread in air using holographic interferometry, Twenty-first Symposium (International) on Combustion,1986,65-74.
    [127]A. Ito, Y. Kudo, H. Oyama, Propagation and extinction mechanisms of opposed-flow flame spread over PMMA for different sample orientations, Combustion and Flame,2005,142:428-437.
    [128]A. C. Fernandez-Pello, Downward flame spread under the influence of externally applied thermal radiation, Combust. Sci. Technol.1977,17:1-9.
    [129]Y. Pizzo, J.L. Consalvi, P. Querre, M. Coutin, B. Porterie, Width effects on the early stage of upward flame spread over PMMA slabs:Experimental observations, Fire Safety J.2009,44:407-414.
    [130]A.S. Rangwala, S.G. Buckley, J.L. Torero, Upward flame spread on a vertically oriented fuel surface:The effect of finite width, Proc. Combust. Inst.2007,31; 2607-2615.
    [131]I.T. Leventon, S.I. Stoliarov, Evolution of flame to surface heat flux druing upward flame spread on poly(methyl methacrylate), Proc. Combust. Inst.2013, 34:2523-2530.
    [132]M. Mamourian, J.A. Esfahani, M.B. Ayani, Experimental investigation of the effect of the solid fuel dimensions on the downward flame spread, Kuwait Journal of Science and Engineering,2009,36:183-200.
    [1]C. Di Blasi, Modeling and simulation of combustion processes of charring and non-charring solid fuels, Progress of Energy and Combustion Science,1993,19: 71-104.
    [2]J.E.J. Staggs, Modeling thermal degradation of polymers using single-step first-order kinetics, Fire. Safety Journal,1999,32:17-34.
    [3]A. Inaba, T. Kashiwagi, A calculation of thermal degradation initiated by random scission.1. steady-state radical concentration, Macromolecules,1986, 19:2412-2419.
    [4]F.P. Incropera, D.P. DeWitt, T.L. Bergman, A.S. Lavine, Fundamentals of Heat and Mass Transfer,6th edition, Published by Johe Wiley & Sons, Inc.
    [5]P.T. Tsilingiris, Comparative evaluation of the infrared transmission of polymer films, Energy Conversion and Management,2003,44:2839-2856.
    [6]S.I. Stoliarov, R.E. Lyon, Federal Aviation Administration Technical Note, DOT/FAA/AR-TN08/17,2008, available for download at http://www. fire.tc. faa. go v/reports/reports. asp.
    [7]J. N. De Ris, Spread of a laminar diffusion flame, Proc. Combust. Inst.1969,12: 241-252.
    [8]S. Bhattacharjee, Jeff West, Determination of the spread rate in opposed-flow flame spread over thick solid fuels in the thermal regime, Proc. Combust. Inst. 1996,26:1477-1485.
    [9]S. Bhattachariee, M.D. King, S. Takahashi, T. Nagumo, K. Wakai, Downward flame spread over poly(methly) methacrylate, Proceeding of the Combustion Institute,2000,28:2891-2897.
    [10]C. Di Blasi, Modeling and simulation of combustion processes of charring and non-charring solid fuels, Progress of Energy and Combustion Science,1993,19: 71-104.
    [11]M. Suzuki, R. Dobashi, T. Hirano, In:Proceedings of the 25th symposium on combustion 1994, pp.1439-1446
    [12]M.B. Ayani, J.A. Esfahani, R. Mehrabian, Downward flame spread over PMMA sheets in quiescent air:experimental and theoretical studies, Fire Safety J.2006, 41:164-169.
    [13]K.K. Wu, W.F. Fan, C.H. Chen, T.M. Liou, I.J. Pan, Downward flame spread over a thick PMMA slab in an opposed flow environment:experiment and modeling, Combust. Flame,2003,132:697-707.
    [14]M.B. Ayani, J.A. Esfahani, A.C.M. Sousa, The effect of surface regression on the downward flame spread over a solid fuel in a quiescent ambient, Thermal Science,2007,11:67-86.
    [15]C.H. Chen, A numerical study of flame spread and blowoff over a thermally-thin solid fuel in an opposed air flow, Combustion Science and Technology,1990,69:63-83.
    [1]P. Whiting, J.M. Dowden, P.D. Kapadia, M.P. Davis, A one-dimensional mathematical model of laser induced thermal ablation of biological tissue, Lasers Med. Sci.1992,7:357-368.
    [2]M.J. Billings, L. Warren, R. Wilkins, Thermal erosion of electrical insulating materials. IEEE Trans. Electron Ins.1971,6:82-90.
    [3]M.A. Delichatsios, Y. Chen, Asymptotic, approximate and numerical solutions for the heatup and pyrolysis of materials including reradiation losses. Combust Flame,1983,92:292-307.
    [4]J. Quintiere, N. Iqbal, An approximate integral model for the burning rate of a thermoplastic-like material, Fire Mater.1994,18:89-98.
    [5]J.E.J. Staggs. A discussion of modeling idealized ablative materials with particular reference to fire testing. Fire Safety J.1997,28:47-66.
    [6]C. Di Blasi, I.S. Wichman, Effects of solid-phase properties on flames spreading over composite materials. Combust. Flame 1995,102:229-240.
    [7]M. Kindelan, F.A. Williams, Theory for endothermic gasification of a solid by a constant energy flux, Combust Sci. Technol.1975,10:1-19.
    [8]J.E.J. Staggs, Modeling thermal degradation of polymers using single-step first-order kinetics, Fire. Safety J.1999,32:17-34.
    [9]C. Vovelle, J. Delfau, M. Reuillon. Experimental and numerical study of the thermal degradation of PMMA. Comb Sci. Technol.1987,53:187-201.
    [10]J.E.J. Staggs. A theoretical investigation into modeling thermal degradation of solids incorporating finite rate kinetics. Combust Sci. Technol.1997,123: 261-285.
    [11]S.I. Stoliarov, R.N. Walters, Determination of the heats of gasification of polymers using differential scanning calorimetry, Polym. Degrad. Stab.2008,93: 422-427.
    [12]S.I. Stoliarov, S. Crowley, R.E. Lyon, G.T. Linteris, Prediction of the burning rates of non-charring polymers, Combust. Flame 2009,156:1068-1083.
    [13]J. Li, S.I. Stoliarov, Measurement of kinetics and thermodynamics of the thermal degradation for non-charring polymers, Combust. Flame 2013,160: 1287-1297.
    [14]S.I. Stoliarov, R.E. Lyon, Federal Aviation Administration Technical Note, DOT/FAA/AR-TN08/17,2008, available for download at http://www.fire.tc.faa.gov/reports/reports.asp.
    [15]J.R. Hallman, J.R. Welker, C.M. Sliepcevich, Ignition of polymers (Ignition time depends on incident irradiance, the nature of the radiation source, and the optical properties of the material), SPE J.1972,28:43-47.
    [16]J.R. Hallman, C.M. Sliepcevich, J.R. Welker, Radiation absorption for polymers: the radiant panel and carbon arcs as radiant heat source, J. Fire Flammabl.1978, 9:353-366.
    [17]A. Linan, F.A. Williams, Radiant ignition of a reactive solid with in-depth absorption, Combust. Flame 1972,18:85-97.
    [18]K. Saito, M.A. Delichatsios, S. Venkatesh, R.L. Alpert, Measurement and evaluation of parameters affecting the preheating and pyrolysis of non-charring materials, Paper Prepared for Presentation at the Fall Technical Meeting, Eastern Section, The Combustion Institute, Clearwater Beach, FL, December 1988.
    [19]M.A. Delichatsios, K. Saito, Upward fire spread:key flammability properties, Similarity solution and flammability indices, FM Global Research Internal Report, July 1991.
    [20]Fenghui Jiang, J.L. de Ris, M.M. Khan, Absorption of thermal energy in PMMA by in-depth radiation, Fire Safety J.2009,44:106-112.
    [21]G. Linteris, M. Zammarano, B. Wilthan, L. Hanssen, Absorption and reflection of infrared radiation by polymers in fire-like environments, Fire Mater.2012,36: 537-553.
    [22]ASTM(E1354), Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter, 2007.
    [23]M. R.Semmes, X. Liu, M.B. McKinnon, S.I. Stoliarov, A. Witkowski, A Model for Oxidative Pyrolysis of Corrugated Cardboard; Proceedings of the Eleventh International Symposium on Fire Safety Science, accepted for publication.
    [24]P.T.Tsilingiris, Comparative evaluation of the IR transmission of polymer films, Energy Conversion and Management,2003,44:2839-2856.
    [25]F.P. Incropera, D.P. DeWitt, T.L. Bergman, A.S. Lavine, Fundamentals of Heat and Mass Transfer,6th edition, Published by Johe Wiley & Sons, Inc.
    [26]http://bouteloup.pierre.free.fr/lica/phythe/don/air/air_k_plot.pdf.
    [27]http://bouteloup.pierre.free.fr/lica/phythe/don/air/air_nu_plot.pdf.
    [28]C. Lautenberger, C.A. Fernandez-Pello, in:Fire Safety Science-Proceedings of the 8th International Symposium, The International Association for Fire Safety Science,2005, pp.445-456.
    [1]A.C. Fernandez-Pello, S.T. Hirano. Controlling mechanisms of flame spread. Combustion Science and Technology,1983,3:21-31.
    [2]M.B. Ayani, J.A. Esfahani, R. Mehrabian. Downward flame spread over PMMA sheets in quiescent air:experimental and theoretical studies. Fire Safety Journal,2006,41(2):164-169.
    [3]M. B. Ayani, J. A. Esfahani, A. C. M. Sousa. The effect of surface regression on the downward flame spread over a solid fuel in a quiescent ambient. Thermal Science,2007,11(2):67-86.
    [4]S. Bhattacharjee, M.D. King, C. Paolini. Structure of downward spreading flames:a comparison of numerical simulation, experimental results and a simplified parabolic theory. Combustion Theory and Modeling,2004,8(1): 23-39.
    [5]P.H. Lin, C.H. Chen, Numerical analyses for downward flame spread over thin and thick fuels in a gravitational field, Combust. Flame,1999,18:744-746.
    [6]K.K. Wu, W.F. Fan, C.H. Chen, T.M. Liou, I.J. Pan, Downward flame spread over a thick PMMA slab in an opposed flow environment:experiment and modeling, Combust. Flame,2003,132:697-707.
    [7]Subrata Bhattacharjee, Matthew D. King, Shuhei Takahashi, Takeshi Nagumo, Kazunori Wakai, Downward flame spread over poly(methyl)methacrylate, Proc. Combust. Inst.2000,28:2891-2897.
    [8]Merwin Sibulkin, Jeongbin Kim, Joseph V. Creeden, JR, The dependence of flame propagation on surface heat transfer I:downward burning, Combust. Sci. Technol.1976,14:43-56.
    [9]Ali S. Rangwala, Steven G. Buckley, Jose L. Torero, Upward flame spread on a vertically oriented fuel surface:The effect of finite width, Proc. Combust. Inst. 2007,31:2607-2615.
    [10]Y. Pizzo, J.L. Consalvi, P. Querre, M. Coutin, B. Porterie, Width effects on the early stage of upward flame spread over PMMA slabs:Experimental observations, Fire Safety J.2009,44:407-414.
    [11]I.T. Leventon, S.I. Stoliarov, Evolution of flame to surface heat flux druing upward flame spread on poly(methyl methacrylate), Proc. Combust. Inst.2013, 34:2523-2530.
    [12]M. Mamourian, J.A. Esfahani, M.B. Ayani, Experimental investigation of the effect of the solid fuel dimensions on the downward flame spread, Kuwait Journal of Science and Engineering,2009,36:183-200.
    [13]J.G. Quintier, The effects of angular orientation on flame spread over thin materials, Fire Safety Journal,2001,36:291-312.
    [14]J. N. De Ris, Spread of a laminar diffusion flame, Proc. Combust. Inst.1969,12: 241-252.
    [15]A.C. Fernandez-Pello, S.T. Hirano, Controlling mechanisms of flame spread, Combust. Sci. Technol.1983,3:21-31.
    [16]Isaac T. Leventon, Stanislav I. Stoliarov, Evolution of flame to surface heat flux during upward flame spread on poly(methyl methacrylate), Proc. Combust. Inst. 2013,34:2523-2530.
    [1]Julie Kleinhenz, loan I. Feier, Sheng-Yen Hsu, James S. T'ien, Paul V. Ferkul, Kurt R. Sacksteder, Pressure modeling of upward flame spread and burning rates over solids in partial gravity, Combust. Flame,2008,154:637-643.
    [2]J. N. De Ris, Spread of a laminar diffusion flame, Proc. Combust. Inst.1969,12: 241-252.
    [3]A. C. Fernandez-Pello, S. R. Ray, L. Glassman, Flame spread in an opposed forced flow:the effect of ambient oxygen concentration, Eighteenth symposium (International) on Combustion,1981, pp.579-589.
    [4]K.K. Wu, W.F. Fan, C.H. Chen, T.M. Liou, I.J. Pan, Downward flame spread over a thick PMMA slab in an opposed flow environment:experiment and modeling, Combust. Flame,2003,132:697-707.
    [5]S. Bhattacharjee, Jeff West, Determination of the spread rate in opposed-flow flame spread over thick solid fuels in the thermal regime, Proc. Combust. Inst. 1996,26:1477-1485.
    [6]Y. Pizzo, J.L. Consalvi, B. Porterie, A transient pyrolysis model based on the B number for gravity-assisted flame spread over thick PMMA slabs, Combust. Flame,2009,156:1856-1859.
    [7]J.G. Quintiere, The effects of angular orientation on flame spread over thin materials, Fire Safety Journal.2001,36:291-312.
    [8]F. Jiang, J.L. De Ris, M.M. Khan, Absorption of thermal energy in PMMA by in-depth radiation, Fire Safety Journal.2009,44:106-112.
    [9]Jun Fang, Tu Ran, Jinfu Guan, Jinjun Wang, Yongming Zhang, Influence of low air pressure on combustion characteristics and flame pulsation frequency of pool fires, Fuel,2011,90:2760-2766.
    [10]J.L. De Ris, Peter K. Wu, G. Heskestad, Radiation fire modeling, Proc. Combust. Inst.2000,28:2751-2759.
    [11]P.H. Lin, C.H. Chen, Numerical analyses for downward flame spread over thin and thick fuels in a gravitational field, Combust. Flame,1999,118:744-746.
    [12]Subrata Bhattacharjee, Matthew D. King, Shuhei Takahashi, Takeshi Nagumo, Kazunori Wakai, Downward flame spread over poly(methyl)methacrylate, Proc. Combust. Inst.2000,28:2891-2897.
    [13]A.C. Fernandez-Pello, S.T. Hirano, Controlling mechanisms of flame spread, Combust. Sci. Technol.1983,3:21+31.
    [14]M.B. Ayani, J.A. Esfahani, R. Mehrabian, Downward flame spread over PMMA sheets in quiescent air:experimental and theoretical studies, Fire Safety J.2006,41:164-169.
    [15]Ali S. Rangwala, Steven G. Buckley, Jose L. Torero, Upward flame spread on a vertically oriented fuel surface:The effect of finite width, Proc. Combust. Inst. 2007,31:2607-2615.
    [16]Jean-Michel Most, Philippe Mandin, Jie Chen, Pierre Joulain, Influence of gravity and pressure on pool fire-type diffusion flames, Proc. Combust, Inst. 1996,261:311-1317.
    [17]Zhenhua Li, Yaping He, Hui Zhang, Jian Wang, Combustion characteristics of nheptane and wood crib fires at different altitudes, Proc. Combust. Inst.2009,32: 2481-2488.
    [18]H. Gohari Darabkhani, J. Bassi, H.W. Huang, Y. Zhang, Fuel effects on diffusion flames at elevated pressures, Fuel,2009,88:264-271.
    [19]K. Saito, J.G. Quintiere, F.A. Williams. Upward turbulent flame spread, Fire Safety Science, in:Grant, C.E., Pagni, P.J. (Eds.), Proceedings of the First International Symposium, Hemisphere, Washington, DC.,1986, pp.75-86.
    [20]M.A. Delichatsios, Flame heights in turbulent wall fires with significant flame radiation, Combust. Sci. Technol.198439:195-214.
    [21]A.C. Fernandez Pello, A theoretical model for the upward laminar spread of flames over vertical fuel surfaces, Combust. Flame,1978,31:135-148.
    [22]L. Orloff, J. De Ris, G.H. Markstein, Upward turbulent fire spread and burning of fuel surface, Proc. Combust. Inst.1975,15:183-192.
    [23]M.A. Delichatsios, Flame heights in turbulent wall fires with significant flame radiation, Combust. Sci. Technol.1984,39:195-214.
    [24]Chen Zhi-Bin, Hu Long-hua, Huo Ran, Zhu Shi, Flame height characteristics based on image luminance, Combust. Sci. Technol.2008,14:557-561.
    [25]Williams, F. A., Combustion Theory, Benjamin Cummings, Menlo Park, Calif., 1985.