蓄冷降温式太阳电池组件材料和热特性的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开发可再生能源与发展低碳经济已成为当前世界各国应对能源可持续性发展和环境问题的共识。太阳能光伏发电无疑是可再生能源中最受瞩目最有发展前景的技术,许多专家预言,21世纪中叶,光伏发电将占世界总发电量的15%~20%左右,成为人类的基础能源之一。进一步提高太阳电池效率,降低光伏发电成本是发展太阳能光伏并逐步提高其在整个能源中的比例的根本关键。
     太阳电池工作时未转换为电能的太阳能将转换为热能并储集在组件系统内,导致太阳电池工作温度升高,而太阳电池效率随温升近似直线下降。以提高光电转换效率为目的的太阳电池冷却研究随之兴起。大量研究证明冷却可提高太阳电池效率,但详细的机理涉及不多。目前的太阳电池冷却技术有水冷与风冷两大类别,最终都以大气为低温热源,其冷却终了温度总是高于即时气温。而即时气温随太阳辐射强度增大而升高,致使太阳辐射越强烈,效率反而下降,成为提高冷却效果的热力学瓶颈。
     本课题针对太阳电池冷却研究背景和传统冷却技术的不足,在广泛查阅文献资料,分析太阳电池冷却技术现状的基础上,将材料学与工程热物理相结合,微观粒子动力学研究与宏观系统研究相结合,理论分析与试验测试相结合,对太阳电池冷却机理和系统的强化传热过程和应用性能进行了深入研究。主要研究工作与结论包括以下几个方面:
     1.温度对太阳电池效率的影响机理分析
     从太阳光与电池材料作用的内部电子过程出发,明确太阳光照射下硅太阳电池的电子-空穴对形成过程、电子输运过程和收集过程中温度影响的机理与具体形式,以及温度降低对太阳电池效率提高的贡献率分析方法。太阳电池性能对温度十分敏感,从机理分析出发,主要是温度对禁带宽度的影响,对载流子运动速度的影响和对散射三个方面的影响。论文分析得出两点重要结论:(1)降低太阳电池工作温度对于太阳电池效率提高的贡献,主要在于减少载流子迁移途中的能量损失,从而在入射太阳辐射能量相同的条件下提高载流子输出比例,即提高太阳电池效率。(2)降低太阳电池工作温度对于太阳电池效率提高的贡献,与温度降低近似成线性比例。但只有降温不需耗用能源或耗用能源甚少时,对于系统的能效贡献才是有效的。
     2.太阳电池组件的热力学与传热学分析
     对太阳—太阳电池组件—大气环境形成的热力系统运用能量守恒定律,分析太阳电池工作过程中光—电—热转换的具体过程,明确了组件内温度分布、影响因素及其变动规律,以及对光电转换的影响。研究表明,在一定的太阳电池材料与组件结构形式下,太阳电池的温度及效率随太阳辐照度与环境温度作近似线性变化,而变化率决定于太阳电池组件材料的物理和热力学性能参数,以及组件结构与表面传热系数。常规平板式太阳电池组件中,太阳电池处于温度最高点,所能取得的最低温度为大气温度,且只能在太阳辐射为零的条件下取得。研究发现:当前太阳电池组件材料与结构下,太阳电池组件内部热阻太大,导致表面放热系数对于传热的影响减小。因此降低太阳电池组件材料的热阻,加大太阳电池冷却的温差成为重要的任务。
     3.金属背板太阳电池组件的研究
     以减小太阳电池组件热阻为目标,研究了改变背板材料对于太阳电池组件性能的影响。通过封装材料选择原则和方法的研究,以金属材料代替高热阻的高分子材料作组件背板,从光学、机械学、热学、化学、电学及经济学方面综合匹配,进行材料种类和规格、强度、腐蚀性、绝缘性、传热性能、表面性能以及热伸长方面的的分析处理,特别是用机械方法减小材料伸长量不匹配对太阳电池的应力影响,以及保证绝缘要求的同时降低高分子材料对于导热的影响,开发出新型铝合金背板太阳电池组件,获得了授权发明专利。经试制实验研究,确认在广州同一环境条件下,铝合金背板太阳电池组件与TPT背板太阳电池组件相比,背板温度降低2-8℃,最大功率增加2%以上,且效果随太阳辐照度增加而上升。
     4.蓄冷降温式太阳电池组件的研究
     以不耗或少耗能源的前提下加大太阳电池冷却的温差为目标,研究提出了将大气温差能与太阳能结合,来改变太阳电池组件散热的低温热源,形成多热源的散热环境的创新性思路。通过对环境大气温度变化规律、系统能量传递和转换过程的各个环节与参数及强化传热结构的优化研究,构建出将大气自然温差冷能转移到白天,用于冷却太阳电池的原始创新性的蓄冷降温式太阳电池组件复合系统,提出了蓄冷降温式太阳电池组件原理与设计方法的完整论述,突破了常规冷却的低温热源温度瓶颈,大大降低了太阳电池组件温度,获得了授权发明专利。经开发试制实验研究,确认在广州同一环境条件下,蓄冷降温式太阳电池组件与对照组TPT背板太阳电池组件相比,背板温度最大可降低26.5℃以上,最大功率增加可达14%~18%。
With the development of renewable energy and low carbon economy, new energy technologies have become the consensuses about dealing with sustainable energy and environmental issues. Solar photovoltaic is the most attractive and promising technology in all kinds of renewable energy technology. The global solar photovoltaic power generation will account for 15% to 20% of the number as one of the basic energy in the world in middle of 21st century. Improvement efficiency of solar cell and reduction cost of photovoltaic power generation are the keys to develop solar photovoltaic technology and increase its proportion in the whole energy resources gradually.
     When solar cells work, part of solar energy not converted into electricity are transformed into heat and reserved in photovoltaic module. That will result in linear reduction of conversion efficiency with raise of temperature of module. The researches of PV's cooling technology spring up in order to improve photovoltaic conversion efficiency of solar cells. Although a large number of researches proved that reduction temperature of solar cells can increase its efficiency, few of them concerned with the detailed mechanism. The current solar cell cooling technologies include two categories: water cooling and air cooling both using air as the low temperature heat source which results in final temperature higher than the transient air temperature. Therefore, as the transient air temperature increase with the solar radiation intensity, the intense solar radiation will lead to decrease of the efficiency. This problem has become a bottleneck in improving the cooling performance.
     According to the background of solar cells'cooling research and the defects of traditional cooling technology, and based on the review of extensive literature and analysis for latest solar cells'cooling technology, the solar cooling mechanism, the course of the system's enhanced heat transfer process and working performance of solar cell is researched in-depth by uniting material science and Engineering Thermophysics, microparticle dynamics and macrosystem, theoretical analysis and experimental and numeral simulation. The main research works and conclusions are as followings:
     1. Mechanism of temperature effect on the solar cells' efficiency
     Based on the internal electronic process between sunlight and the material in cells, the mechanism of temperature effects and its specific acting forms are defined in the processes of electron-hole pair formation, electron transport and collection occuring in silicon solar cells. The method in analysis the contribution rate of temperature decrease which brings about the increase in efficiency of solar cell is also cleared. Due to the performances of solar cell is strongly sensitive to temperature, mechanism analysis mainly includes the following three parts:the effects of temperature on forbidden energy gap; the effects of temperature on carriers' velocity and the effects of temperature on scattering. Two important conclusions are drawn:(1) Increase in solar cells' conversion efficiency is mainly due to the energy loss decrease in carriers' transport process when the temperature drops, so carriers'output proportion and solar cells' conversion efficiency are both improved in the same solar radiation intensity. (2) The efficiency and output of solar cell linearly increase when the temperature decrease, but it is effective for system efficiency only in case of no energy consumed or less energy consumed.
     2. Thermodynamics and heat transfer analysis of the solar photovoltaic modules
     The energy conservation law in the heat system formed by the sun, solar photovoltaic module and atmosphere are used to analyze the specific light-heat-power process. The temperature distributions in module, its influence factors and principle of factors'changes were determined, and these effects on photoelectric conversion are also obtained. When material of a solar cell and module structure were confirmed, the solar cell's temperature and conversion efficiency almost changes linearly with solar radiation and air temperature's variation, and the change rate depends not only on the physical and thermodynamic performance parameters of the materials and its structure configuration, but also on the surface shape and surface heat transfer coefficient. For the conventional flat-plate modules, the highest temperature appears in solar cell, and its lowest temperature equals to the air temperature only observes when solar radiation is zero. It was found that under present material and structure of solar photovoltaic module the interior thermal resistance was extremely large that lowered the effect of exterior convective heat transfer coefficient on the heat transfer rate. Therefor both decreasing material thermal resistance of the module and increasing temperature difference in cooling become very important.
     3. Research on solar photovoltaic module's metallic backplane
     Aimed at decreasing material thermal resistance of the module, the effects of various backplane materials on the solar photovoltaic module's performances have been investigated. Based on the studies of the selection principles and methods, metal material was utilized as backplan Material to substitute high Polymer material through comprehensive match from optical, mechanical, thermal, chemical, electrical and the economical aspects. The material type and size, mechanical strength, corrosion resistance, insulation, heat transfer properties, surface properties and thermal elongation are analyzed and determined. A innovative mechanical method is proposed to reduce effects on the stress of cells caused by mismatch of material extension length, which not only guaranteed insulativity but also lowered the effect of high Polymer Material on heat conduction. A new type of solar modules used aluminum alloy backplane was developed and a convention patent has been authorized. The experimental studies confirm that the backplane temperature of the solar modules with aluminum alloy may decrease 2~8℃compared to TPT backplane solar modules in the same environmental condition of Guangzhou. The maximum power may also increase up to 2% while the effects would strengthen as the solar radiation increase.
     4. Researches on Cool-Sstorage Mode Solar Photovoltaic Module
     Aimed at increasing cooling temperature difference based on no energy consumed or less energy consumed, a innovational concept and method were presented that atmosphere's temperature difference and solar energy will be combined together to alter the low temperature heat release surrounding and create multi-source, and its influences on solar module's performance was analyzed. Through the studies of atmospheric temperature variation and optimization both parameters of energy transfer and conversion and structures of enhanced heat transfer, a composite system named the Cool-Storage Mode Solar Photovoltaic Module(abbreviated as CSSM) was constructed, which diverts the atmosphere's cold energy to day-time so as to lower the Photovoltaic module's temperature. The principle and design method of CSSM are proposed, which breaks the temperature bottleneck of conventional cooling method, and greatly reduces the temperature of solar modules. This method also accesses to the authorized patents. The experiment studies confirmed that backplane's temperature of CSSM may reduce the temperature by 26.5℃compared with TPT backplane Photovoltaic modules in the same environmental conditions at Guangzhou. A maximum output power increase up to 14%~18% were achieved.
引文
[1]黄素逸.能源科学导论[M].北京:中国电力出版社,1999
    [2]International Energy Agency. Key World Energy Statistics 2010 [R]. Paris: IEA Books,2010
    [3]BP. Statistical Review of World Energy [R]. London, BP Statistical Review of World Energy,2010
    [4]International Energy Agency. World Energy Outlook 2008[R]. Paris:IEA Books,2008
    [5]国家环保总局污控司李新民.强化火电厂污染治理工作,削减S02和NOX排放总量[Z]http://www.netl.doe.gov/publications/proceedings/05/NOx_SO2/NOx%20Prese ntations/chinese/Li_Xinmin's_Speech_of_SEPA.pdf.pdf
    [6]中华人民共和国环境保护部.“两控区”污染防治“十五”计划中期评估结果[R].http://big5.mep.gov.cn/gate/big5/www.mep.gov.cn/gkml/hbb/qt/200910/t20091 023 179790.htm
    [7]沈辉,曾祖勤.太阳能光伏发电技术[M].北京:化学工业出版社,2005
    [8]Joint Research Centre, PVNET. European Roadmap for PV R&D[R].2004, EU21087EN
    [9]International Energy Agency. Technology Roadmap-Solar Photovoltaic Energy [R]. IEA,2010
    [10]SEMI中国光伏顾问委员会.中国光伏发展路线图初探[R].Semi大半导体产业网2009.05.05http://www.semi.org.cn/pv/news_show.aspx?ID=3769&classid=12
    [11]Solarbuzz:去年全球太阳能安装量18.2GW年增139%[OL].Semi大半导体产业网2011-03-21http://www.semi.org.cn/pv/news_show.aspx?ID=8439&classid=12
    [12]赵玉文.我国光伏产业发展概况及思考.杨德仁.第十届中国太阳能光伏会议论文集.杭州:浙江大学出版社.2008:1099-1104
    [13]SEMI PV Group、SEMI中国光伏顾问委员会、中国光伏产业联盟.2011中国光伏产业发展报告[R].http://download.ofweek.com/detail-879012-1594.html
    [14]EPIC最新报告:2009年光伏市场及趋势[OL].慧聪网2010.7.16 http://info.ec.hc360.com/2010/07/160827288902.shtml
    [15]光伏装机目标上调产业进超速发展轨道[OL].太阳能光伏网.2011.04.01http://ee.ofweek.com/2011-04/ART-8410-2802-28463556.html
    [16]中投顾问.2010-2015年中国太阳能电池行业投资分析及前景预测报[R].中国经济网.2010.3.23http://finance.ce.cn/rolling/201003/23/t20100323_15639897.shtml
    [17]王斯成.光伏发电的四大关键问题[J].中国电力企业管理2009(7):24-25
    [18]光伏发展两大软肋:倚赖出口及政策环境[OL].SEMI大半导体产业网.2010.3.10http://www.semi. org.cn/news/news_show.aspx?ID=22766&classid=118
    [19]莫大康.Polysilicon Industry is Hot in China? [OL] SEMI大半导体产业网.2009.9.23http://www.google.com.hk/url?q=http://www.semi.org.cn/DownLoad/DownLoadi ng.aspx%3Fflag%3DvideoPPT%26fileName%3D200909231348109375.pdf
    [20]Martin A. Green. The Path to 25% Silicon Solar Cell Efficiency:History of Silicon Cell Evolution [Z]. Progress in Photovoltaics:Research and Applications. John Wiley & Sons Ltd.2009,17(3):183-189
    [21]中岛武,丸山英治,田中诚.高性能HIT太阳电池的特性及其应用前景[J].上海电力.2006(4):372-374
    [22]三洋电机HIT太阳能电池转换率达23%[OL].光伏国际.2009.8.26http://www.pvexchange.cn/article/Sanyo_HIT_solar_cell_conversion_rate_of_23.html
    [23]SunPower推出高效太阳能电池板转换效率达19.3%[OL]. OFweek太阳能光伏网,2009.5.21.http://solar.ofweek.com/2009-05/ART-260005-8110-28414698.html
    [24]IEC 60904-1:2006光电器件-第1部分:光电池电流-电压性能的测定[S]
    [25]施敏.现代半导体物理[M].北京:科学出版社,2001
    [26]Vladislav Akhmatov, George Galster, Esben Larsen. Questionable Effects of Antireflective Coatings on Inefficiently Cooled Solar Cell [J]. Solar Energy Materials & Solar Cells.1998,56 (1):17-28
    [27]S. R. Wenham, M. A. Green, M. E. Watt. Applied Photovoltaics [M]. Centre for Photovoltaic Device and System,1994
    [28]Wilhelm Durisch, Bernd Bitnar, Fritz von Roth, Gunther Palfinger. Small Thermophotovoltaic Prototype System[C]. Thermophotovoltaic Generation of Electricity:5 th conference.2003
    [29]J. A. Del. Cueto. Comparison of energy production and performance from flat-plate photovoltaic module technologies deployed at fixed tilt [R]. NREL/CP-520-31444,2002
    [30]Carlson, G. Lin and G. Ganguly. Temperature Dependence of Amorphous Silicon Solar Cell PV Parameters [Z]. Conference Record.28th IEEE PVSC, 2000:707-712
    [31]Vladislav Akhmatov, George Galster, Esben Larsen. Questionable Effects of Antireflective Coatings on Inefficiently Cooled Solar Cell [J]. Solar Energy Materials & Solar Cells.1998,56(1):17-28
    [32]Priyanka Singh, S.N. Singh. et al. Temperature dependence of Ⅰ-Ⅴ characteristics and performance parameters of silicon solar cell [J]. Solar Energy Materials and Solar Cells.2008,92(12):1611-1616
    [33][澳]马丁·格林著,李秀文等译.太阳电池一工作原理、工艺和系统的应用[M]. 北京:电子工业出版社,1987
    [34]Bruce M. Cross. Roof Integrated Commercial PV Design[C].1994 The Institution of Electrical Engineer.IEE Savoy Place. London
    [35]Ewa Radziemska. Thermal performance of Si and GaAs based solar cells and modules:a rev i ew [J]. Progress in Energy and Combustion Science. 2003,29(5):407-424
    [36]Skoplaki, E.; Palyvos, J.A. On the temperature dependence of photovoltaic module electrical performance:A review of efficiency/power correlations [J]. Solar Energy,2009,83(5):614-624
    [37]贺炜,郭爱娟,孟凡英等.温度对多晶硅太阳电池性能影响的研究[J].太阳能学报,2010,31(4):454-457
    [38]E. Radziemska. The Effect of Temperature on the Power Drop in Crystalline Silicon Solar Cell [J]. Renewable Energy.2003,28(1):1-12
    [39]Stefan Krauter, Rolf Hanitsch. New optical and thermal enhanced PV-module performing 12% better under true module rating condition[C]. Conference record,25th IEEE PVSC,1996:1323-1326
    [40]金井升,舒碧芬,沈辉等.单晶硅太阳电池的温度和光强特性[J].材料研究与应用.2008,2(4):498-502
    [41]J.A.达菲等著,葛新石等译.太阳能-热能转换过程[M].北京:科学出版社,1984
    [42]Rakesh Kumar, Marc A. Rosena. A critical review of photovoltaic-thermal solar collectors for air heating[J]. Applied Energy,2011
    [43]P.G. Charalambous, G.G. Maidment, S.A. Kalogirou et al. Photovoltaic/Thermal (PV/T) collectors:A review. Applied Thermal Engineering [J].2007,27(2-3): 275-86
    [44]T.T. Chow. A review on Photovoltaic/Thermal hybrid solar technology [J]. Applied Energy.2010,87(2):365-379
    [45]Adnan Ibrahim, Mohd Yusof Othman, Mohd Hafidz Ruslan et al. Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors. Renewable and Sustainable Energy Reviews.2011,15(1):352-365
    [46]王一平、刘永辉、田玮 太阳能电热联用系统研究进展[J].太阳能学报,2005,26(5):639-646
    [47]H.A. Zondag, W.G.J.van Helden, M. Bakker et al. PVT Roadmap:A European guide for the development and market introduction of PVT technology[C]. The
    20th European Photovoltaic Solar Energy Conference. Barcelona, Spain.2005
    [48]Mohd. Yusof Hj. Othman. Performance analysis of a double-pass photovoltaic thermal (PVT) solar collector with CPC and fins [J]. Renewable Energy.2005, 30(13):2005-2017
    [49]R. Zakharchenko, L. Licea-Jimenez, S.A. Perez-Garcia. Photovoltaic solar panel for a hybrid PV/thermal system. [J]. Solar Energy Materials & Solar Cells.2004,82:253-261
    [50]B. J. Huang, T. H. Lin, W. C. Hung et al. Performance Evaluation of Solar Photovoltaic/ Thermal Systems [J]. Solar Energy.2001,70(5):443-448
    [51]季杰,陆剑平等.一种新型全铝扁盒式PV/T热水系统.太阳能学报[J].2006,27(8):765-773
    [52]季杰,程洪波等.太阳能光伏光热一体化系统的实验研究[J].太阳能学报.2005,26(2):170-173
    [53]Ji Jie, Liu Keliang, Chow Tin-Tai, Pei Gang; He Hanfeng. Thermal analysis of PV/T evaporator of a solar-assisted heat pump [J]. International Journal of Energy Research,2007,31(5):525-545
    [54]Xu Guoying, Deng Shiming, Zhang Xiaosong, et al. Simulation of a photovoltaic/thermal heat pump system having a modified collector/evaporator [J]. Solar energy,2009,83(11):1967-1976
    [55]Anja Royne, Christopher J. Dey, David R. Millsd. Cooling of photovoltaic cells under concentrated illumination:a critical review. Solar Energy Materials & Solar Cells 86 (2005) 451-483
    [56]K. Araki, H. Uozumi, M. Yamaguchi, A simple passive cooling structure and its heat analysis for 500 concentrator PV module[C]. Conference record,29th IEEE PVSC,2002:1568-1571.
    [57]M.J. O'Leary, L.D. Clements, Thermal-electric performance analysis for actively cooled concentrating photovoltaic systems [J]. Solar Energy,1980, 25(5):401-406
    [58]A. Luque, G. Sala, J.C. Arboiro, Electric and thermal model for non-uniformly illuminated concentration cells [J]. Solar Cells.1998,51(3-4):269-290
    [59]C R.W. Sanderson, D.T. O'Donnell, C.E. Backus, The effects of nonuniform illumination and temperature profiles on silicon solar cells under concentrated sunlight[Z], Conference record,14th IEEE PVSC,1980:431-436
    [60]J. C. Minano, J. C. Gonzalez, I. Zanesco. Flat high concentration devices[Z]. Conference record,24th IEEE PVSC,1994:1123-1126
    [61]M.W. Edenburn. Active and passive cooling for concentrating photovoltaic arrays[Z]. Conference record,14th IEEE PVSC,1980:776-776
    [62]刘启香、郑镭.CPC-PV-T综合利用系统中太阳电池工作温度的计算模型[J].太阳能学报1992,13(2):130-135
    [63]吴玉庭,朱宏晔,任建勋等.聚光与冷却条件下常规太阳电池的特性[J].清华大学学报(自然科学版),2003,48(8):1052-1055
    [64]B J Brinkworth, B M Cross, R H Marshall, Hongxing Yang. Thermal regulation of photovotaic cladding. Solar Energy 1997(3)
    [65]季杰,何伟.不同自然冷却方式对光伏墙体性能影响的理论与实验研究.太阳能学报,2001,22(4):380-384
    [66]Ji Jie, He Wei, Lam H N. The annual analysis of the power output and heat gain of a PV-Wall with different orientations in Hong Kong. Solar Energy Materials & Solar Cell,2002,71:435-448
    [67]Emad A. Sweelem, Faten Hosney Fahmy, et al. Increased efficiency in the conversion of solar energy to electric power. energy sources,1999,21(5): 367-377,
    [68]Stefan Krauter. Increased Electrical Yield via Water Flow Over the Front of Photovoltaic Panels. Solar Energy Materials & Solar Cells 82(2004)131-137
    [69]Stefan Krauter, Rolf Hanitsch. New optical and thermal enhanced PV-module performing 12% better under true module rating condition. Conference record, 25th IEEE PVSC,1996:1323-1326
    [70]W. Shockley, H. J. Queisser. Detailed balance limit of efficiency of p-n Junction solar cells [J]. Journal of Applied Physics.1961,32 (3):510-519
    [71]Alexis De Vos. Detailed balance limit of the efficiency of tandem solar cells. Journal of Applied Physics.1980,13 (5):839-846
    [72]Tom Markvart. Thermodynamics of losses in photovoltaic conversion. Applied Physics Letters.2007,91(6):064102
    [73]R. Brendel, S. Dreissigacker, N.P.Harder and P. P. Altermatt. Theory of analyzing free energy losses in solar cells. Applied Physics Letters 2008,93(17): 173503
    [74]葛新石,叶宏.PV/T电、热联产系统在理想条件下的性能简化分析[J].太阳能学报,2006,27(1):30-35
    [75]吴祖林,刘静.光电和热电薄膜联合产电中的热传导.太阳能学报,2008,29(1):74-79
    [1]刘恩科,朱秉升,罗晋生.半导体物理学(第7版)[M].电子工业出版社,2008
    [2]孟庆巨 刘海波.半导体器件物理[M].科学出版社,2005
    [3]弗兰克P.英克鲁佩勒,大卫P.德维特等著,葛新石,叶宏译.传热和传质基本原理[M].化学工业出版社,2007
    [4]沈辉,曾祖勤.太阳能光伏发电技术[M].北京:化学工业出版社,2005
    [5]杨理理,宣宜民等.光伏电池微结构表面吸收率的温度依变性[J].中国科学:技术科学,2010,40(12):1514-1520
    [6][澳]马丁·格林著,李秀文等译.太阳电池—工作原理、工艺和系统的应用[M].北京:电子工业出版社,1987
    [7]GB/T 17683.1-1999 eqv ISO 9845-1:1992(E)太阳能在地面不同接收条件下的太阳光谱辐照度标准 第一部分 大气质量1.5的法向直接日射辐照度和半球向直接日射辐照度[S]
    [8]施敏.现代半导体物理.北京:科学出版社,2001
    [9]W. Shockley, H. J. Queisser. Detailed balance limit of efficiency of p-n Junction solar cells. Journal of Applied Physics.1961,32 (3)
    [1]刘启香、郑镭CPC-PV-T综合利用系统中太阳电池工作温度的计算模型[J].太阳能学报1992,13(2):130-135
    [2]Morgan D. Bazilian, Deo Prasad. Modelling of a photovoltaic heat recovery system and its role in a design decision support tool for building professionals [J]. Renewable Energy,2002,27:57-68
    [3]Karel Bouzek, Ladislav Kavan. Heat losses in Gratzel solar cells[J]. Solar Energy Materials & Solar Cells 1999,57:359-371
    [4]F. Aviles, A. I. Oliva, J. A. Aznarez. Dynamical thermal model for thin metallic film-substrate system with resistive heating[J]. Applied surface science.2003,206: 336-344
    [5]Greg P. Smestad. Conversion of heat and light simultaneously using a vacuum photodiode and the thermionic and photoelectric effects [J]. Solar Energy Materials & Solar Cells.2004,82:227-240
    [6]葛新石,叶宏.PV/T电、热联产系统在理想条件下的性能简化分析[J].太阳能学报,2006,27(1):30-35
    [7]安翔,张铎.太阳电池瞬态非线性温度场的精细算法.中国空间科学技术[J].2001,2:7-12
    [8]吴祖林,刘静.光电和热电薄膜联合产电中的热传导[J].太阳能学报,2008,29(1):74-79
    [9]张鹤飞.太阳能热利用原理与计算机模拟[M].西安:西北工业大学出版社, 2004
    [10]余其铮编,辐射换热基础[M].北京:高教出版社,1990
    [11]安娜-玛利亚·比安什,伊夫.福泰勒等著,王晓东译.传热学[M].大连:大连理工大学出版社,2008
    [12]谈和平,夏新林等编著.红外辐射特性与传输的数值计算—计算热辐射学[M].哈尔滨:哈尔滨工业大学出版社,2006
    [13]弗兰克P.英克鲁佩勒,大卫P.德维特等著,葛新石,叶宏译.传热和传质基本原理[M].北京:化学工业出版社,2007
    [14]Vu T C. A turbulence closure model for the atmospheric boundary layer including urban canopy [J], Boundary-Layer Meteorology.2002,102(4):459-490
    [15][澳]马丁·格林著,李秀文等译.太阳电池-工作原理、工艺和系统的应用[M].北京:电子工业出版社,1987
    [16]J. A. del. Cueto. Comparison of energy production and performance from flat-plate photovoltaic module technologies deployed at fixed tilt[R]. NREL/CP-520-31444,2002
    [17]埃克特(E. R. G. Eckert)著,航青译.传热与传质分析[M].高教出版社,1983.
    [18]秦红,沈辉,张仁元,张臻.温度对太阳电池效率的影响及改善方法分析.沈辉.第八届全国光伏会议论文集.北京:轻工出版社.2004:603-607
    [19]秦红,沈辉,张仁元,史保新,梁振南.蓄冷降温式太阳电池组件的研究开发[C].杨德仁.第十届中国太阳能光伏会议论文集.杭州:浙江大学出版社.2008:1099-1104
    [1]陈如龙,汪义川,孔凡建,施正荣.不同封装材料对太阳电池组件输出影响的初步研究.《太阳能学报》2003年第z1期
    [2][澳]马丁·格林著,李秀文等译.太阳电池-工作原理、工艺和系统的应用[M].北京:电子工业出版社,1987
    [3]沈辉,曾祖勤.太阳能光伏发电技术[M].北京:化学工业出版社,2005
    [4]林安中,赵续文,范质勤,沈华元,周良德.多晶硅太阳电池组件及封装材料的研究.太阳能学报,1992,13(1):33-37
    [5]张臻沈辉.太阳组件用EVA胶膜在紫外光老化中的性能变化.太阳能学报,2007,28(11):1221-1226
    [6]江苏裕兴薄膜科技股份有限公司.太阳能TPT背膜材[OL].http://www.czyuxing.com/tpt.asp
    [7]浙江帝龙光电材料有限公司.TPF复合膜[OL].http://www.dilongpv.com/products_detail/&productld=305cbe91-ddb7-4dcf-971d-d0409936ecc3&comp_stats=comp-FrontProducts_list01-1294797054282.html
    [8]张康夫,萧怀斌,罗永秀等编.防锈材料应用手册.北京:化学工业出版社,2004
    [9]机械工程材料性能数据手册.编委会编.机械工程材料性能数据手册. 北京:机械工业出版社,1995
    [10]林刚,林慧国,赵玉涛主编.铝合金应用手册.北京:机械工业出版社,2006
    [11]朱相荣,王相润等编著.金属材料的海洋腐蚀与防护.北京:国防工业出版社,1999
    [12]刘静安,谢水生编著,铝合金材料的应用与技术开发.北京:冶金工业出版社,2004.
    [13]刘筱霞编著.金属包装容器.北京:化学工业出版社2004
    [14]朱祖芳.铝合金建筑型材阳极氧化膜的性能分析及质量评价.电镀与涂饰, 2008,27(4):30-33
    [15]Ellard B. Outdoor Exposure Performance of Anodized Finishes [C]//Proceedings of the Eighth Int ernat ional Aluminum Extrusion Technology S, Ⅶ, O [s,n], 2004:497-516
    [16]中国国家标准《GB/T9535-199地面用晶体硅光伏组件(PV)-设计鉴定和定型》[S].北京:中国标准出版社
    [17]International standard 《IEC 61215-2005 Crystalline silicon terretrial photovoltaic(PV) modules-Design qualification and type approval》
    [18]高云震等著.铝合金表面处理.北京:冶金工业出版社,1991
    [19]朱祖芳.铝合金阳极氧化工艺技术应用手册.冶金工业出版社2007年5月
    [20]马胜利,井晓天.铝及铝合金氧化膜结构及其应用.兵器材料科学与工程,1998,21(4):54-57
    [21]田荣璋,蒋次雪,龚呜明.铝镁硅合金阳极氧化膜性能的研究.中南矿冶学院1990,21(3):277-282
    [22]中国国家标准《GB/T 2790-1995胶粘剂180度剥离强度试验方法挠性材料对刚性材料》[S].北京:中国标准出版社
    [1]埃克特(E. R. G. Eckert)著,航青译.传热与传质分析[M].高教出版社,1983
    [2][澳]马丁·格林著,李秀文等译.太阳电池—工作原理、工艺和系统的应用[M].北京:电子工业出版社,1987
    [3]J. A. Del. Cueto. Comparison of energy production and performance from flat-plate photovoltaic module technologies deployed at fixed tilt [R]. NREL/CP-520-31444,2002.
    [4]Vladislav Akhmatov, George Galster, Esben Larsen. Questionable Effects of Antireflective Coatings on Inefficiently Cooled Solar Cell. Solar Energy Materials & Solar Cells.56(1998):17-28
    [5]Ewa Radziemska. Thermal performance of Si and GaAs based solar cells and modules:a review [J]. Progress in Energy and Combustion Science.29(2003) 407-424
    [6]Priyanka Singh, S.N. Singh, M. Lal, M. Husain. Temperature dependence of Ⅰ-Ⅴ characteristics and performance parameters of silicon solar cell. Solar Energy Materials & Solar Cells 92 (2008):1611-1616
    [7]周淑贞.气象学与气候学(第三版).高等教育出版社,2002.5
    [8]中国气象局气象信息中心气象资料室,清华大学建筑技术科学系.中国建筑热环境分析专用气象数据集[M].第一版.北京:中国建筑工业出版社,2005.
    [9]唐云辉,王玉文.重庆市三峡库区近40年来气温日较差变化特征分析.山区开发.2001.1232-35.
    [10]唐红玉,瞿盘茂,王振宇.1951-2002年中国平均最高、最低气温及日较差变化[J]气候与环境研究,2005,10(4).
    [11]李强民,邓峥.置换通风在我国的应用.暖通空调新技术(1),中国建筑工业出版社,1999
    [12]康艳兵,江亿,张寅平.相变贮能新风机组运行经济分析.暖通空调,1999,29(4):8-11
    [13]曾丹苓,敖越等.工程热力学.人民教育出版社,2006.1
    [14]弗兰克P.英克鲁佩勒,大卫P.德维特等著,葛新石,叶宏译.传热和传质基本原理.北京:化学工业出版社,2007.
    [15]Ostrrach.S..Natural Convection in Enclosures.Advances in Heat Transfer. Vol.8. Academic Press. New York.1972
    [16]Catton. I.. Natural Convection in Enclosures. Proc.6th Int. Heat Transfer Conf. Toronto. Canada,1978
    [17]Amold J. N., I. Catton. and D. K. Ed wards. Experimental Investigation of Natural Convection in Enclined Rectangular Regions of Deffering Aspect Rations. ASME Paper 75-HT-62,1975
    [18]张宁,李光正.特殊条件下矩形封闭空腔内自然对流数值研究.华中科技大学学报,2002,30(7):95-97
    [19]贾力,方肇洪.高等传热学.高等教育出版社,2008.5
    [20]Ayyaswamy P. S. and Catton. I.. J. Heat Mass Transfer,95,543,1973
    [21]Churchill S. W. and H. H. S. Chu. Int. J. Heat Mass Transfer,18,1323,1975
    [22]Sparrow E. M. and J. L. Gregg. Trans. ASME,78,435,1956
    [23]Thanh Ca VU, Yasunobu Ashie and Takashi Asaeda, A k-εTurbulence Closure Model for THE Atmospheric Boundary Layer Including Urban Canopy. Boundary-Layer Meteorology,2002,102(4):459-490
    [24]E.R.G.埃克特,R.M.德雷克著,航青译.传热与传质分析.科学出版社,1983
    [25]杨东华.口分析和能级分析.科学出版社,1986
    [26]张鹤飞.太阳能热利用原理与计算机模拟.西北工业大学出版社,2004
    [27]温正石良辰任毅如.FLUENT流体计算应用教程.清华大学出版社,2009.10
    [28]孙纪宁.ANSYS CFX对流传热数值模拟基础应用教程.国防工业出版社,2010.4