玄武岩纤维复合型体材料及降解机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实验研究了玄武岩纤维的物理化学特性,探索了由玄武岩纤维和植物纤维制备复合型体材料的工艺、助剂、产品的微观结构和宏观物理特性,以及它们之间的关系,参照国家标准对产品进行了性能测试,表明了这种应用于包装容器等方面的新型复合材料可以节省大量植物纤维,有利于保护生态环境。
     由广角度X射线散射(WAXS)实验结果对玄武岩纤维的微观结构进行了计算分析,结果表明玄武岩纤维是一种以非晶组分为主、在纤维方向较有序的中间序性物质。构成玄武岩纤维的结构单元是四面体[MO_4](M=Si~(4+),Al~(3+))和八面体[MO_6](M=Al~(3+),Mg~(2+),Fe~(3+))。近邻四面体共顶连接构成链状骨架结构,四面体与八面体之间共棱连接,八面体与八面体主要以共项方式连接。金属阳离子Ca~(2+)、K~+、Na~+等位于多面体堆积产生的空隙中,以平衡电价,稳定结构。采用漫反射红外光谱(DRIFT)测定了玄武岩纤维的表面羟基振动。研究了玄武岩纤维在有机酸、无机酸及模拟人体体液中的溶解性能。
     测定了复合浆料的Zeta电位。分别测定了润湿剂为油和水时玄武岩复合纤维材料试片的润湿角。实验探讨了打浆度、玄武岩纤维含量、助剂添加量等因素对复合纤维型体材料性能的影响。采用正交实验法确定了满足快餐盒性能要求前提下的最低成本配方、有利于生物降解的最佳配方及低酸溶出物配方和农用育苗盒及果袋纸配方。
     研究了复合纤维型体材料的物理结构,认为该材料具有拓扑无序结构。可以近似用“无规网络模型”描述材料的结构。探讨了复合纤维型体材料的界面作用机理。玄武岩纤维与植物纤维之间的界面结合力主要包括:纤维之间的氢键结合力、纤维与助剂分子之间的氢键结合力、助剂大分子在纤维之间的“网络连接”作用力等。
     进行了热氧化降解及生物降解实验。导出了玄武岩纤维复合型体材料热老化降解的动力学模型。提出了复合纤维型体材料的降解机理。
     本研究的主要创新点:1.由WAXS实验结果对玄武岩纤维的微观结构进行了探讨;2.采用DRIFT测定了玄武岩纤维的表面羟基振动;3.实验确定了快餐盒、农用育苗盒及果袋纸的原料配比及主要工艺条件;4.研究了复合纤维型体材料的物理结构模型、界面作用机理和其微观结构与宏观物理性质之间的关系;5.研究了生物降解复合纤维型体材料的影响因素,提出了复合纤维型体材料的降解过程和机理。
The physical and chemical characteristics of basalt fiber are experimentally studied. The technology, agents, microstructure, macro-physical properties as well as the relationships of these factors in preparing basalt and plant fiber composite materials are investigated. According to the GB standards, qualities of the materials products when they are used as packing containers are tested. The results show that the new composite materials applied in the fields of packing containers etc can save great amount of plant fibers and therefore will bring about significant ecological environmental protection effects.
    Analyses on the microstructure of basalt fiber by using wide-Angle X-ray scattering (WAXS) verify that basalt fiber is mainly composed of non-crystalline phase and in order at the fiber direction. The construction units of basalt fibers are mainly tetrahedron [ MO4] ( M= Si4+. Al3+) and octahedron the ( M= Al3+, Mg2+, Fe3+). The connecting of the neighbor's tetrahedron with vertex in chain forms the framework. Tetrahedron and octahedron are connected in edges, and between octahedrons the connecting is formed by vertex also. The metal ions Ca2+, K+, Na+ etc. are at the gaps between the tetrahedrons and octahedrons for maintaining the equilibrium of the valence and for the stable structure. The hydroxyl vibrations on the basalt fibers are determined by DRIFT. The solubility of the basalt fiber in the organic and inorganic acid and in simulating human body fluid is also tested.
    Zeta potential of the composite pulp and the wetting angle of the material sample wetted by oil and water are measured. The factors influencing material properties such as pulping degree, the contents of basalt fibers and agents etc are experimentally studied and theoretically explained. Based on orthogonal- experiment, the optimum contents of basalt fiber and agent are given. The cheapest prescription of fast-food box, the optimum prescription for the biodegradability of the fast-food box and the choice prescriptions of fast-food box with less dissolved matter, formulations of planting containers and of fruit coat paper are also provided.
    The physical structure of the composite material is assumed forming a kind of topological random structure and dry material forms the "double pore" system. Then the model of random meshwork is adopted to describe approximately the material's physical structure. The studies on functionary interfacial mechanism of this material show that the interfacial binding forces among the plant fibers and the basalt fibers are the hydrogen bonds among the molecules of fibers, the hydrogen bonds among the molecules of agents and fibers, and the meshwork binding forces of agent's macromolecules among fibers.
    
    
    Thermal and oxidative degradation test and biodegradation test of shaped basalt fiber composite material are carried out by weight loss method and by degradation degree method. The degradation mechanism of the shaped basalt fiber composite material is putted forward.
    The new points of the research: 1. According to the WAXS, the microstructure of basalt fiber is studied. 2. The hydroxyl vibrations on the basalt fibers are determined by DRIFT. 3. The optimum contents of basalt fiber and agents are found for the fast-food box, planting-cup and fruit coat paper. 4. The physical structure, the functionary interfacial mechanism of the shaped basalt fiber composite material and the relationship between the microstructure and macro-physical properties are formulated. 5. The factors affecting the biodegradation of shaped basalt fiber composite material are experimentally studied and theoretically explained and the degradation process and mechanism of the composite material is putted forward.
引文
[1] 吴人洁.复合纤维材料.天津:天津大学出版社,2000:200.
    [2] 洪紫萍,王贵公.生态材料导论.北京:化学工业出版社,2001:86
    [3] 刘江龙.环境材料导论.北京:冶金工业出版社,1999:17.
    [4] 劳嘉宝.造纸工业污染控制与环境保护.北京:中国轻工业出版社,2000:6.
    [5] 吴姣平.纸浆模塑餐具的生产技术及其发展前景.广东造纸,2000,1:24~29.
    [6] 孙乐芳.一次性环保餐具的现状及对策.化工科技市场,2001,10:26~28.
    [7] 武军,李和平.绿色包装。北京:中国轻工业出版社,2000:2.
    [8] 吴姣平.纸浆模塑制品.纸和造纸,1999,5:54~55.
    [9] 闫全英.玄武岩纤维制备的热工机理和材料研究:【博士论文】.哈尔滨:哈尔滨工业大学,2000.
    [10] Gerely P., Novel. Paper-based Food Packaging Materials. Papiripar., 1995, 32(1-2): 21~25.
    [11] 董金狮.各种新型环保餐具比较和评价。中国包装,2001,(9) :53—57
    [12] 郭文川,朱新华.一次性可降解餐具的研究与应用现状.中国包装工业,2000,(78) :48—50.
    [13] 张元琴.以纤维素材料为基质的生物降解材料的研究.高分子材料科学与工程,1999,15(5) :25~29.
    [14] Mishiyamam Masashi, Hosokava jun. Investigation on research for degradable plastics. Shikoku Kogyo Gijutsu Kenkyusho Kenkyu Hokoku, 1994, 26: 32~78.
    [15] Mishiyamam Masashi. Preparation of biodegradable films, Jp0459830, 1992.
    [16] 赵岳荣,苏灼佳.新一代塑料—生物降解塑料.化学世界,1999,(11) :481~485.
    [17] 钱凤珍.国外降解性塑料的发展现状.化学工程师,1991,(1) :41.
    [18] 李思良,刘易凡,陈璞.植物纤维/热塑性树脂复合材料的研究.塑料工业,1999,27(1) :14-15.
    [19] Mishiyamam Masashi. Biodegradable filters. Jpn. Kokai Tokkyo Koho, JP0445814. 1992.
    [20] Mishiyamam Masashi. Biodegradable cellulose-chitosan composite materials with improved elongation, JP0601881, 1994.
    [21] Mishiyamam Masashi. Use of biodegradable plastics from polysaccharides. Gosei Jushi, 1993, 39(5): 19~21.
    [22] Benhaddou R. . Creation of biodegradable polymers from cellulosic residues. Collq. Inst. Rech. Agron., 1995, 71: 231~236.
    [23] 柳长甫.一次性易降解的餐饮具.中国,发明专利申请公开说明书,CN1331261A.2002年1月16日
    
    
    [24] 曲音波.开发生物质资源实现可持续发展.国际技术经济研究,1999,2(2) :29—34.
    [25] 陈玉放,谢来苏.植物纤维素纤维在新技术领域的应用.天津造纸,1998,(2) :29—32.
    [26] Gerely P. Novel Paper-based Food Packaging Materials. Papiripar, 1995, 32(1-2): 21-25.
    [27] 黄永杰.非晶态磁性物理与材料.成都:电子科技大学出版社,1991:5.
    [28] 郭贻诚,王震西.非晶态物理学.北京:科学出版社,1987:210.
    [29] 何圣静.非晶态材料及其应用.北京:机械工业出版社,1987:2.
    [30] 张有纲.电子材料现代分析概论.北京:国防工业出版社,1993:3.
    [31] 陈济舟.X射线结构分析与材料性能表征:第六章非晶材料的X射线散射分析与性能表征.北京: 科学出版社,1997:345.
    [32] Davis JM, Rbolton RE, Douglas AN et al. Effacts of electrostatic chage on the pathotericity of chrysotile asbeatos. Br. J. of Ind. Med., 1998, 45: 292-299.
    [33] 钱逸泰.结晶化学.合肥:中国科学技术大学出版社,1988:86.
    [34] 黄胜涛.非晶态材料的结构和结构分析.北京:科学出版社,1987:211.
    [35] 朱永峰,张传清.硅酸盐熔体结构学.北京:地质出版社,1996:22.
    [36] 陈济舟,王俊桥,毕于润.非品质岩石结构的RDF研究.科学通报,44(17) :1875~1878.
    [37] B. E. Warren. X-ray Diffraction. ADDISON-WESLEY PUBLISHING COMPANY, London, 1969: 117
    [38] Chen Jizhou, Wang Junqiao and Han Futian. MORPHOLOGY-STRUCTURE OF ORIENTED NONCRYSTLLINE POLYESTER STUDIED BY TWO-DIMENSIONAL WIDE ANGLE X-RAY SCATTERING. ACTA PHYSICA SINICE, 1995, 4(3): 204~212.
    [39] Chen Jizhou, Wang Junqiao and Jiang Shicheng. RADIAL DISTRIBUTION FUNCTION(RDF) STUDY OF THE NONCRYSTALLINE STRUCTURE OF POLY P-PHENYLENE SULFIDE(PPS). SCIENTIA SINICA(Series B), 1985,(8): 708-807.
    [40] 陈济舟,刘长岭,刘钦甫等.偏岭石结构研究.沉积学报,2001,19(2) :309—314.
    [41] 陈济舟,王俊桥,韩甫田.取向对径向分布函数的影响.物理学报,1994,43(7) : 11051110.
    [42] 李迪恩,彭明生.在磷酸盐玻璃中八面体配位的硅:K边X射线吸收光谱研究.科学通报,42(22) : 2405~2407
    [43] Y. Waseda, The Structure of Noncrystalline Materials. Chapter Ⅰ. MCGraw Hill Book Co., 1980: 5.
    [44] 林文祝,刘高魁。冲击玻璃和玻璃质岩石的红外光谱研究。科学通报,1993,38(3) :250—253.
    [45] Friedrich Liebau. Structural Chemistry of Silicates. Springge-Verlag. QD 181. S6L614, 1985: 200.
    [46] Wilham B. WHITE and David G. MINSER. RAMAN SPECTRA AND STRUCTURE OF NATURAL
    
    GLASSES. Journal of Non-Crystalline Solide, 1984, 67: 45~59.
    [47] Masayuki OKUNO Fumiyuki MARUMO et al. The structure of a shock-induced anorthite-glass. MINERALORICAL JOURNAL, 1985, 12(5): 197~205.
    [48] T. Mashimo, K. Nishii, T. Soma et al. Some Physical Properties of Amorphous SiO_2 Synthesized by Shock Compressiom Of α Quartz. Phys. Chem. Minerals, 1980,(5): 367-377
    [49] Adrian C. WRIGHT and J. Erwin DESA et al. NEUTRON DIFFPACTION STUDIED OF NATURAL-GLASSES. Journal of Non-Crystalline Solide, 1984, 67: 35~44.
    [50] Virgo D, Mysen B O and Kushiro I. Annual report of the director geophysical Laboratory. Carnegie Institution 1979-1980, 1980: 310-311.
    [51] Casey W H. . Surface chemistry during the dissolution of oxide and silicate materials. Vaughan D J and Pattrick R A D Mineral surfaces. Lodon: Chapman Hall, 1994,: 185-217.
    [52] O' day P A, Park G A and Brown G E Jr. Molecular structure and biding site of cobalt(Ⅱ) surface complexes on kaolinite from X-ray adsorption Spectroscopy. Clays and Clay Minerals, 1994, 42(3): 337-355.
    [53] Koretsky C M, Sverjensky D A and Sahai N. A model of surface site on oxide and silicate minerals based on crystal chemistry: Implications for site types and densities, multi-site adsorption, surface infrared spectroscopy, and dissolution kinetics. Am. J. Science, 1998, 298(5): 349-438.
    [54] Schindler P W. Co-adsorption of metal ions and organic ligands: formation of ternary surface complexes. Hachlela Jr F M and White A F. . Mineral-Water Interface geochemistry. Washing DC: MAS, 1990: 281-307.
    [55] Hiemstra T, de Wit J C M and van Riemsduk W H. et al. Multi-site Proton adsorption modling at solid/solution interface of(hydr) oxides: A new approach. J Colloid Interface Sci., 1980, 133(1): 105-117.
    [56] Silver L. A., Ihinger P., and Stolper E. . The influence of bulk com position on the speciation of water in silicate glasses. Contrib. Mineral. Petrol., 1990, 104: 142-162.
    [57] Brady P V and House W A. . Surface-controlled dissolution and growth of mineral. Brady P V. Physics and Chemistry of Mineral Surface. Boca Raton, Fla.: CRC Press, 1996: 225-305.
    [58] Davis J. A. and Kent D. C. Surface complexation modeling in aqueous geochemistry. Hachlela Jr. F. M. and White A F. Mineral-Water Interface geochemistry. Washing DC: MAS, 1990: 177-259.
    [59] V. R. Christensen, S. Lurid Jensen, M. Guldberg et al. Effect of Chemical Composition of Man-made
    
    Vitreous Fibers on the Rate of Dissolution in Vitro at Different pHs. Environ Health Perspect, 1994, 102(Suppl 5): 83-86.
    [60] Agnès Wastiaux, Olivier Blanchard, and Sylvie Honnons. Possible Application of Urinary Analysis to Estimate Dissolution of Some Man-made Vitreous Fibers. Environ Health Perspect 1994, 102(Suppl 5): 217-219.
    [61] Jon F. Bauer, Bruce D. Law, and Thomas W. Hesterberg. Dual pH Durability Studies of Man-made Vitreous Fiber(MMVF). Environ Health Perspect, 1994, 102(Suppl 5): 61-65.
    [62] Rick A. Rogers, James M. Antonini, Hjalmar Brismar et al. In Situ Microscopic Analysis of Asbestos and Synthetic Vitreous Fibers Retained in Hamster Lungs following Inhalation. Environ Health Perspect, 1999, 107: 367-375.
    [63] Kirsi Luoto, Mikko Holopainen, Kirsti Karppinen. Dissolution of Man-Made Vitreous Fibers in Rat Alveolar Macrophage Culture and Gamble's Saline Solution: Influence of Different Media and Chemical Composition of the Fibers. Environ Health Perspect, 1994, 102(Suppl 5): 103-107.
    [64] P. Sébastien. Biopersistence of Man-Made Vitreous Silicate Fibers in the Human Lung. Canada. Environ. Health Perspect, 1994, 102(Suppl 5): 225-228
    [65] Arthur Morgan. In Vivo Evaluation of Chemical Biopersistence of Man-made Mineral Fibers. Health Perspect, 1994, 102(Suppl 5): 127-131.
    [66] Frost R L, Lack D A and Paroz G N et al. . New techniques for studying the intercalation of kaolinite from Geogia with formamide. Clays and Clay Minerals, 1999, 47(3): 297-303.
    [67] 曾天卷.玻璃纤维、玻璃棉等人造矿物纤维与人体健康.玻璃纤维,2002,(4) :8—15.
    [68] 宫尾益英等著,周海行等译.微量元素与疾病,北京:人民军医出版社,1987:3—4.
    [69] 吴执中.职业病.北京:人民卫生出版社,1978:105
    [70] 屈维均.制浆造纸试验.北京:中国轻工业出版社,1991:142.
    [71] 聂勋载,范思齐.常用非木材纤维造纸实用手册.北京:中国轻工业出版社,1999:30.
    [72] 郭元新,沈开惠.绿色纤维餐具的生开工艺技术.安徽农业技术师范学院学报,1999,13(2) :51 —53.
    [73] 廖明真,郭信.纸浆模塑制品的研制.农垦造纸,1999,(4) :30.
    [74] 上海市卫生防疫站.GB5009.60-85,食品包装用聚乙烯、聚苯乙烯、聚丙烯成型品卫生标准的分析方法。北京:中国标准出版社,1985.
    [75] 铁道部劳动卫生研究所.GB,18006.1-1999,一次性可降解餐饮具通用技术条件.北京:中国标准
    
    出版社,1999.
    [76] 铁道部劳动卫生研究所.GB,18006.1-1999,一次性可降解餐饮具降解性能试验方法.北京:中国标准出版社,1999.
    [77] 林杰.分散松香胶的制作与在纸袋纸中的应用.西南造纸,2000,(2) :20—21.
    [78] 陈建林.湿强剂在纸巾纸中的应用.中华纸业,2001,22(2) :44—45.
    [79] 林跃春.新型内部添加用淀粉.天津造纸,2001,(1) :17—21.
    [80] E.P.普鲁特曼.硅烷和钛酸酯偶联剂.上海:上海科学技术文献出版社,1987:195.
    [81] R.泽仑.非晶态固体物理学.北京:北京大学出版社,1988:153.
    [82] 邬义明.植物纤维化学.北京:中国轻工业出版社,1991:70.
    [83] 贺可音.硅酸盐物理化学.武汉:武汉工业大学出版社,1995:216.
    [84] 于天仁.土壤化学原理.北京:科学技术出版社,1987:99.
    [85] Silver L. A., Stolper E. M. . Water in albite glasses. J. Petrol., 1989, 30: 667-709.
    [86] Verburg K and Baveye E Hystersis in Hysteresis in the binary exchange of cations on 2: 1 clay minerals: a critical review. Clays and Clay Minerals, 1991, 42(2): 207-220.
    [87] Sisson T. W., Grove T. L. . Experimental investigations of the role of the H_2O in calc-alkaline differentiation and subduetion zone magmatism. Contrib. Mineral. Petrol., 1993, 113: 143-166.
    [88] MATS HAGGKVIST, TIE-QIANG LI AND LARS ODBERG. Effects of drying and pressing on the pore structure in the cellulose fiber wall studied by ~1H and ~2H NMR relaxation. CELLULOSE, 1998,(5): 33-49.
    [89] Andrew J bowling, Yoshihiko Amano, Robert Lindstrom et al. Rotation of cellulose ribbons during degradation with fungal cellulase. Cellulose, 2001,(8): 91-97.
    [90] 肖长发.纤维复合材料.北京:中国石化出版社.1995:3.
    [91] 戴红旗,毕松林.纸浆模塑餐盒防油防水性能研究.林产工业,1998,25(4) :25
    [92] 粱治齐.氟表面活性剂.北京:中国轻工业出版社,1998:20.
    [92] 天津大学物理化学教研室.物理化学.北京:高等教育出版社,1997:157
    [93] 陈镜泓,李传儒.热分析及其应用.北京:科学出版社,1985:16
    [94] Ekenstam A. The behaviour of cellulose in mineral acid solution: Kinetics study of the decomposition of cellulose in acid solutions. BER, 1936, 69: 553.
    [95] Hill D. J. T., Le T. T., Darveniza M. et al. A study of degradation of cellulosic insulation in a power transformer: Part 1 Molecular weight study of cellulose insulation paper. Polym. Degrad. Stab. 1995. 48:
    
    79-87.
    [96] Zou X. Uesaka T. and Gurnagul N. Predication of paper permanence by accelerated ageing: Part 1 Kinetic analysis of the aging process. Cellulose, 1996,(3): 243-267
    [97] Emsley A. M. and Stevens G. C. . Kinetics and Mechanisms of the low temperature degradation of cellulose. Cellulose, 1994,(1): 26-56
    [98] Zou X., Gurnagul N., Uesaka T. et al. Accelerated ageing of paper of pure cellulose: Mechanism of cellulose degradation and paper embrittlement. Polym. Degrad. Stab. 1994, 43: 393-402.
    [99] Emsley A. M. and Stevens G. C. A reassessment of the low temperature degradation of cellulose in power transformers. In Proceedings of the 16th International Conference on Dielectric Materials: Materials, Measurements and Applications. London: Institute of Electrical Engineers, 1992: 229-232.
    [100] 黄秋莲,欧义芳.施胶剂对纤维素复合材料降解的影响.纤维素科学与技术,2001,9(1) :35—39
    [101] 黄秋莲,欧义芳,陈家楠.水基施胶剂对纤维素复合材料降解的影响.纤维素科学与技术,2001,(1) :23~28.
    [102] 郑安平.可降解塑料降解机理与降解性能测试评价方法的研究:【博士论文】.北京:清华大学,1998.
    [103] 李云政,蔡博伟,朱鹤孙.在可控条件下测定塑料生物降解性的试验评价方法.塑料,1999,28(3) :43~48.
    [104] 李云政,蔡博伟.塑料生物降解性的试验评价方法.塑料,1997,26(3) :30~32.
    [105] 柏柳青.刘学明,柏玉莲.聚合物生物降解ASTM测试中的问题及其标准测试方法.塑料,1995,24(5) :45~48.
    [106] 李云政,蔡博伟,朱鹤孙.影响塑料生物降解速度因素的研究.塑料,1999,28(1) :42~46.
    [107] 无锡轻工业学院.微生物学,北京:轻工业出版社,1980:194—196.
    [108] Jose Luiz, Pedersoli. Effect of Cellulose Crystallinity on the Progress of Thermal Oxidative Degradation of Paper. Journal of Application Polymer Science, 2000, 78: 61-66.
    [109] Paulsson M. . Chemical Modification of Lignin-rich Paper, Part 8: Effect of Light Source on the Accelerated Light-induced Yellowing of Untreated and Acetylated High-yield Pulps. Nord. Pulp Paper Res. J, 1998, 13(2): 132-142.
    [110] 四川省林业学校.土壤学.北京:农业出版社,1979:2.
    [111] 朱福海.高分子材料光降解和光稳定.合成材料老化与应用,1999,(1) :24—26.
    [112] Zong-hua Wu. Mechnachemistry of Lignin, ⅩⅧ. A Novel Approach to Improve Brightness Stability
    
    of H_2O_2-Bleached Pulps by Addition of Radical Scavengers to the Pulping Process. Holzforschung, 1994, 48: 400-404.
    [113] Hideykui Ohnishi. Bleaching of Lignin Solution by a Photocatalyzed Reaction on Semiconductor Photocatalysts. Ind. Eng. Chem. Res., 1989, 28: 719-724.
    [114] Jana Kolar et al. New colourimetric method for determination of hydroxyl radical ageing of cellulose. Analytica Chemica Acta, 2001, 431: 313-319.
    [115] W. Schnabel. Polymer Degradation Principles and Practical Applications. New York: Macmillan Publishing Co., 1981: 20.
    [116] A. M. Emsley et al. A Size Exclusion Chromatography Study of Cellulose Degradation. polymer, 2000, 41: 8513-8521.
    [117] 吴宗华,陈少平.植物纤维表面光致黄化及其反应机理的研究.高分子学报,2000,(2) :247—249.
    [118] 戴燕,欧义芳,鲁杰等。纸质餐具中纤维素纤维在紫外光光照下的降解研究.纤维素科学与技术,2002,10(1) :32-39.
    [119] K. L. kato. Structure-property Relationships in Thermally aged cellulose Fibers and Paper. Journal of Application Polymer Science, 1999, 74(6): 1466-1477.
    [120] 陈玉放.植物纤维有氧条件下热稳定特性的研究.纤维素科学与技术,1999,7(3) :13~19.
    [121] 戴燕,鲁杰,石淑兰等.新型纸质快餐具热降解性能研究.Paper and Paper Making.2002,(2) : 29—31
    [122] Paul M. et al. Determination of the Cellulose Scission Route in the Hydrolytic and Oxidative Degradation of Paper. Restaurator, 1994, 15: 26-45.
    [123] 汪维云,朱金华,吴守一.纤维素科学及纤维素酶的研究进展.江苏理工大学学报,1998,19(3) : 20—28.