热带气旋在海洋能量平衡和水团平衡中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于海洋在上垫面加热和冷却,因此虽然海洋在上表面吸收很多热量,但并不能把这些热量有效的转化为机械能。为了维持准平衡态的大洋环流,需要外来机械能源来平衡摩擦和耗散所损失的能量。风和潮汐是最主要的机械能源。但到目前为止仍有一些机械能源不清楚,如热带气旋。热带气旋是中低纬度大气系统中很重要的成分,由于我们通常所用的风应力资料(如NCEP/NCAR)分辨率比较低,像热带气旋这种强烈的非线性事件都被平滑掉了,因此前面提到的风输入到海洋中的能量中并不包含热带气旋的贡献。
     考虑到热带气旋与海洋之间的相互作用,利用一个台风--海洋耦合模式,本文研究了热带气旋在海洋能量平衡和水团平衡中的作用。本文采用的耦合模式由两个各自测试、独立发展的模式组成:三层的海洋约化重力模式和轴对称的台风模型。本文计算了1984至2005年间约1600个热带气旋输入到海洋中的能量(包括输入到浪的能量,输入到表面流特别是近惯性流中的能量)。另外,用一个简单的平底模型估计了热带气旋导致的海洋上层重力位能增加,同时,也计算了全球大洋中由热带气旋导致的混合层加深和混合。
     本文的研究结果表明,当热带气旋过境时,大量的机械能被输入到海洋中。1984至2005年热带气旋输入到海洋中的年平均能量为:输入到浪1.70TW;表面流0.10TW,其中近惯性频率段0.03TW;导致的重力位能增加为0.05TW。虽然这部分能量远小于平均态风场输入的能量,但由于这部分能量主要集中在低中纬度,特别是西北太平洋和北大西洋,可能对维持大洋环流有非常重要的贡献。
     热带气旋是大气系统中变化最剧烈的成分,在过去的几十年由于全球增暖现象,热带气旋的活动亦增强,因此热带气旋输入到海洋中的能量也发生了很大的年际到年代际时间尺度的变化,总体上存在增大的趋势。从1984至2005年,热带气旋输入到海洋中的能量增加了19%。热带气旋输入到海洋中能量的变化主要与热带气旋的强度有关,用PDI(Power Dissipation Index)表征热带气旋的强度指数,二者的相关系数达到0.93,也就是说热带气旋输入到海洋中的能量与PDI的变化趋势基本一致。另外,热带气旋输入到海洋中能量的变化与每年热带气旋的个数也有一定的关系,但二者的相关系数仅为0.33。
     在低中纬度,热带气旋输入到海洋中的机械能可以有效地增加混合层的深度。最新的研究结果表明,低中纬度混合层的加深能有效地增强经向压强梯度,进而增强子午环流和向极热通量,同时使得维持次表层的跨密度面混合所需要的能量减小。1984至2005年热带气旋引起的混合层加深的体积通量为,其中在北太平洋有22.4。Qiu and Huang(1995)估计的北太平洋的subduction rate为35.2 ,obduction rate为7.8。热带气旋导致的混合层加深的体积通量大于通过subduction形成水团的50%,且远大于obduction,他们的结果显示obduction主要发生在以北地区,而热带气旋导致的混合层加深则主要集中在。该结果显示,热带气旋在区域海甚至全球海洋的水团平衡中有非常重要的作用,在讨论水团平衡时必须考虑热带气旋的贡献。
     热带气旋输入到海洋中的能量可以输送到大洋内部很深的地方,因此热带气旋在很大程度上增强了海洋中的局地混合。本文的结果表明,热带气旋引起了强烈的垂直混合。混合率的大小为,其最大值( )出现在西北太平洋。由于热带气旋引起的混合是高度瞬变的,且发生在强层结处的低中纬度,因此热带气旋输入到海洋中机械能对大洋环流有非常重要的贡献,能更有效地驱动大洋环流。
Although oceans receive a huge amount of thermal energy, such energy cannot be efficiently converted into mechanical energy because the ocean is heated and cooled from the same geopotential level, the upper ocean. Therefore, in order to maintain the quasi-steady oceanic circulation external sources of mechanical energy are required to balance the loss of mechanical energy due to friction and dissipation. Wind stress and tidal dissipation are the primary sources of mechanical energy. However, some important sources of mechanical energy in the world oceans remain unaccounted, such as tropical cyclones. Tropical cyclone activity is a vitally important component of the atmospheric circulation system at low- and mid- latitudes. In the commonly used low spatial resolution wind stress data, such as NCEP reanalysis, these strong nonlinear events are smoothed out. As a result, their contributions to the global mechanical energy input are excluded.
     Using a hurricane-ocean coupled model, the important role of the tropical cyclones in the energy balance and water mass balance of the ocean is examined. The coupled model was constructed from two independently developed and tested models: a three-layer reduced gravity ocean model and an axisymmetric hurricane model. The energy input to the ocean, including the energy input to surface waves, to surface current, especially to the near-inertial motions, induced by about 1600 tropical cyclones from 1984 to 2005 were examined. Meanwhile, a simple slab model was used to estimate the increase of the gravitational potential energy in the oceanic surface mixed layer. In addition, the mixed layer deepening and vertical diffusivity induced by tropical cyclones in the world oceans are estimated.
     When the tropical cyclones pass through, much mechanical energy was input to the oceans. The energy input averaged over the period from 1984 to 2005 is estimated as follows: 1.70TW to the surface waves and 0.10TW to the surface currents (including 0.03TW to the near inertial motions). The rate of gravitational potential energy increase due to tropical cyclones is 0.05TW. Although the energy induced by tropical cyclones is much smaller than that induced by smoothed wind stress, most of this energy is distributed in the low- and mid- latitudes, especially in the northwest Pacific and north Atlantic, which may be very important for the oceanic general circulation.
     Tropical cyclones are one of the strongest time varying components in the atmospheric circulation. The activity of tropical cyclones has enhanced during the past decades, apparently due to global warming. Accordingly, both the energy input from tropical cyclones and the increase of gravitational potential energy of the ocean show strong interannual variability with an increasing rate of 19% over the past 22 years. The variability of the energy input to the ocean induced by tropical cyclones is similar with the intensity of tropical cyclones, which is denoted by PDI (Power Dissipation Index); the correlation coefficient is 0.93. The energy input is also associated with the number of tropical cyclones in each year, the correlation coefficient is 0.33.
     The mechanical energy input to the ocean induced by tropical cyclones can efficiently deepen the mixed layer at the low- and mid- latitudes. The deepening of mixed layer at low latitudes can enhance the meridional pressure difference and thus the overturning circulation and poleward heat flux, and decrease the energy for subsurface diapycnal mixing at the same time. The total volume flux due to mixed layer deepening in the world ocean is from 1984 to 2005, with in the North Pacific. Qiu and Huang (1995) discussed subduction and obduction in the oceans, they estimated that basin-integrated subduction rate is and obduction rate is in the North Pacific. Therefore, the total volume flux due to mixed layer deepening induced by tropical cyclones is approximately 50% of the subtropical water mass formulation rate through subduction and much larger than obduction. The obduction rate was accumulated from to ; the mixed layer deepening was distributed from to . The cyclone induced mixed layer deepening play a capitally important role in water mass balance in the world oceans, and water mass balance without taking into consideration of the contribution due to tropical cyclones may not be acceptable. 10 0N 30 0N
     The energy input to the ocean induced by tropical cyclones can be transported into the ocean interior; accordingly, diapycnal mixing in the upper ocean (below the mixed layer) is greatly enhanced. Our results indicate that the vertical diffusivity induced by tropical cyclones is on the order of , with the maximum of in the western Pacific. The mixing induced by tropical cyclones varied greatly with time and took place at low- and mid- latitudes with strong stratification; the strong ocean mixing induced by tropical cyclones may play vitally important roles in the oceanic general circulation.
引文
[1] Huang, R. X., 1999: Mixing and energetics of the oceanic thermohaline circulation.J. Phys. Oceanogr., 29, 727-746.
    [2] Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy and the general circulation of the oceans. Annu. Rev. Fluid. Mech., 36, 281-314.
    [3] Jeffreys, H., 1925: On fluid motions produced by differences of temperature and humidity. Q. J. R. Meteor. Soc., 51, 347-356.
    [4] Munk, W., and C., Wunsch, 1998: Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res., 45, 1977-2010.
    [5] Munk, W. H., 1966: Abyssal recipes. Deep-Sea Res., 13, 707-730.
    [6] Wang, W., and R. X. Huang., 2005: An experimental study on thermal circulation driven by non-uniform horizontal heating. J. Fluid. Mech., 540, 49-73.
    [7] Huang, R. X., 1998: Mixing and available potential energy in a Boussinesq ocean. J. Phys. Oceanogr., 28, 669-678.
    [8] Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 83-89.
    [9] Faller, A., 1966: Sources of energy for the ocean circulation and a theory of the mixed layer. Proc. Fifth U.S. National Congress of Applied Mechanics, Minneapolis, MN, American Society of Mechanical Engineers,651-672.
    [10] Huang, R. X., 2004: Ocean, energy flows in. Encyclopedia of Energy, Vol. 3, NRGY: 00053, Elsevier.
    [11] Egbert, G. D., and R. D. Ray, 2000: Significant tidal dissipation in the deep ocean inferred from satellite data. Nature, 405, 775-778.
    [12] Egbert, G. D., and R. D. Ray, 2001: Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data. J. Geophys. Res., 106(C10), 22475-22502.
    [13] Loder, J. W., and C. Garrett, 1978: The 18.6-year cycle of sea surface temperature in shallow seas due to variations in tidal mixing. J. Geophys. Res., 83(C4), 1967-1970.
    [14] Royer, T. C., 1993: High-latitude oceanic variability associated with the 18.6-year nodal tide. J. Geophys. Res., 98(C3), 4639-4644.
    [15] Cerveny, R. S., and J. A. Shaffer, 2001: The moon and El Nino. Geophys. Res. Lett., 28(1), 25-28.
    [16] Keeling, C. D., and T. P. Whorf, 1997: Possible forcing of global temperature by oceanic tides. Proc. Natl. Acad. Sci., 94, 8321-8328.
    [17] Keeling, C. D., and T. P. Whorf, 2000: The 1800-year oceanic tidal cycle: A possible cause of rapid climate change. Proc.Natl. Acad. Sci., 97, 3814-3819.
    [18] Pugh, D., 2004: Changing sea level: Effects of tides, weather and climate. Cambridge University Press, Cambridge, 265pp.
    [19] Munk, W., M. Dzieciuch, and S. Jayne, 2002: Millennial climate variability: Is there a tidal connection? J. Climate, 15, 370-385.
    [20] Kagan, B. A., 1997: Earth-Moon tidal evolution: model results and observational evidence. Prog. Oceanogr., 40, 109-124.
    [21] Egbert, G. D., R. D. Ray, and B. G. Bills, 2004: Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum. J. Geophys. Res., 109, C03003, doi: 10.1029/2003JC001973.
    [22] Wunsch, W., 1998: The work done by the wind on the oceanic general circulation. J. Phys. Oceanogr., 28, 2332-2340.
    [23] Huang, R. X., W. Wang, and L. L. Liu, 2006: Decadal variability of wind energy input to the world ocean. Deep-Sea Res. II, 53, 31-41.
    [24] Garrett, C., 2001: What is the“near-inertial”band and why is it different from the rest of the internal wave spectrum? J. Phys. Oceanogr., 31, 962-971.
    [25] Alford, M. H., 2001: Internal swell generation: The spatial distribution of energy flux from the wind to mixed layer near-inertial motions. J. Phys. Oceanogr., 31, 2359-2368.
    [26] Alford, M. H., and M. C. Garrett, 2001: Near-inertial mixing: Modulation of shear, strain and microstructure at low latitude. J. Geophys. Res., 106(C8), 16947-16968.
    [27] Kalnay, E. M., et al., 1996: The NCEP NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437-471.
    [28] Watanabe, M., and T. Hibiya, 2002: Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophys. Res. Lett., 29(8), 1239, doi: 10.1029/2001GL014422.
    [29] Alford, M. H., 2003: Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophys. Res. Lett., 30, 1424, doi: 10.1029/2002Gl016614.
    [30] Wang, W., and R. X. Huang, 2004a: Wind energy input to the Ekman layer. J. Phys. Oceanogr., 34, 1267-1275.
    [31] Wang, W., and R. X. Huang, 2004b: Wind energy input to the surface waves. J. Phys. Oceanogr., 34, 1276-1280.
    [32] Wang, W., C. C. Qian and R. X. Huang, 2005: Mechanical energy input to the world oceans due to atmospheric loading. Chinese Science Bulletin, 51(3), 327-330.
    [33] Macdonald, A., and C. Wunsch, 1996: The global ocean circulation and heat flux. Nature, 382, 436-439.
    [34] Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transport. J. Climate, 14(16), 3433-3443.
    [35] Winton, M., 2003: On the climatic impact of ocean circulation. J. Climate, 16, 2875-2889.
    [36] Bryan, F., 1987: Parameter sensivity of primitive equation ocean general circulation models. J. Phys. Oceanogr., 17, 970-985.
    [37] Cummins, P. F., G. Holloway, and A. E. Gargett, 1990: Sensivity of the GFDL ocean general circulation model to a parameterization of vertical diffusion. J. Phys. Oceanogr., 20, 817-830.
    [38] Scott, J. R., and J. Marotzke, 2002: The location of diapycnal mixing and the meridional overturning circulation. J. Phys. Oceanogr., 32, 3578-3595.
    [39] Moum, J. N., and T. R. Osborn, 1986: Mixing in the main thermocline. J. Phys. Oceanogr., 16, 1250-1259.
    [40] Ledwell, J. R., A. J. Watson, and C. S. Law, 1993: Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature, 364, 701-703.
    [41] Toole, J. M., K. L. Polzin, and R. W. Schmitt, 1994: Estimates of diapycnal mixing in the abyssal ocean. Science, 264, 1120-1123.
    [42] Kunze, E., and T. B. Sanford, 1996: Abyssal mixing: Where it is not. J. Phys. Oceanogr., 26, 2286-2296.
    [43] Oakey, N. S. and B. J. W. Greenan, 2004: Mixing in a coastal environment: 2. A view from microstructure meansurements. J. Geophys. Res., 109, C10014, doi: 10.1029/2003JC002193.
    [44] Toole, J. M., R. W. Schmitt, K. L. Polzin, and E. Kunze, 1997: Near-boundary mixing above the flanks of a midlatitude seamount. J. Geophys. Res., 102, 947-959.
    [45] Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 93-96.
    [46] Ferron, B., H. Mercier, K. Speer, A. Gargett, and K. Polzin, 1998: Mixing in the Romanche fracture zone. J. Phys. Oceanogr., 28, 1929-1945.
    [47] Ledwell, J. R., E. T. Montgomery, K. L. Polzin, L. C. St. Laurent, R. W. Schmitt, and J. M. Toole, 2000: Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403, 179-182.
    [48] Lien, R. C., and M. C. Gregg, 2001: Observations of turbulence in a tidal beam and a coastal ridge. J. Geophys. Res., 106, 4575-4592.
    [49] Müller, P., and M. G. Briscoe, 2000: Diapycnal mixing and internal waves. Oceanography, 13, 98-103.
    [50] Garrett, C., and L. St. Laurent, 2002: Aspects of Deep Ocean Mixing. J. Oceanogr. Soc. Japan, 58, 11-24.
    [51] St. Laurent, L. C., H. L., Simmons, and S. R. Jayne, 2002: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29(23), 2106, doi: 10.1029/2002GL015633.
    [52] Zhai, X., R. J. Greatbatch, and J. Sheng, 2004: Advective spreading of storm-induced inertial oscillations in a model of the northwest Atlantic Ocean. Geophys. Res. Lett., 31, L14315, doi: 10.1029/2004GL020084.
    [53] Simmons, H. L., S. R. Jayne, L. C. St. Laurent, and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean modeling, 6, 245-263.
    [54] Sanford, T. B., P. G. Black, J. R. Haustein, J. W. Feeney, G. Z. Forristall, and J. F. Price, 1987: Ocean response to a hurricane, Part I: Observations. J. Phys. Oceanogr., 17, 2065-2083.
    [55] Black, P. G., 1983: Ocean temperature changes induced by tropical cyclones. Ph. D. thesis. The Pennsylvania State University, 278pp.
    [56] Stramma, L., P. Cornillon, and J. F. Price, 1986: Satellite observations of sea surface cooling by hurricanes. J. Geophys. Res., 91, 5031-5035.
    [57] Ginis, I., and K. Z. Dikiniov, 1989: Modeling the effect of typhoon Virginia (1978) on the ocean. Sov. Meteorol. Hydrol., 7, 53-60.
    [58] Geisler, J. E., 1970: Linear theory of the response of a two-layer ocean to a moving hurricane. Geophys. Fluid Dyn., 1, 249-272.
    [59] Gill, A. E., 1984: On the behavior of internal waves in the wakes of storms. J. Phys. Oceanogr., 14, 1129-1151.
    [60] Brooks, D., 1983: The wake of hurricane Allen in the western Gulf of Mexico. J. Phys. Oceanogr., 13, 117-129.
    [61] Shay, L. K., and R. L. Elsberry, 1987: Near-inertial ocean current response to hurricane Frederick. J. Phys. Oceanogr., 17, 1249-1269.
    [62] Brink, K. H., 1989: Observations of the response of thermocline currents to a hurricane. J. Phys. Oceanogr., 19, 1017-1022.
    [63] Leipper, D. F., 1967: Observed ocean conditions in Hurricane Hilda. J. Atmos. Sci., 24, 182-196.
    [64] Jacob, S. D., L. K. Shay, A. J. Mariano, and P. G. Black, 2000: The 3D oceanic mixed layer response to Hurricane Gilbert. J. Phys. Oceanogr., 30, 1407-1429.
    [65] Elsberry, R., T. Fraim, and R. Trapnell Jr., 1976: A mixed layer model of the oceanic thermal response to hurricanes. J. Geophys. Res., 81, 1153-1162.
    [66] Chang, S. W., and R. A. Anthes, 1978: Numerical simulations of the ocean’s nonlinear baroclinic response to translating hurricanes. J. Phys. Oceanogr., 8, 468-480.
    [67] Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153-175.
    [68] Greatbatch, R. J., 1983: On the response of the ocean to a moving storm: The nonlinear dynamics. J. Phys. Oceanogr., 13, 357-367.
    [69] Ginis, I., 1995: Ocean response to tropical cyclone. Global Perspective on Tropical Cyclones. WMO/TD-NO.693, 198-260.
    [70] Wada A., 2002: The processes of SST cooling by typhoon passage and case study of Typhoon Rex with a mixed layer ocean model. Pap. Meteor. Geophys., 52, 31-66.
    [71] Jacob, S. D., and L. K. Shay, 2003: The role of oceanic mesoscale features on the tropical cyclone-induced mixed layer response: A case study. J. Phys. Oceanogr., 33, 649-676.
    [72] Emanuel, K. A., 1999: Thermodynamic control of hurricane intensity. Nature, 401, 665-669.
    [73] Chan, J. C. L., and K. S. Liu, 2004: Global warming and western North Pacific typhoon activity from an observational perspective. J. Climate, 17, 4590-4602.
    [74] Camargo, S. J., and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 2996-3006.
    [75] Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 1643-1658.
    [76] Chan, J. C. L., 2000: Tropical cyclone activity over the western North Pacific associated with El Nino and La Nina events. J. Climate, 13, 2960-2972.
    [77] Emanuel, K. A., 2001: Contribution of tropical cyclones to meridional heat transport by the oceans. J. Geophys. Res., 106(D14), 14771-14781.
    [78] Gao, S., J. Wang, and Y. Ding, 1988: The triggering effect of near-equatorial cyclones on El Nino. Adv. Atmos. Sci., 5, 87-95.
    [79] Sobel, A. H., and S. J. Camargo, 2005: Influence of western North pacific tropical cyclones on their large-scale environment. J. Atmos. Sci., 62, 3396-3407.
    [80] Nillson, J., 1995: Energy flux from traveling hurricanes to the internal wave field. J. Phys. Oceanogr., 25, 558-573.
    [81] Shay, L. K., and S. D. Jacob, 2006: Relationship between oceanic energy fluxes and surface winds during tropical cyclone passage (Chapter 5). Atmosphere-Ocean Interactions II, Advances in Fluid Mechanics. Ed. W. Perrie, WIT Press, Southampton, UK, 115-142.
    [82] Sriver, R. L., and M. Huber, 2007: Observational evidence for an ocean heat pump induced by tropical cyclones. Nature, 447, 577-580, doi: 10.1038/nature05785.
    [83] Boos, W. R., J. R. Scott, and K. A. Emanuel, 2004: A transient diapycnal mixing and the meridional overturning circulation. J. Phys. Oceanogr., 34, 334-341.
    [84] Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686-688, doi: 10.1038/nature03906.
    [85] Chan, J. C. L., and J. Shi, 1996: Long-term trends and interannual variability in tropical cyclone activity over the western North Pacific. Geophys. Res. Lett., 23(20), 2765-2767.
    [86] Huang, C. J., W. Wang and R. X. Huang, 2007: Climate variability in the Equatorial Pacific Ocean induced by Decadal Variability of Mixing Coefficient. J. Phys. Oceanogr., 37, 1163-1176.
    [87] Emanuel, K. A., 1989: The finite amplitude nature of tropical cyclongenesis. J. Atmos. Sci., 46, 3431-3456.
    [88] Cooper, C. and J. D. Thompson, 1989: Hurricane-generated currents on the outer continental shelf. Part I: Model formulation and verification. J. Geophys. Res., 94, 12513-12539.
    [89] Schopf, P. S., and M. A. Cane, 1983: On equatorial dynamics, mixed-layer physics and sea surface temperature. J. Phys. Oceanogr., 13,917-935.
    [90] Niller, P. P. and E. B. Kraus (1977): One-dimensional models of the upper ocean. p. 143-172. In Modeling and Prediction of the Upper Layers of the Ocean, ed. By E. B. Kraus, Pergamon, New York.
    [91] Price, J. F., C. N. K. Mooers and J. C. Van Leer (1978): Observation and simulation of storm-induced mixed layer deepening. J. Phys. Oceanogr., 8, 582-599.
    [92] Kraus, E. B. and J. S. Turner (1967): A one-dimensional model of the seasonal thermocline II: The general theory and its consequences. Tellus., 19, 98-105.
    [93] Deardorff, J. W. (1983): A multi-limit layer entrainment formulation. J. Phys. Oceanogr., 13, 988-1002.
    [94] Jacob, S. D., L. K. Shay and A. J. Mariano (2000): The 3D oceanic mixed layer response to hurricane Gilbert. J. Phys. Oceanogr., 30, 1407-1429.
    [95] Garrett, J. R., 1977: Review of drag coefficients over oceans and continents. Mon. Wea. Rev., 105, 915-929.
    [96] Wu, C.-C., and K. A. Emanuel, 1993: Interaction of a baroclinic vortex with background shear: Application to hurricane movement. J. Atmos. Sci., 50, 62-76.
    [97] Price, J. F., 1983: Internal wave wake of a moving storm. Part I: Scales, energy budget and observations. J. Phys. Oceanogr., 13, 949-965.
    [98] Pollard, R. T. and R. C. Millard, 1970: Comparison between observed and simulated wind-generated inertial oscillations. Deep-Sea Res., 17,153-175.
    [99] D’Asaro, E. A., 1985: The energy flux from the wind to near-inertial motions in the mixed layer. J. Phys. Oceanogr., 15,943-959.
    [100] Jiang, J., Y. Lu, and W. Perrie, 2005: Estimating the energy flux from the wind to ocean inertial motions: The sensitivity to surface wind fields. Geophys. Res. Lett., 32, L15610, doi: 10.1029/2005GL023289.
    [101] Pluddemann, A. J., and J. T. Farar, 2006: Observations and models of the energy flux from the wind to mixed-layer inertial inertial currents. Deep-Sea Res II., 53, 5-30.
    [102] Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: observations and models of the upper ocean response to diurnal heating, cooling and wind mixing. J. Geophys. Res., 91(C7), 18411-18427.
    [103] Gill, A. E., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662pp.
    [104] Qiu B., and R. X. Huang, 1995: Ventilation of the North Atlantic and North Pacific: Subduction Versus Obduction. J. Phys. Oceanogr., 25, 2374-2390.
    [1] Sandstrom, J. W., 1908: Dynamische Versuche mit Meerwasser. Annalen der Hudrographie under Maritimen Meteorologie 36, 6-23.
    [2] Sandstorm, J. W., 1916: Meteorologische Studien im schwedischen Hochgebirge. Goteborges K. Vetenskaps-och Vitterhetssamhalles Handl., Ser. 1 22(2)(48pp).
    [3] Huang, R. X., 1999: Mixing and energetics of the oceanic thermohaline circulation. J. Phys. Oceanogr., 29, 727-746.
    [4] Paparella, F., and W. R. Young, 2002: Horizontal convection is non turbulent. J. Fluid. Mech., 466, 205-214.
    [5] Wang, W., and R. X. Huang., 2005: An experimental study on thermal circulation driven by non-uniform horizontal heating. J. Fluid. Mech., 540, 49-73.
    [6] Huang, R. X., 1998: Mixing and available potential energy in a Boussinesq ocean. J. Phys. Oceanogr., 28, 669-678.
    [7] Munk, W., and C. Wunsch, 1998: Abyssal recipes II. Energetics of tidal and wind mixing. Deep-Sea Res I, 45, 1977-2010.
    [8] Huang, R. X., 2004: Ocean, energy flows in. Encyclopedia of Energy. Vol.3, NRGY:00053, Elsevier.
    [9] Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy and the general circulation of the oceans. Annu. Rev. Fluid. Mech., 36, 281-314.
    [10] Egbert, G. D., and R. D. Ray, 2000: Significant tidal dissipation in the deep ocean inferred from satellite data. Nature, 405, 775-778.
    [11] Egbert, G.. D., and R. D. Ray, 2001: Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data. J. Geophys. Res., 106(C10), 22475-22502.
    [12] Loder, J. W., and C. Garrett, 1978: The 18.6-year cycle of sea surface temperature in shallow seas due to variations in tidal mixing. J. Geophys. Res., 83(C4), 1967-1970.
    [13] Royer, T. C., 1993: High-latitude oceanic variability associated with the 18.6-year nodal tides. J. Geophys. Res., 98(C3), 4639-4644.
    [14] Cerveny, R. S., and J. A. Shaffer, 2001: The moon and El Nino. Geophys. Res. Lett., 28(1), 25-25.
    [15] Keeling, C. D., and T. P. Whorf, 1997: Possible forcing of global temperature by oceanic tides. Proc. Natl. Acad. Sci., 94, 8321-8328.
    [16] Keeling, C. D., and T. P. Whorf, 2000: The 1800-year oceanic tidal cycle: A possible cause of rapid climate change. Proc. Natl. Acad. Sci., 97, 3814-3819.
    [17] Pugh, D., 2004: Changing sea level: effects of tides, weather and climate. Cambridge University Press, Cambridge, 265pp.
    [18] Munk, W., M. Dzieciuch, and S. Jayne, 2002: Millennial climate variability: Is there a tidal connection? J. Climate, 15, 370-385.
    [19] Kagan, B. A., 1997: Earth-Moon tidal evolution: model results and observational evidence. Prog. Oceanogr., 40, 109-124.
    [20] Egbert, G. D., R. D. Ray, and B. G. Bills, 2004: Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum. J. Geophys. Res., 109, C03003, doi: 10.1029/2003JC001973.
    [21] Garrett, C., 2001: What is the“near-inertial”band and why is it different from the rest of the internal wave spectrum? J. Phys. Oceanogr., 31, 962-971.
    [22] Alford, M. H., 2001: Internal swell generation: The spatial distribution of energy flux from the wind to mixed layer near-inertial motions. J. Phys. Oceanogr., 31, 2359-2368.
    [23] Alford, M. H., and M. C. Gregg, 2001: Near-inertial mixing: Modulation of shear, strain and microstructure at low latitude. J. Geophys. Res., 106(C8), 16947-16968.
    [24] Kalnay, E. M., et. al., 1996: The NCEP NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437-471.
    [25] Watanabe, M., and T. Hibiya, 2002: Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophys. Res. Lett., 29(8), 1239,
    [26] Jiang, J., Y. Lu, and W. Perrie, 2005: Estimating the energy flux from the wind to ocean inertial motions: The sensivity to surface wind fields. Geophys. Res. Lett., 32, L15610, doi: 10.1029/2005GL023289.
    [27] Alford, M. H., 2003: Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophys. Res. Lett., 30, 1424, doi: 10.1029/2002GL016614.
    [28] Wang, W., and R. X. Huang, 2004a: Wind energy input to the Ekman layer. J. Phys. Oceanogr., 34, 1267-1275.
    [29] Wang, W., and R. X. Huang, 2004b: Wind energy input to the surface waves. J. Phys. Oceanogr., 34, 1276-1280.
    [30] Wunsch, W., 1998: The work done by the wind on the oceanic general circulation. J. Phys. Oceanogr., 28, 2332-2340.
    [31] Toggweiler, J. R., and B. Samuels, 1995: Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res. I, 42, 477-500.
    [32] Toggweiler, J. R., and B. Samuels, 1998: On the ocean’s large scale circulation in the limit of no vertical mixing. J. Phys. Oceanogr., 28, 1832-1852.
    [33] Oort, A. H., L. A., Anderson, and J. P. Peixoto, 1994: Estimates of the energy cycle of the oceans. J. Geophys. Res., 99, 7665-7688.
    [34] Lueck, R.,and R. Reid, 1984: On the production and dissipation of mechanical energy in the ocean. J. Geophys. Res., 89, 3439-3445.
    [35] Gill, A. E., J. S. A. Green, and A. J. Simmons, 1974: Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep Sea Res., 21, 499-528.
    [36] Hallberg, R., and P. Rhines, 1996: Buoyancy-driven circulation in an ocean basin with isopycnals intersecting the sloping boundary. J. Phys. Oceanogr., 26, 913-940.
    [37] Jackett, D. R., and T. J. McDougall, 1995: Minimal adjustment of hydrographic profiles to achieve static stability. J. Atmos. Oceanic. Tech., 12, 381-389.
    [38] Wright, D. G., 1997: An equation of state for use in ocean models: Eckart’s formula revisited.J. Atmos. Oceanoc Technol., 14, 735-740.
    [39] Oberhuber, J. M., 1993: Simulation of the Atlantic circulation with a coupled sea ice-mixed layer-isopycnal general circulation model. Part I: Model description. J. Phys. Oceanogr., 23, 808-829.
    [40] Kraus, E. B., and J. S. Turner, 1967: A one-dimensional model of the seasonal thermocline: II. The general theory and its consequences. Tellus, 19, 98-106.
    [41] Ladd, C., and L. Thompson, 2001: Water mass formation in an isopycnal model of the North Pacific. J. Phys. Oceanogr., 31, 1517-1537.
    [42] Hallberg, R., 1997: Stable split time stepping schemes for large-scale ocean modeling. J. Comput. Phys., 135, 54-65.
    [43] Matsuno, T., 1966: A finite difference scheme for time integrations of oscillatory equations with second order accuracy and sharp cut-off for high frequencies. J. Meteor. Soc. Japan, 44, 85-88.
    [44] Gates, W. L., and A. B. Nelson, 1975: A new (revised) tabulation of the Scripps topograohy on a one-degree grid. Part 1: Terrain height. Tech. Report R-1276-1-ARPA, The Rand Corportation, 132pp.
    [45] Levitus, S., and T. P. Boyer, 1994: World Ocean Atlas 1994 volume 4: Tmeperature. NOAA Atlas NESDIS 4, U. S. Department of Commerce, Washington, D. C., 117pp.
    [46] Levitus, S., R. Burgett, and T. P. Boyer, 1994: World Ocean Atlas 1994 volume 3: Salinity. NOAA Atlas NESDIS 3, U. S. Department of Commerce, Washington, D. C., 99pp.
    [47] Kister, R., E. Kalnay, W. Collins, S. Saha, G. White, J. Wollen, M. Chenlliah, W. Ebisuzaki, M. Kanamitsu, V. Kousky, H. Dool, M. Fiorino, 2001: The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bulletin of American Meteorological Society, 82(2), 247-267.
    [48] Mahlman, J. D., J. P. Pinto, and L. J. Umscheid, 1994: Transport, radiative, and dynamical effects of the Antarctic ozone hole: a GFDL“SKYHI”model experiment. J. Atmos. Sci., 51, 489-508.