钯纳米晶体的可控合成及其催化性能的晶面依赖性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
理解催化剂的结构-性能的关系,对催化剂的设计具有指导性意义。金属纳米晶体(尤其是贵金属纳米晶体),由于其具有与块材截然不同的多种反应活性,在近几十年里得到了飞速的发展。在前期的异相催化体系研究中,涉及的贵金属催化剂通常是表面状态复杂、结构并不均一,给传统的单晶催化模型表面化学的研究与实际催化体系之间带来了巨大的鸿沟。然而,随着纳米材料合成技术的发展,可控合成结构均一的金属纳米晶体成为可能的现实。这种结构均一的纳米晶体,其表面状态与单晶催化模型具有一定可比性,将是具备高活性与高选择性催化剂的理想材料。
     本论文旨在探索纳米级尺度下晶面可控的钯纳米晶体的设计、可控合成及其相关催化性能研究。在本论文中,我们设计并合成了具有不同单一晶面的钯纳米晶体,并通过与密度泛函理论模拟和先进表征手段“三位一体化”相结合的方法,对不同晶面与小分子的相互作用机理、作用后的状态对后续反应的影响进行了充分的验证。本文中的研究结果对基于纳米晶体的金属催化剂的模型构建,以及具有光响应的催化剂的设计具有积极的指导意义。本论文主要包括以下几方面的内容:
     1.纳米晶体的晶面在反应分子的吸附及活化方面具有决定性的作用,因此纳米晶体的晶面控制成为了调控反应活性及选择性的关键因素。为了实现晶面控制,我们使用Pd作为一个模型体系,探究了动力学控制生长模式的原子附着添加行为。在Pd体系中,主要的产物是单晶纳米晶体,大大地减少了孪晶的影响。我们的研究结果表明,通过维持体系中Pd原子的低浓度来实现动力学控制,新还原的Pd原子更趋向于添加到截角八面体晶种的{100}面上,从而在表面上保留{111}面形成八面体结构。基于以上结果,我们得以将暴露{111}面的八面体与暴露{100}面的立方体做对比,充分探究催化反应的晶面选择性,体现了纳米晶体结构设计与可控合成对催化反应的重要意义。
     2.我们基于上一章的金属纳米晶体表面晶面调控技术,以无机化学与理论化学、物理化学、有机化学、同步辐射技术等学科的交叉合作模式,通过分子探针技术、X射线吸收精细结构谱表征和理论模拟相结合,首次揭示了氧分子在不同钯晶面的吸附与活化行为。通过合理的晶面选择,在吸附过程中金属表面可以给氧分子提供部分电子,引发氧分子磁矩的改变,从而自发地发生氧分子活化的过程。基于该晶面选择性的发现,阐明了晶面选择性在有机氧化催化剂以及癌症治疗剂的设计中的重要性,也揭示了有机化学界将金属催化剂广泛用于催化氧分子参与氧化反应的机理。
     3.鉴于钯纳米晶体和氧分子间的电荷转移对于氧分子活化的作用,金属纳米颗粒的表面电子状态将是调控吸附分子状态的一个有效途径。在此之前,有机化学家普遍认为半导体氧化物作为金属催化剂的载体,在有机氧化反应中主要是起到催化剂模板等作用。我们基于金属催化剂表面电子态和分子活化的构效关系,提出金属纳米晶体与半导体载体形成复合结构的思路和方法,通过复合结构中肖特基势垒作用使得半导体光生电子迁移到金属表面,从而有效地调控其表面电子态。在该工作中,我们首次以超快光谱和动力学测量为探针,揭示了金属表面等离激元导致的热电子会直接注入n-型半导体导带,与肖特基势垒驱动的电荷转移形成竞争关系。在阐明微观作用机制的基础上,我们得以通过光强调控这一简单而有效的手段,优化催化剂在氧分子活化和有机氧化反应中的活性。这项突破性研究进展,有助于加深人们对光催化剂复合材料设计的认识,也对阐明有机化学界在氧化反应中广泛使用氧化物载体的原理具有重要意义。
     4.利用光能-热能转换是一种极具应用前景的新型反应模式,是实现太阳能驱动催化反应的另一途径。我们通过Ru离子的辅助合成出了一种新型的Pd纳米晶体结构,该结构不仅具有优异的氢气响应,而且在紫外-可见较广谱范围具有光吸收。这两个特性的结合不仅有利于高效加氢反应,而且能够通过表面等离子体效应光热转换实现光能—热能—化学能的反应驱动。这是一种本质上不同于半导体的光能转化的新型光催化方式。
The fundmental understanding of structure-catalytic activity relationship is of great importance in the design of efficient catalysts. Nanoscale metal crystals (particularly noble metal nanocrystals) are a class of materials that can be used in catalytic organic reactions. Previously, the catalysts involved in the heterogeneous catalytic reaction systems usually possess multiple crystal facets on surface. This feature formed an obstacle to performing reliable investigations at the intersection of surface science and realistic catalytic systems. Along with the rapid development of materials synthesis,it becomes feasible tocontrollably synthesize metal nanocrystals with desired structures. The metal nanocrystals with uniform and well-defined surface facetswould be ideal candidates for catalysts to achieve high activity and selectivity.
     In this dissertation, the metal of palladium (Pd)has been chosen as the model system. As a result, we have been able to investigate the molecule-nanocrystal interactionsas well as the structure-activity relationship in various reaction systems.These findings provide fresh insights into the design and synthesis of metal nanocrystals for various catalytic reactions. The specific findings include:
     1. In general, surface facets of a nanocrystal play an important role in determining the species adsorption and reaction activation, and in turn, hold the key to tailoring its activity and selectivity in catalysis. In the work, we use Pd as a model system to perform the investigation where kinetics of atomic addition can be precisely controlled by simply using a syringe pump. In the Pd system, the majority of products is single-crystal, largely simplifying the influence from twinned structures. By manipulating the kinetics of atomic addition, we figure out that newly formed Pd atoms are preferentially added to the{100} facets of cuboctahedral seeds when the Pd atomic concentrations are intentionally controlled very low, leaving{111} facets on the resulted octahedral nanocrystals. The{111} facets formed at the surface of octahedrons enable us to investigating facet-dependent catalytic effects, with well-developed{100}-bound Pd nanocubes as a reference.
     2. Based on the controlled synthesis of Pd nanocrystals in the last chapter, we first employ single-facet Pd nanocrystals as a model system to investigate the facet-dependent behavior for molecular oxygen activation. In our investigation, two types of nanocrystals with different surface facets are used:nanocubes enclosed by{100} facets and octahedrons by{111} facets. The yield of singlet O2, characterized by probe molecules in the presence of various scavengers, exclusively demonstrates that singlet-02-analogous species is preferentially formed on{100} facets. Both the simulations and characterizations further elucidate that O2is more activated on the{100} facets via chemisorption. As facet control enables to tuning the capability of activating O2, we have been able to demonstrate that the surface facet of metal nanocrystals is a critical parameter to designing catalysts for organic oxidation and therapy agents for cancer treatment.
     3. Since the Pd→O2electron transfer is responsible for O2activation, the charge state of metal surface may offer a knob for tuning its efficiency, which is fundamentally important to optimizing catalysts design for organic oxidations. Prior to our work, oxide semiconductors were generally considered as support materialsfor metal catalysts in organic reactions. In our work, we demonstrate using Pd-TiO2hybrid structures as a proof-of-concept model that plasmonic hot electrons can be injected into the conduction band of TiO2, in opposite to the function of Schottky junction, lowering the electron density of Pd surface. By varying the illumination intensity, it is feasible to modulate the charge state of Pd surface in such a metal-semiconductor hybrid configuration. This modulation enables enhancement of O2activation and in turn efficiency improvement of catalytic glucose oxidation by shedding appropriate light on the Pd-TiO2hybrid structures.
     4. Based on plasmon excitation, catalytic reactions can befacilitated through both plasmon-driven catalysis and photothermal conversion. In our work, we demonstrate the direct light harvesting in UV-to-visible range for hydrogenation reactions using the Pd nanostructures that are synthesized viaa one-pot Ru-assistedroute. Under the light illumination, hydrogenation reactions can be driven to different extentat room temperature depending on the light intensity. This unique characteristic of plasmonic nanostructures suggests that metal nanocrystals with high-index facets can be used in many catalytic heterogeneous reactions by harvesting solar energy instead of heat energy.
引文
1. Y. Xia, Y. Xiong, B. Lim and S. E. Skrabalak, Shape-controlled synthesis of metal nanocrystals:simple chemistry meets complex physics? Angew. Chem. Int. Ed Engl,2009, 48,60-103.
    2. S. Eustis and M. A. El-Sayed, Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev.,2006,35, 209-217.
    3. J. C. Fierro-Gonzalez and B. C. Gates, Catalysis by gold dispersed on supports:the importance of cationic gold. Chem. Soc. Rev.,2008,37,2127-2134.
    4. A. Furstner, Gold and platinum catalysis-a convenient tool for generating molecular complexity. Chem. Soc. Rev.,2009,38,3208-3221.
    5. A. S. K. Hashmi and M. Rudolph, Gold catalysis in total synthesis. Chem. Soc. Rev.,2008, 37,1766-1775.
    6. P. J. Ferreira and Y. Shao-Horn, Formation mechanism of Pt single-crystal nanoparticles in proton exchange membrane fuel cells. Electrochemical and Solid State Letters,2007,10, B60-B63.
    7. L. K. Meng, K. Wu, C. Liu and A. W. Lei, Palladium-catalysed aerobic oxidative Heck-type alkenylation of Csp(3)-H for pyrrole synthesis. Chem. Commnu.,2013,49,5853-5855.
    8. Y. G. Bai, L. M. H. Kim, H. Z. Liao and X. W. Liu, Oxidative Heck Reaction of Glycals and Aryl Hydrazines:A Palladium-Catalyzed C-Glycosylation. J Org Chem,2013,78, 8821-8825.
    9. A. Wittstock, V. Zielasek, J. Biener, C. M. Friend and M. Baeumer, Nanoporous Gold Catalysts for Selective Gas-Phase Oxidative Coupling of Methanol at Low Temperature. Science,2010,327,319-322.
    10. D. Ray, Y. Nasima, M. K. Sajal, P. Ray, S. Urinda, A. Anoop and J. K. Ray, Palladium-Catalyzed Intramolecular Oxidative Heck Cyclization and Its Application toward a Synthesis of (+/-)-beta-Cuparenone Derivatives Supported by Computational Studies. Synthesis-Stuttgart,2013,45,1261-1269.
    11. M. Khoobi, F. Molaverdi, M. Alipour, F. Jafarpour, A. Foroumadi and A. Shafiee, Palladium-catalyzed domino protodecarboxylation/oxidative Heck reaction:regioselective arylation of coumarin-3-carboxylic acids. Tetrahedron,2013,69,11164-11168.
    12. M. M. Schubert, S. Hackenberg, A. C. van Veen, M. Muhler, V. Plzak and R. J. Behm, CO oxidation over supported gold catalysts-"inert" and "active" support materials and their role for the oxygen supply during reaction. J. Catal,2001,197,113-122.
    13. C. J. Zhang and P. Hu, CO oxidation on Pd(100) and Pd(111):A comparative study of reaction pathways and reactivity at low and medium coverages. J. Am. Chem. Soc,2001, 123,1166-1172.
    14. M. Jin, H. Liu, H. Zhang, Z. Xie, J. Liu and Y. Xia, Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes<10 nm for application in CO oxidation. Nano Res.,2010,4, 83-91.
    15. F. Illas, N. Lopez, J. M. Ricart, A. Clotet, J. C. Conesa and M. Fernandez-Garcia, Interaction of CO and NO with PdCu(111) surfaces. J. Phys. Chem. B,1998,102,8017-8023.
    16. G. Boisvert, L. J. Lewis and M. Scheffler, Island morphology and adatom self-diffusion on Pt(111). Phys. Rev. B,1998,57,1881-1889.
    17. W. Wurth, J. Stohr, P. Feulner, X. Pan, K. R. Bauchspiess, Y. Baba, E. Hudel, G. Rocker and D. Menzel, Bonding, Structure, and Magnetism of Physisorbed and Chemisorbed O-2 on Pt(111). Phys. Rev. Lett,1990,65,2426-2429.
    18. C. T. Campbell, Atomic and Molecular-Oxygen Adsorption on Ag(111). Sur. Sci,1985,157, 43-60.
    19. E. H. Voogt, A. J. M. Mens, O. L. J. Gijzeman and J. W. Geus, Adsorption of oxygen and surface oxide formation on Pd(111) and Pd foil studied with ellipsometry, LEED, AES and XPS. Sur. Sci,1997,373,210-220.
    20. V. K. Lamer and R. H. Dinegar, Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. J. Am. Chem. Soc,1950,72,4847-4854.
    21. L. D. Marks, Experimental Studies of Small-Particle Structures. Reports on Progress in Physics,1994,57,603-649.
    22. F. Baletto, C. Mottet and R. Ferrando, Microscopic mechanisms of the growth of metastable silver icosahedra. Phys. Rev. B,2001,63.
    23. F. Baletto, R. Ferrando, A. Fortunelli, F. Montalenti and C. Mottet, Crossover among structural motifs in transition and noble-metal clusters. Journal of Chemical Physics,2002, 116,3856-3863.
    24. F. Baletto and R. Ferrando, Structural properties of nanoclusters:Energetic, thermodynamic, and kinetic effects. Rev. Mod. Phys.,2005,77,371-423.
    25. C. M. Cobley, M. Rycenga, F. Zhou, Z. Y. Li and Y. Xia, Etching and growth:an intertwined pathway to silver nanocrystals with exotic shapes. Angew. Chem. Int. Ed. Engl,2009,48, 4824-4827.
    26. S. Xie, N. Lu, Z. Xie, J. Wang, M. J. Kim and Y. Xia, Synthesis of Pd-Rh core-frame concave nanocubes and their conversion to Rh cubic nanoframes by selective etching of the Pd cores. Angew. Chem. Int. Ed. Engl,2012,51,10266-10270.
    27. H. Zhang, X. Xia, W. Li, J. Zeng, Y. Dai, D. Yang and Y. Xia, Facile synthesis of five-fold twinned, starfish-like rhodium nanocrystals by eliminating oxidative etching with a chloride-free precursor. Angew. Chem. Int. Ed Engl.,2010,49,5296-5300.
    28. C. M. Cobley, M. Rycenga, F. Zhou, Z. Y. Li and Y. N. Xia, Etching and Growth:An Intertwined Pathway to Silver Nanocrystals with Exotic Shapes. Angew. Chem. In.t Edit, 2009,48,4824-4827.
    29. Y. J. Xiong, J. M. McLellan, Y. D. Yin and Y. N. Xia, Synthesis of palladium icosahedra with twinned structure by blocking oxidative etching with citric acid or citrate ions. Angew. Chem. In.t Edit,2007,46,790-794.
    30. M. Tsuji, N. Miyamae, M. Nishio, S. Hikino and N. Ishigami, Shape selective oxidative etching and growth of single-twin plate-like and multiple-twin decahedral and icosahedral gold nanocrystals in the presence of Au seeds under microwave heating. B. Chem. Soc. Jpn., 2007,80,2024-2038.
    31. Y. J. Xiong, Morphological changes in Ag nanocrystals triggered by citrate photoreduction and governed by oxidative etching. Chem. Commnu.,2011,47,1580-1582.
    32. A. Kisner, M. Heggen, E. Fernandez, S. Lenk, D. Mayer, U. Simon, A. Offenhausser and Y. Mourzina, The role of oxidative etching in the synthesis of ultrathin single-crystalline Au nanowires. Chem. Eur. J.,2011,17,9503-9507.
    33. M. Liu, Y. Zheng, L. Zhang, L. Guo and Y. Xia, Transformation of Pd nanocubes into octahedra with controlled sizes by maneuvering the rates of etching and regrowth. J. Am.Chem. Soc,2013,135,11752-11755.
    34. M. J. Mulvihill, X. Y. Ling, J. Henzie and P. Yang, Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. J. Am.Chem. Soc, 2010,132,268-274.
    35. L. Wang and Y. Yamauchi, Metallic nanocages:synthesis of bimetallic pt-pd hollow nanoparticles with dendritic shells by selective chemical etching. J. Am.Chem. Soc,2013, 135,16762-16765.
    36. Y. Xiong, J. Chen, B. Wiley, Y. Xia, S. Aloni and Y. Yin, Understanding the role of oxidative etching in the polyol synthesis of Pd nanoparticles with uniform shape and size. J. Am.Chem. Soc,2005,127,7332-7333.
    37. H. F. Winters, The Etching of Cu(100) with Cl-2.J Vac Sci Technol A,1985,3,786-790.
    38. Y. Xiong, J. Chen, B. Wiley, Y. Xia, Y. Yin and Z. Y. Li, Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process. Nano. Lett.,2005,5,1237-1242.
    39. Y. J. Xiong, J. Y. Chen, B. Wiley, Y. N. Xia, Y. D. Yin and Z. Y. Li, Size-dependence of surface plasmon resonance and oxidation for pd nanocubes synthesized via a seed etching process. Nano. Lett,2005,5,1237-1242.
    40. B. Li, R. Long, X. Zhong, Y. Bai, Z. Zhu, X. Zhang, M. Zhi, J. He, C. Wang, Z. Y. Li and Y. Xiong, Investigation of size-dependent plasmonic and catalytic properties of metallic nanocrystals enabled by size control with HCl oxidative etching. Small,2012,8,1710-1716.
    41. Q. Zhang, N. Li, J. Goebl, Z. Lu and Y. Yin, A systematic study of the synthesis of silver nanoplates:is citrate a "magic" reagent? J. Am.Chem. Soc,2011,133,18931-18939.
    42. H. Guo, Y. Chen, H. Ping, L. Wang and D.-L. Peng, One-pot synthesis of hexagonal and triangular nickel-copper alloy nanoplates and their magnetic and catalytic properties. J. Mater. Chem.,2012,22,8336-8344.
    43. Y. Xiong, J. M. McLellan, J. Chen, Y. Yin, Z. Y. Li and Y. Xia, Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties. J. Am.Chem. Soc,2005,127,17118-17127.
    44. Y. Bai, R. Long, C. Wang, M. Gong, Y. Li, H. Huang, H. Xu, Z. Li, M. Deng and Y. Xiong, Activation of specific sites on cubic nanocrystals:a new pathway for controlled epitaxial growth towards catalytic applications. J. Mater. Chem. A,2013,1,4228-4235.
    45. R. L. David and W. M. Haynes, CRC Handbook of Chemistry and Physics 90th Edition, 2010.
    46. C. Wang, L. Ma, L. Liao, S. Bai, R. Long, M. Zuo and Y. Xiong, A unique platinum-graphene hybrid structure for high activity and durability in oxygen reduction reaction. Sci. Rep.,2013,3,2580.
    47. Y. N. Xia and N. J. Halas, Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. Mrs Bull,2005,30,338-344.
    48. M. Rycenga, Z. P. Wang, E. Gordon, C. M. Cobley, A. G. Schwartz, C. S. Lo and Y. N. Xia, Probing the Photothermal Effect of Gold-Based Nanocages with Surface-Enhanced Raman Scattering(SERS). Angew. Chem. In.t Edit,2009,48,9924-9927.
    49. M. Rycenga, M. H. Kim, P. H. C. Camargo, C. Cobley, Z. Y. Li and Y. N. Xia, Surface-Enhanced Raman Scattering:Comparison of Three Different Molecules on Single-Crystal Nanocubes and Nanospheres of Silver. J. Phys. Chem. A,2009,113, 3932-3939.
    50. P. H. C. Camargo, C. M. Cobley, M. Rycenga and Y. N. Xia, Measuring the surface-enhanced Raman scattering enhancement factors of hot spots formed between an individual Ag nanowire and a single Ag nanocube. Nanotechnology,2009,20.
    51. H. A. Atwater and A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater, 2010,9,205-213.
    52. C. L. Haynes, A. D. McFarland and R. P. Van Duyne, Surface-enhanced Raman spectroscopy. Analytical Chemistry,2005,77,338A-346A.
    53. Y. J. Xiong, R. Long, D. Liu, X. L. Zhong, C. M. Wang, Z. Y. Li and Y. Xie, Solar energy conversion with tunable plasmonic nanostructures for thermoelectric devices. Nanoscale, 2012,4,4416-4420.
    54. A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. R. Van Duyne and S. L. Zou, Plasmonic materials for surface-enhanced sensing and spectroscopy. Mrs Bull,2005,30, 368-375.
    55. G. Baffou, R. Quidant and C. Girard, Heat generation in plasmonic nanostructures:Influence of morphology. Appl. Phys. Lett,2009,94.
    56. C. W. Chang, D. Okawa, A. Majumdar and A. Zettl, Solid-state thermal rectifier. Science, 2006,314,1121-1124.
    57. B. Wiley, Y. Sun and Y. Xia, Polyol synthesis of silver nanostructures:control of product morphology with Fe(Ⅱ) or Fe(Ⅲ) species. Langmuir,2005,21,8077-8080.
    58. A. R. Rathmell, S. M. Bergin, Y. L. Hua, Z. Y. Li and B. J. Wiley, The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Adv. Mater., 2010,22,3558-3563.
    59. Z. Li, J. Tao, X. Lu, Y. Zhu and Y. Xia, Facile synthesis of ultrathin Au nanorods by aging the AuCl(oleylamine) complex with amorphous Fe nanoparticles in chloroform. Nano. Lett., 2008,8,3052-3055.
    60. A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne and M. A. Reed, Observation of plasmon propagation, redirection, and fan-out in silver nanowires. Nano. Lett,2006,6,1822-1826.
    61. E. Verhagen, M. Spasenovic, A. Polman and L. Kuipers, Nanowire Plasmon Excitation by Adiabatic Mode Transformation. Phys. Rev. Lett.,2009,102,203904.
    62. A. L. Pyayt, B. Wiley, Y. Xia, A. Chen and L. Dalton, Integration of photonic and silver nanowire plasmonic waveguides. Nat. Nanotechnol,2008,3,660-665.
    63. T. Yatsui, M. Kourogi and M. Ohtsu, Plasmon waveguide for optical far/near-field conversion. Appl. Phys. Lett.,2001,79,4583-4585.
    64. W. L. Barnes, A. Dereux and T. W. Ebbesen, Surface plasmon subwavelength optics. Nature, 2003,424,824-830.
    65. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto and T. Kobayashi, Guiding of a one-dimensional optical beam with nanometer diameter. Opt. Lett.,1997,22,475-477.
    66. M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu and T. Yatsui, Nanophotonics:Design, fabrication, and operation of nanometric devices using optical near fields. IEEE J. Sel. Top. Quantum Elect.,2002,8,839-862.
    67. X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu and L. Tong, Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits. Nano. Lett.,2009,9,4515-4519.
    68. Y. Huang, X. F. Duan, Q. Q. Wei and C. M. Lieber, Directed assembly of one-dimensional nanostructures into functional networks. Science,2001,291,630-633.
    69. A. Tao, F. Kim, C. Hess, J. Goldberger, R. R. He, Y. G. Sun, Y. N. Xia and P. D. Yang, Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano. Lett.,2003,3,1229-1233.
    70. Y. Cao, W. Liu, J. L. Sun, Y. P. Han, J. H. Zhang, S. Liu, H. S. Sun and J. H. Guo, A technique for controlling the alignment of silver nanowires with an electric field. Nanotechnology,2006,17,2378-2380.
    71. L. Hu, H. S. Kim, J. Y. Lee, P. Peumans and Y. Cui, Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano,2010,4,2955-2963.
    72. P. K. Khanna, N. Singh, S. Charan, V. V. V. S. Subbarao, R. Gokhale and U. P. Mulik, Synthesis and characterization of Ag/PVA nanocomposite by chemical reduction method. Mat. Chem. Phys.,2005,93,117-121.
    73. A. R. Madaria, A. Kumar, F. N. Ishikawa and C. Zhou, Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Res.,2010,3,564-573.
    74. S. M. Bergin, Y. H. Chen, A. R. Rathmell, P. Charbonneau, Z. Y. Li and B. J. Wiley, The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale,2012,4,1996-2004.
    75. R. M. Mutiso, M. C. Sherrott, A. R. Rathmell, B. J. Wiley and K. I. Winey, Integrating Simulations and Experiments To Predict Sheet Resistance and Optical Transmittance in Nanowire Films for Transparent Conductors. ACS Nano,2013,7,7654-7663.
    76. Z. Yu, W. Yuan, P. Brochu, B. Chen, Z. Liu and Q. Pei, Large-strain, rigid-to-rigid deformation of bistable electroactive polymers. Appl. Phys. Lett,2009,95,192904.
    77. D. A. Alonso and C. Najera, Oxime-derived palladacycles as source of palladium nanoparticles. Chem. Soc. Rev.,2010,39,2891-2902.
    78. C. A. Fleckenstein and H. Plenio, Sterically demanding trialkylphosphines for palladium-catalyzed cross coupling reactions-alternatives to PtBu3. Chem. Soc. Rev.,2010, 39,694-711.
    79. L. Q. Xue and Z. Y. Lin, Theoretical aspects of palladium-catalysed carbon-carbon cross-coupling reactions. Chem. Soc. Rev.,2010,39,1692-1705.
    80. R. Chinchilla and C. Najera, Chemicals from Alkynes with Palladium Catalysts. Chem. Rev., 2013,10.1021/cr400133p.
    81. F. S. Han, Transition-metal-catalyzed Suzuki-Miyaura cross-coupling reactions:a remarkable advance from palladium to nickel catalysts. Chem. Soc. Rev.,2013,42, 5270-5298.
    1. Y. Xia, Y. Xiong, B. Lim and S. E. Skrabalak, Shape-controlled synthesis of metal nanocrystals:simple chemistry meets complex physics? Angew. Chem. Int. Ed Engl,2009, 48,60-103.
    2. H. R. Moon, D. W. Lim and M. P. Suh, Fabrication of metal nanoparticles in metal-organic frameworks. Chem. Soc. Rev.,2013,42,1807-1824.
    3. D. Olid, R. Nunez, C. Vinas and F. Teixidor, Methods to produce B-C, B-P, B-N and B-S bonds in boron clusters. Chem. Soc. Rev.,2013,42,3318-3336.
    4. B. Sundararaju, M. Achard and C. Bruneau, Transition metal catalyzed nucleophilic allylic substitution:activation of allylic alcohols via pi-allylic species. Chem. Soc. Rev.,2012,41, 4467-4483.
    5. H. D. Velazquez and F. Verpoort, N-heterocyclic carbene transition metal complexes for catalysis in aqueous media. Chem. Soc. Rev.,2012,41,7032-7060.
    6. L. D. Wang, W. He and Z. K. Yu, Transition-metal mediated carbon-sulfur bond activation and transformations. Chem. Soc. Rev.,2013,42,599-621.
    7. Y. Li, X. M. Hong, D. M. Collard and M. A. El-Sayed, Suzuki cross-coupling reactions catalyzed by palladium nanoparticles in aqueous solution. Organic Letters,2000,2, 2385-2388.
    8. M. T. Reetz and E. Westermann, Phosphane-free palladium-catalyzed coupling reactions: The decisive role of Pd nanoparticles. Angew. Chem. In.t Edit.,2000,39,165-168.
    9. S. W. Kim, M. Kim, W. Y. Lee and T. Hyeon, Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions.J.Am. Chem. Soc.,2002,124,7642-7643.
    10. S. U. Son, Y. Jang, J. Park, H. B. Na, H. M. Park, H. J. Yun, J. Lee and T. Hyeon, Designed synthesis of atom-economical Pd/Ni bimetallic nanoparticle-based catalysts for sonogashira coupling reactions. J. Am. Chem. Soc.,2004,126,5026-5027.
    11. X. M. Wang and Y. Y. Xia, Synthesis, characterization and catalytic activity of an ultrafine Pd/C catalyst for formic acid electrooxidation. Electrochimica Acta,2009,54,7525-7530.
    12. X. Xia, S. I. Choi, J. A. Herron, N. Lu, J. Scaranto, H. C. Peng, J. Wang, M. Mavrikakis, M. J. Kim and Y. Xia, Facile synthesis of palladium right bipyramids and their use as seeds for overgrowth and as catalysts for formic Acid oxidation. J. Am.Chem. Soc.,2013,135, 15706-15709.
    13. D. Vogel, C. Spiel, Y. Suchorski, A. Trinchero, R. Schlogl, H. Gronbeck and G. Rupprechter, Local catalytic ignition during CO oxidation on low-index Pt and Pd surfaces:a combined PEEM, MS, and DFT study. Angew. Chem. Int. Ed. Engl.,2012,51,10041-10044.
    14. M. Jin, H. Liu, H. Zhang, Z. Xie, J. Liu and Y. Xia, Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes<10 nm for application in CO oxidation. Nano Res.,2010,4, 83-91.
    15. X. Li, L. C. Wang, H. H. Chang, C. X. Zhang and W. L. Wei, Mizoroki-Heck coupling reactions of arenediazonium tetrafluoroborate salts catalyzed by aluminium hydroxide-supported palladium nanoparticles. Applied Catalysis a-General,2013,462, 15-22.
    16. T.-Y. Zeng, Z.-M. Zhou, J. Zhu, Z.-M. Cheng, P.-Q. Yuan and W.-K. Yuan, Palladium supported on hierarchically macro-mesoporous titania for styrene hydrogenation. Catalysis Today,2009,147, S41-S45.
    17. A. Morel, E. Silarska, A. M. Trzeciak and J. Pernak, Palladium-catalyzed asymmetric Heck arylation of 2,3-dihydrofuran-effect of prolinate salts. Dalton T,2013,42,1215-1222.
    18. A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu and H. Giessen, Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing. Nano. Lett.,2011,11,4366-4369.
    19. X. Q. Huang, S. H. Tang, H. H. Zhang, Z. Y. Zhou and N. F. Zheng, Controlled Formation of Concave Tetrahedral/Trigonal Bipyramidal Palladium Nanocrystals. J. Am. Chem. Soc.,2009, 131,13916-13917.
    20. Y. Xiong and Y. Xia, Shape-Controlled Synthesis of Metal Nanostructures:The Case of Palladium. Adv. Mater.,2007,19,3385-3391.
    21. Y. Xiong, I. Washio, J. Chen, M. Sadilek and Y. N. Xia, Trimeric clusters of silver in aqueous AgNO3 solutions and their role as nuclei in forming triangular nanoplates of silver. Angew. Chem. In.t Edit.,2007,46,4917-4921.
    22. Y. Xiong, H. Cai, B. J. Wiley, J. Wang, M. J. Kim and Y. Xia, Synthesis and mechanistic study of palladium nanobars and nanorods. J. Am.Chem. Soc.,2007,129,3665-3675.
    23. Y. J. Xiong, J. M. McLellan, Y. D. Yin and Y. N. Xia, Synthesis of palladium icosahedra with twinned structure by blocking oxidative etching with citric acid or citrate ions. Angew. Chem. In.t Edit.,2007,46,790-794.
    24. M. Jin, G. He, H. Zhang, J. Zeng, Z. Xie and Y. Xia, Shape-controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as acapping agent. Angew. Chem. Int. Ed. Engl.,2011,50,10560-10564.
    25. Y. Lu, X. Lu, B. T. Mayers, T. Herricks and Y. Xia, Synthesis and characterization of magnetic Co nanoparticles:A comparison study of three different capping surfactants. Journal of Solid State Chemistry,2008,181,1530-1538.
    26. J. Zeng, Y. Q. Zheng, M. Rycenga, J. Tao, Z. Y. Li, Q. A. Zhang, Y. M. Zhu and Y. N. Xia, Controlling the Shapes of Silver Nanocrystals with Different Capping Agents. J. Am. Chem. Soc.,2010,132,8552-8553.
    27. S. G. Kwon, G. Krylova, A. Sumer, M. M. Schwartz, E. E. Bunel, C. L. Marshall, S. Chattopadhyay, B. Lee, J. Jellinek and E. V. Shevchenko, Capping ligands as selectivity switchers in hydrogenation reactions. Nano. Lett.,2012,12,5382-5388.
    28. A. Tao, P. Sinsermsuksakul and P. Yang, Polyhedral silver nanocrystals with distinct scattering signatures. Angew. Chem. Int. Ed. Engl.,2006,45,4597-4601.
    29. Q. A. Zhang, W. Y. Li, C. Moran, J. Zeng, J. Y. Chen, L. P. Wen and Y. N. Xia, Seed-Mediated Synthesis of Ag Nanocubes with Controllable Edge Lengths in the Range of 30-200nm and Comparison of Their Optical Properties. J. Am. Chem. Soc.,2010,132, 11372-11378.
    30. Y. Xiong, J. Chen, B. Wiley, Y. Xia, S. Aloni and Y. Yin, Understanding the role of oxidative etching in the polyol synthesis of Pd nanoparticles with uniform shape and size. J. Am.Chem. Soc.,2005,127,7332-7333.
    31. Q. Chen and N. V. Richardson, Surface facetting induced by adsorbates. Progress in Surface Science,2003,73,59-77.
    32. C. T. Campbell, Atomic and Molecular-Oxygen Adsorption on Ag(111). Sur. Sci,1985,157, 43-60.
    33. K. Habermehl-Cwirzen and J. Lahtinen, Sulfur poisoning of the CO adsorption on Co(0001). Sur. Sci,2004,573,183-190.
    34. C. Y. Nakakura and E. I. Altman, Bromine adsorption, reaction, and etching of Cu(100). Sur. Sci.,1997,370,32-46.
    35. M. W. Roberts, Chemisorption and Reactions at Metal-Surfaces. Sur. Sci.,1994,299, 769-784.
    36. E. H. Voogt, A. J. M. Mens, O. L. J. Gijzeman and J. W. Geus, Adsorption of oxygen and surface oxide formation on Pd(111) and Pd foil studied with ellipsometry, LEED, AES and XPS. Sur. Sci.,1997,373,210-220.
    37. R. V. Hardeveld and F. Hartog, The Statistics of Surface Atoms and Surface Sites on Metal Crystals. Sur. Sci.,1969,15,189-230.
    1. P. Christopher, H. Xin and S. Linic, Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem.,2011,3,467-472.
    2. X. Xie, Y. Li, Z.-Q. Liu, M. Haruta and W. Shen, Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature,2009,458,746-749.
    3. D. I. Enache, J. K. Edwards, P. Landon, B. Solsona-Espriu, A. F. Carley, A. A. Herzing, M. Watanabe, C. J. Kiely, D. W. Knight and G. J. Hutchings, Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science,2006,311,362-365.
    4. L. Kesavan, R. Tiruvalam, M. H. Ab Rahim, M. I. bin Saiman, D. I. Enache, R. L. Jenkins, N. Dimitratos, J. A. Lopez-Sanchez, S. H. Taylor, D. W. Knight, C. J. Kiely and G. J. Hutchings, Solvent-Free Oxidation of Primary Carbon-Hydrogen Bonds in Toluene Using Au-Pd Alloy Nanoparticles. Science,2011,331,195-199.
    5. A. Wittstock, V. Zielasek, J. Biener, C. M. Friend and M. Baeumer, Nanoporous Gold Catalysts for Selective Gas-Phase Oxidative Coupling of Methanol at Low Temperature. Science,2010,327,319-322.
    6. D. Kovalev and M. Fujii, Silicon nanocrystals:Photosensitizers for oxygen molecules. Adv. r.,2005,17,2531-2544.
    7. J. Wahlen, D. E. De Vos, P. A. Jacobs and P. L. Alsters, Solid materials as sources for synthetically useful singlet oxygen. Advanced Synthesis & Catalysis,2004,346,152-164.
    8. R. Vankayala, A. Sagadevan, P. Vijayaraghavan, C.-L. Kuo and K. C. Hwang, Metal Nanoparticles Sensitize the Formation of Singlet Oxygen. Angew. Chem. In. t Edit.,2011, 50, 10640-10644.
    9. Y. J. Xiong, J. Y. Chen, B. Wiley, Y. N. Xia, Y. D. Yin and Z. Y. Li, Size-dependence of surface plasmon resonance and oxidation for pd nanocubes synthesized via a seed etching process. Nano. Lett.,2005,5,1237-1242.
    10. R. Pal, L.-M. Wang, Y. Pei, L.-S. Wang and X. C. Zeng, Unraveling the Mechanisms of O-2 Activation by Size-Selected Gold Clusters:Transition from Superoxo to Peroxo Chemisorption. J. Am. Chem. Soc.,2012,134,9438-9445.
    11. R. V. Hardeveld and F. Hartog, The Statistics of Surface Atoms and Surface Sites on Metal Crystals. Sur. Sci.,1969,15,189-230.
    12. P. D. Josephy, T. Eling and R. P. Mason, The Horseradish Peroxidase-Catalyzed Oxidation of 3,5,3',5'-Tetramethylbenzidine-Free-Radical and Charge-Transfer Complex Intermediates. J Biol Chem,1982,257,3669-3675.
    13. J. A. Badwey and M. L. Karnovsky, Active Oxygen Species and the Functions of Phagocytic Leukocytes. Annual Review of Biochemistry,1980,49,695-726.
    14. R. Konaka, E. Kasahara, W. C. Dunlap, Y. Yamamoto, K. C. Chien and M. Inoue, Irradiation of titanium dioxide generates both singlet oxygen and superoxide anion. Free Radical Biology and Medicine,1999,27,294-300.
    15. W. Wurth, J. Stohr, P. Feulner, X. Pan, K. R. Bauchspiess, Y. Baba, E. Hudel, G. Rocker and D. Menzel, Bonding, Structure, and Magnetism of Physisorbed and Chemisorbed O-2 on Pt(111). Phys. Rev. Lett.,1990,65,2426-2429.
    16. M. Besson, F. Lahmer, P. Gallezot, P. Fuertes and G. Fleche, Catalytic-Oxidation of Glucose on Bismuth-Promoted Palladium Catalysts. J. Catal.,1995,152,116-121.
    17. J. F. Lovell, T. W. B. Liu, J. Chen and G. Zheng, Activatable Photosensitizers for Imaging and Therapy. Chem. Rev.,2010,110,2839-2857.
    18. P. R. Ogilby, Singlet oxygen:there is indeed something new under the sun. Chem. Soc. Rev., 2010,39,3181-3209.
    19. N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran and Y. Zhang, In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med.,2012,18,1580-U1190.
    20. D. Dolmans, D. Fukumura and R. K. Jain, Photodynamic therapy for cancer. Nature Reviews Cancer,2003,3,380-387.
    21. K. C. Das and C. K. Das, Thioredoxin, a singlet oxygen quencher and hydroxyl radical scavenger:Redox independent functions. Biochem Bioph Res Co,2000,277,443-447.
    22. C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith and S. C. Baxter, Gold Nanoparticles in Biology:Beyond Toxicity to Cellular Imaging. Accounts of Chemical Research,2008,41,1721-1730.
    1. R. Long, K. Mao, X. Ye, W. Yan, Y. Huang, J. Wang, Y. Fu, X. Wang, X. Wu, Y. Xie and Y. Xiong, Surface facet of palladium nanocrystals:a key parameter to the activation of molecular oxygen for organic catalysis and cancer treatment. J. Am. Chem. Soc.,2013,135, 3200-3207.
    2. Z. W. Seh, S. Liu, M. Low, S. Y. Zhang, Z. Liu, A. Mlayah and M. Y. Han, Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Adv Mater,2012,24,2310-2314.
    3. L. Wang, J. Ge, A. Wang, M. Deng, X. Wang, S. Bai, R. Li, J. Jiang, Q. Zhang, Y. Luo and Y. Xiong, Designing p-Type Semiconductor-Metal Hybrid Structures for Improved Photocatalysis. Angew. Chem. Int. Ed Engl.,2014,10.1002/anie.201310635.
    4. W. He, H. K. Kim, W. G Wamer, D. Melka, J. H. Callahan and J. J. Yin, Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity. J. Am.Chem. Soc.,2014,136,750-757.
    5. D. B. Ingram and S. Linic, Water splitting on composite plasmonic-metal/semiconductor photoelectrodes:evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J. Am.Chem. Soc.,2011,133,5202-5205.
    6. Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka and T. Majima, Au/TiO2Superstructure-Based Plasmonic Photocatalysts Exhibiting Efficient Charge Separation and Unprecedented Activity. J. Am. Chem. Soc.,2014,136,458-465.
    7. X. F. Wu, H. Y. Song, J. M. Yoon, Y. T. Yu and Y. F. Chen, Synthesis of core-shell Au@TiO2 nanoparticles with truncated wedge-shaped morphology and their photocatalytic properties. Langmuir,2009,25,6438-6447.
    8. L. Liu, G. Wang, Y. Li, Y. Li and J. Z. Zhang, CdSe quantum dot-sensitized Au/TiO2 hybrid mesoporous films and their enhanced photoelectrochemical performance. Nano Res.,2010,4, 249-258.
    9. A. L. Linsebigler, G. Q. Lu and J. T. Yates, Photocatalysis on Tio2 Surfaces-Principles, Mechanisms, and Selected Results. Chem. Rev.,1995,95,735-758.
    10. S. A. Wyrzgol, S. Schafer, S. Lee, B. Lee, M. Di Vece, X. B. Li, S. Seifert, R. E. Winans, M. Stutzmann, J. A. Lercher and S. Vajda, Combined TPRx, in situ GISAXS and GIXAS studies of model semiconductor-supported platinum catalysts in the hydrogenation of ethene. Phys. Chem. Chem. Phys.,2010,12,5585-5595.
    11. X. H. Li and M. Antonietti, Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides:functional Mott-Schottky heterojunctions for catalysis. Chem. Soc. Rev.,2013,42, 6593-6604.
    12. K. D. Kochev, D. B. Kushev, M. D. Mitev and K. I. Ivanova, Determination of the Absorption-Coefficient from the Spectral Dependence of the Photocurrent in Schottky Type Junctions. Infrared Phys Techn,1995,36,649-653.
    13. X. Mathew, Photocurrent characteristics of a double junction Au/Cu2O/MO Schottky device. J Mater Sci Lett,2002,21,1911-1914.
    14. J. Gobrecht and H. Gerischer, Schottky-Barrier Height, Photo-Voltage and Photocurrent in Liquid-Junction Solar-Cells. Sol Energ Mater,1979,2,131-142.
    15. C. G. Silva, R. Juarez, T. Marino, R. Molinari and H. Garcia, Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. J. Am. Chem. Soc.,2011, 133,595-602.
    16. Y. C. Pu, G. Wang, K. D. Chang, Y. Ling, Y. K. Lin, B. C. Fitzmorris, C. M. Liu, X. Lu, Y. Tong, J. Z. Zhang, Y. J. Hsu and Y. Li, Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett,2013,13,3817-3823.
    17. P. D. Josephy, T. Eling and R. P. Mason, The Horseradish Peroxidase-Catalyzed Oxidation of 3,5,3',5'-Tetramethylbenzidine-Free-Radical and Charge-Transfer Complex Intermediates. J Biol Chem,1982,257,3669-3675.
    18. J. A. Badwey and M. L. Karnovsky, Active Oxygen Species and the Functions of Phagocytic Leukocytes. Annual Review of Biochemistry,1980,49,695-726.
    19. T. Buckup, A. Weigel, J. Hauer and M. Motzkus, Ultrafast multiphoton transient absorption of beta-carotene. Chemical Physics,2010,373,38-44.
    20. H. Brune, J. Wintterlin, R. J. Behm and G Ertl, Surface migration of "hot" adatoms in the course of dissociative chemisorption of oxygen on Al(111). Phys. Rev. Lett.,1992,68, 624-626.
    21. A. Komrowski, J. Sexton, A. Kummel, M. Binetti, O. WeiBe and E. Hasselbrink, Oxygen Abstraction from Dioxygen on the Al(111) Surface. Phys. Rev. Lett.,2001,87,246103.
    22. J. Behler, B. Delley, S. Lorenz, K. Reuter and M. Scheffler, Dissociation of O2 at Al(111): The Role of Spin Selection Rules. Phys. Rev. Lett.,2005,94.
    23. M. Besson, F. Lahmer, P. Gallezot, P. Fuertes and G. Fleche, Catalytic-Oxidation of Glucose on Bismuth-Promoted Palladium Catalysts. J. Catal.,1995,152,116-121.
    24. M. G. Muller, J. Niklas, W. Lubitz and A. R. Holzwarth, Ultrafast transient absorption studies on Photosystem I reaction centers from Chlamydomonas reinhardtii.1. A new interpretation of the energy trapping and early electron transfer steps in Photosystem I. Biophys J,2003,85, 3899-3922.
    25. S. Bratos and J. C. Leicknam, Ultrafast transient absorption spectroscopy of the hydrated electron:A theory. Chem. Phys. Lett.,1996,261,117-122.
    26. G. V. Hartland, Ultrafast studies of single semiconductor and metal nanostructures through transient absorption microscopy. Chem Sci,2010,1,303-309.
    27. I. V. Tomov and P. M. Rentzepis, Ultrafast time-resolved transient structures of solids and liquids by means of extended X-ray absorption fine structure. Chemphyschem,2004,5, 27-35.
    28. Y. Kimura, J. C. Alfano, P. K. Walhout and P. F. Barbara, Ultrafast Transient Absorption-Spectroscopy of the Solvated Electron in Water. J. Phys. Chem.,1994,98, 3450-3458.
    29. M. Hartmann, A. Heidenreich, J. Pittner, V. Bonacic-Koutecky and J. Jortner, Ultrafast dynamics of small clusters on the time scale of nuclear motion. J. Phys. Chem. A,1998,102, 4069-4074.
    30. G. V. Hartland, Optical Studies of Dynamics in Noble Metal Nanostructures. Chem. Rev., 2011,111,3858-3887.
    31. J. W. Liu, J. Li, A. Sedhain, J. Y. Lin and H. X. Jiang, Structure and Photoluminescence Study of TiO(2) Nanoneedle Texture along Vertically Aligned Carbon Nanofiber Arrays. J. Phys. Chem. C,2008,112,17127-17132.
    32. Y. Xiong, J. M. McLellan, J. Chen, Y. Yin, Z. Y. Li and Y. Xia, Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties. J. Am.Chem. Soc.,2005,127,17118-17127.
    33. Y. Xiong, J. Chen, B. Wiley, Y. Xia, Y. Yin and Z. Y. Li, Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process. Nano. Lett.,2005,5,1237-1242.
    34. C. Rivera, J. L. Pau and E. Munoz, Photocurrent gain mechanism in Schottky barrier photodiodes with negative average electric field. Appl. Phys. Lett.,2006,89.
    35. A. Sellai, P. G. Mccafferty, P. Dawson, S. H. Raza and H. S. Gamble, Surface-Mode Enhanced Photocurrent from Ptsi/N-Si Schottky-Barrier Detectors. Int J Optoelectron,1994, 9,65-70.
    36. J. Ohsawa, T. Kozawa, O. Ishigur and H. Itoh, Different bias-voltage dependences of photocurrent in Pt/InGaN/GaN and Pt/GaN Schottky photodetectors on sapphire. Jpn J Appl Phys 2,2006,45, L435-L437.
    37. B. K. Li, C. Wang, I. K. Sou, W. K. Ge and J. N. Wang, Photocurrent spectroscopy of an Fe/Zn0.96Fe0.04S schottky diode. Physica B,2007,401,48-50.
    38. P. D. Pester and T. Wilson, An Analysis of the Photocurrent Induced in a Semi-Infinite Schottky-Barrier by a Time-Varying Focused Laser-Beam. Phys Status Solidi A,1988,105, 649-660.
    1. M. M. Schubert, S. Hackenberg, A. C. van Veen, M. Muhler, V. Plzak and R. J. Behm, CO oxidation over supported gold catalysts-"inert" and "active" support materials and their role for the oxygen supply during reaction. J. Catal.,2001,197,113-122.
    2. R. Long, K. Mao, X. Ye, W. Yan, Y. Huang, J. Wang, Y. Fu, X. Wang, X. Wu, Y. Xie and Y. Xiong, Surface facet of palladium nanocrystals:a key parameter to the activation of molecular oxygen for organic catalysis and cancer treatment. J. Am. Chem. Soc.,2013,135, 3200-3207.
    3. Y. Xia, Y. Xiong, B. Lim and S. E. Skrabalak, Shape-controlled synthesis of metal nanocrystals:simple chemistry meets complex physics? Angew. Chem. Int. Ed Engl.,2009, 48,60-103.
    4. W. X. Niu, Z. Y. Li, L. H. Shi, X. Q. Liu, H. J. Li, S. Han, J. Chen and G B. Xu, Seed-Mediated Growth of Nearly Monodisperse Palladium Nanocubes with Controllable Sizes. Crystal Growth & Design,2008,8,4440-4444.
    5. M. Jin, G. He, H. Zhang, J. Zeng, Z. Xie and Y. Xia, Shape-controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent. Angew. Chem. Int. Ed. Engl.,2011, 50,10560-10564.
    6. Y. Lu, X. Lu, B. T. Mayers, T. Herricks and Y. Xia, Synthesis and characterization of magnetic Co nanoparticles:A comparison study of three different capping surfactants. Journal of Solid State Chemistry,2008,181,1530-1538.
    7. J. Zeng, Y. Q. Zheng, M. Rycenga, J. Tao, Z. Y. Li, Q. A. Zhang, Y. M. Zhu and Y. N. Xia, Controlling the Shapes of Silver Nanocrystals with Different Capping Agents. J. Am. Chem. Soc.,2010,132,8552-8553.
    8. S. G. Kwon, G. Krylova, A. Sumer, M. M. Schwartz, E. E. Bunel, C. L. Marshall, S. Chattopadhyay, B. Lee, J. Jellinek and E. V. Shevchenko, Capping ligands as selectivity switchers in hydrogenation reactions. Nano. Lett.,2012,12,5382-5388.
    9. F. Wang, C. Li, H. Chen, R. Jiang, L. D. Sun, Q. Li, J. Wang, J. C. Yu and C. H. Yan, Plasmonic harvesting of light energy for Suzuki coupling reactions. J. Am.Chem. Soc.,2013, 135,5588-5601.
    10. S. Sarina, H. Zhu, E. Jaatinen, Q. Xiao, H. Liu, J. Jia, C. Chen and J. Zhao, Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for organic synthesis reactions through visible light irradiation at ambient temperatures. J. Am. Chem. Soc.,2013,135,5793-5801.
    11. P. Christopher, H. Xin, A. Marimuthu and S. Linic, Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat Mater,2012,11,1044-1050.
    12. R. Chinchilla and C. Najera, Chemicals from Alkynes with Palladium Catalysts. Chem. Rev., 2013,10.1021/cr400133p.
    13. M. Jin, H. Zhang, Z. Xie and Y. Xia, Palladium concave nanocubes with high-index facets and their enhanced catalytic properties. Angew. Chem. Int. Ed. Engl.,2011,50,7850-7854.
    14. M. Crespo-Quesada, A. Yarulin, M. Jin, Y. Xia and L. Kiwi-Minsker, Structure sensitivity of alkynol hydrogenation on shape-and size-controlled palladium nanocrystals:which sites are most active and selective? J. Am.Chem. Soc.,2011,133,12787-12794.
    15. C. Xie, P. Lv, B. A. Nie, J. S. Jie, X. W. Zhang, Z. Wang, P. Jiang, Z. Z. Hu, L. B. Luo, Z. F. Zhu, L. Wang and C. Y. Wu, Monolayer graphene film/silicon nanowire array Schottky junction solar cells. Appl. Phys. Lett.,2011,99,133113.
    16. A. J. Cowan and J. R. Durrant, Long-lived charge separated states in nanostructured semiconductor photoelectrodes for the production of solar fuels. Chem. Soc. Rev.,2013,42, 2281-2293.
    17. C. H. Duan, K. Zhang, C. M. Zhong, F. Huang and Y. Cao, Recent advances in water/alcohol-soluble pi-conjugated materials:new materials and growing applications in solar cells. Chem. Soc. Rev.,2013,42,9071-9104.
    18. X. Y. Huang, S. Y. Han, W. Huang and X. G. Liu, Enhancing solar cell efficiency:the search for luminescent materials as spectral converters. Chem. Soc. Rev.,2013,42,173-201.
    19. J. Long, H. Chang, Q. Gu, J. Xu, L. Fan, S. Wang, Y. Zhou, W. Wei, L. Huang, X. Wang, P. Liu and W. Huang, Gold-plasmon enhanced solar-to-hydrogen conversion on the{001} facets of anatase TiO2 nanosheets. Energ. Environ. Sci.,2014,7,973.
    20. J. Gobrecht and H. Gerischer, Schottky-Barrier Height, Photo-Voltage and Photocurrent in Liquid-Junction Solar-Cells. Sol Energ Mater,1979,2,131-142.
    21. J. T. Lue and Y. D. Hong, Dependence of Photocurrent of Mis Solar-Cells on Thickness of Schottky-Barrier Metals. Solid State Electron,1978,21,1213-1218.
    22. K. Takahashi, K. Tsuji, K. Imoto, T. Yamaguchi, T. Komura and K. Murata, Enhanced photocurrent by Schottky-barrier solar cell composed of regioregular polythiophene with merocyanine dye. Synthetic Met,2002,130,177-183.