贵金属微纳米结构的设计与制备及其SERS性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面增强拉曼散射(SERS)的灵敏度极高,能在分子水平上给出关于物质的结构、吸附状态等方面的丰富信息,在分析化学、生物医学以及食品安全监测等领域受到广泛的关注。SERS基底的制备一直是该领域的一个研究热点,因为基底的表面形貌和材质等因素能够影响光谱的信号强度和重现性,从而决定了SERS这种检测方法在实际生活中的应用。制备SERS基底的主要原则是提高活性、稳定性和重现性并且降低成本。化学法具有快速简单的优点,可以在短时间内获得大量的金属纳米粒子。但是化学合成过程中往往需要加入一些表面活性剂作为稳定剂或者模板以诱导纳米颗粒更好地生长。吸附在金属颗粒表面的这些表面活性剂势必会影响到基底的SERS活性并干扰分析,所以干净绿色的化学合成法是一种挑战。物理法常用于制备有序金属基底,即在结构规则的模板上直接沉积金属层。这种方法制备的SERS基底重现性比较好,且具有干净的表面,更有利于探针分子的吸附和检测,同时也减少了信号干扰,近年来发展迅速。本论文利用化学法和物理法制备出了几种不同的贵金属SERS基底。主要创新成果如下:
     (1)提出一种快捷方便的高效绿色方法来合成纳米金树枝,即利用铝片置换还原氯金酸。获得的金树枝具有很好的结晶性且纯度很高。通过观察不同反应时间所得产物的形貌,推测了金纳米树枝的生长过程和生长机理。这种金纳米树枝具有较好的SERS活性,以对巯基苯胺作为拉曼探针分子,检测限可达10-9M。同时,该纳米树枝也具有很好的催化活性,可快速催化硼氢化钠还原对硝基苯酚生成对氨基苯酚的反应。
     (2)设计并制备了银纳米碟阵列作为新型SERS基底。纳米碟由纳米环和薄膜组成,其SERS增强能力约为纳米环的7倍。通过三维时域有限差分法模拟了两种结构的电磁场分布,发现纳米环阵列的电磁场增强主要集中于环的尖端和相邻环的缝隙间,而纳米碟的腔内电磁场也得到显著增强,且分布均匀。纳米碟阵列对农药福美双的检测限低至1×10-7M,达到超痕量检测标准。在纳米碟阵列上随机抽取9个点测量了罗丹明6G的SERS谱图,计算得到各谱图信号强度的相对标准偏差小于15%,表明其优秀的重现性。这种纳米碟结构在SERS检测分析以及相关器件设计方面具有巨大的应用潜力。
     (3)在银纳米球壳阵列表面沉积较薄的金膜获得双金属结构,提高了银基底的稳定性。首先利用粒径分别为500,440,360nm的二氧化硅微球为模板,沉积银纳米薄膜得到一系列的银纳米壳SERS活性基底。然后在活性最强的银壳上分别溅射不同厚度的金薄膜制备金银双金属壳层结构。SERS检测发现,金银双金属纳米壳层结构在532nm激光下拉曼增强效果远不如银纳米壳结构,但在780nm激光下具有很好的SERS活性,并且随着金层厚度的减小SERS信号强度逐渐增强。由于金的高稳定性和良好的生物相容性,该基底在SERS生物传感方面具有很大的潜在应用价值。
     (4)以二氧化硅小球为掩模板,采用电感耦合等离子体ICP)刻蚀硅片得到三维纳米柱和纳米锥阵列。反应刻蚀时间为120,210和360s时,得到的是纳米柱结构,当刻蚀了450s时,纳米柱演变成纳米锥结构。在纳米柱/锥阵列上沉积银膜可作为SERS基底,以对巯基苯胺为探针分子检测了其SERS活性,发现刻蚀时间为210s的纳米柱结构具有最好的性能。另外,这种阵列结构还具有很好的超疏水性能,可用于组装上银纳米颗粒以进一步提高SERS活性。
Surface-enhanced Raman scattering (SERS) has very high sensitivity, it can supply a wealth of information about the structure and adsorption states of matter at the molecular level and has been widely concerned in the area of analytical chemistry, biomedicine, food safety monitoring and etc. The preparation of SERS substrates has been a hot topic in the field of SERS because the surface morphology and material of the substrate determine the signal strength and reproducibility of the spectrum, which has an important effect of the pratical applications of SERS detection in daily life. The main principle to prepare SERS substrates is to improve their activitiy, stability and producibility as well as to lower the cost. Chemical methods have the advantages of speediness and simpleness. A large number of metal nanoparticles could be obtained in a short time. However, the chemical synthesis processes often involve the addition of some surfactants as templates or stabilizers to induce the growth of nanoparticles. The surfactants adsorbed on the surface of the metal nanoparticles will weaken the SERS activities and interfere with the SERS analysis. Therefore, the development of a clean and green chemical synthesis method is a challenge. Physical methods are usually used to fabricate ordered metal substrates, namely direct deposition of metal layer onto templates with regular structures. SERS substrates prepared by this method have better reproducibilites and cleaner surfaces which are more conducive to the adsorption and detection of probe molecules and will reduce the signal interference. During recent years, physical methods have got rapid development. In this paper, we use both chemical and physical methods to prepare several different noble metal SERS substrates. The main innovative results are as follows:
     (1) A facile, efficient and green route was proposed to fabricate Au nanodendrites by reducing chloride acid with Al foil. The obtained Au dendrites have good crystallinity and high purity. Through a series of time-dependent morphological evolution experiments, the possible growth process and mechanism were proposed. The as-prepared Au dendrites exhibit excellent surface enhanced Raman scattering enhancement ability for detecting p-aminothiophenol molecules with a detection limit of10"9M. Moreover, they also display high catalytic activity through the quick reduction of p-nitrophenol by sodium borohydride.
     (2) Ag nanodish arrays were designed and fabricated as novel SERS substrates.
     The nanodishes were composed of nanorings and a film. They have a seven times SERS enhancement ability than nanorings. The electromagnetic field distributions of the two structures were simulated by three-dimensional finite-difference time-domain method. The simulation results show the electromagnetic field mainly locates at the tips of every single ring and the junctions among adjacent nanoparticles for the nanoring array. For nanodishes, an extra strong electromagnetic field appeared in the cavity and distributed uniformly. The detection limit for thiram from the nanodish array is as low as1×10-7M, which has achieved the ultra trace detection standard. The calculated relative standard deviation of the Raman signal intensity of rhodamine6G measured from nine randomly selected points is less than15%, indicating the excellent reproducibility. The nanodishes have great potential for applications in SERS detection analysis and related devices design.
     (3) Bimetallic structures were obtained by deposition a thin Au film onto Ag nanoshell array to improve the stability of Ag substrate. Firstly, a series of Ag nanoshells were prepared as SERS substrates by sputtering silver films on silica sphere templates with different sizes of500,440and360nm. Then Au films with different thicknesses were deposited on the the Ag nanoshells with the best activity to obtain Au-Ag bimetallic nanoshells. The SERS detection results revealed that the Au-Ag bimetallic nanoshells have much weaker Raman enhancement than Ag nanoshells when the laser wavelength was532nm but have excellent SERS activities under the excitation light of780nm wavelength. The SERS intensities from Au-Ag bimetallic nanoshells got enhanced as the decreasing of the thicknesses of the outer Au shells. The good stability and biocompatibility of Au confirms the Au-Ag bimetallic nanoshells have enormous potential application value in SERS biosensing.
     (4)Three dimensional nanopillar and nanocone arrays were fabricated by inductively coupled plasma etching of silicon slices with silica spheres as mask templates. When the etching time was120,210and360s, nanopillars were obtained. When the etching time was450s, the pillars will evolve into cone structures. Silver films were deposited onto the nanopillars/cones as SERS substrates. The detection results show that the samples etched210s exhibit the best performances. In addition, the arrays possess excellent super-hydrophobic properties, which may be used to self-assemble silver nanoparticles to improve their SERS activities further.
引文
[1]Smekal A.1923. Zur Quantentheorie der Dispersion [J]. Naturwissenschaften.11: 873-875.
    [2]Raman CV, Krishman KS.1928. A new type of secondary radiation [J]. Nature. 121:501-502.
    [3]Raman CV.1928. A change of wavelength in light scattering [J]. Nature.121: 366-367.
    [4]席时全,王玮,李微,薛奇,吉敏.1999.红外光谱与Raman光谱,山东科学技术出版社.
    [5]Sloane HJ.1971. The technique of Raman spectroscopy:a state-of-the-art comparison to infrared [J]. J. Appl. Spectrosc.25:430-439.
    [6]Kneipp K, Wang Y, Kneipp H, et al.1997. Single molecule detection using surface-enhanced Raman scattering (SERS) [J]. Phys. Rev. Lett.78:1667-1670.
    [7]Strommen DP, Nakamoto K.1977. Resonance Raman spectroscopy [J]. J. Chem. Educ.54:474-478.
    [8]Fleischmann M, Hendra PJ, McQuillan AJ.1974. Raman spectra of pyridine adsorbed at a silver electrode [J]. Chem. Phys. Lett.26:163-166.
    [9]Jeanmaire DL, Van Duyne RP.1977. Surface Raman spectroelectrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode [J]. J. Electroanal. Chem.84:1-20.
    [10]Albrecht MG, Creighton JA.1977. Anomalously intense Raman spectra of pyridine at a silver electrode [J]. J. Am. Chem. Soc.99:5215-5217.
    [11]Moskovits M.1985. Surface-enhanced Raman Spectroscopy [J]. Rev. Mod. Phys. 57:783-826.
    [12]Otto A, Mrozek I, Grabhorn H, Akemann W.1992. Surface-enhanced Raman scatterin g [J]. J. Phys. Condensed Matter 4:1143-1212.
    [13]Heywang C, Chazalet MSP, Masson M, et al.1998. Orientation of anthracyclines in lipid monolayers and planar asymmetrical bilayers:a surface-enhanced resonance Raman scattering study [J]. Biophys J.75:2368-2381.
    [14]Schatz GC, Young MA, Van Duyne RP. Electromagnetic Mechanism of SERS. Surface Enhunced Raman Scattering [M] New York:Springer,2006:19-46.
    [15]Dvoynenko MM, Wang JK.2007. Finding electromagnetic and chemical enhancement factors of surface-enhanced Raman scattering [J]. Opt. Lett.32: 3552-3554.
    [16]Willets KA, Van Duyne RP.2007. Localized surface plasmon resonance spectroscopy and sensing[J]. Annu. Rev. Phys. Chem.58:267-97.
    [17]Liao PF, Wokaun A.1982. Lightning rod effect in surface enhanced Raman scattering [J]. J. Chem. Phys.76:751-752.
    [18]杨志林,吴德印,姚建林等.2002.镍电极的表面增强拉曼散射机理初探[J].科学通报47:989-992.
    [19]Tessier PM, Velev OD, Kalambur AT, et al.2000. Assembly of gold nanostructured films templated by colloidal crystals and use in surface-enhanced Raman spectroscopy [J]. J. Am. Chem. Soc.122:9554-9555.
    [20]Otto A.2005. The'chemical'(electronic) contribution to surface-enhanced Raman scattering [J]. J. Raman Spectrosc.36:497-509.
    [21]Wang MF, Spataru T, Lombardi JR, et al.2007. Time resolved surface enhanced Raman scattering studies of 3-Hydroxyflavone on a Ag electrode [J]. J. Phys. Chem. C 111:3044-3052.
    [22]Liang X, Wang ZJ, Liu CJ.2010. Size-Controlled Synthesis of Colloidal Gold Nanoparticles at Room Temperature Under the Influence of Glow Discharge [J]. Nanoscale Res. Lett.5:124-129.
    [23]Miranda Adelaide.2010. One-pot synthesis of triangular gold nanoplates allowing broad and fine tuning of edge length [J]. Nanoscale.2:2209-2216.
    [24]Vigderman L, Zubarev ER.2013. High-yield synthesis of gold nanorods with longitudinal SPR peak greater than 1200 nm using hydroquinone as a reducing agent [J]. Chem. Mater.25:1450-1457.
    [25]Yu D, Yam VWW.2004. Controlled synthesis of monodisperse silver nanocubes in water [J]. J. Am. Chem. Soc.126:13200-13201.
    [26]Vigderman L, Zubarev ER.2012. Starfiruit-shaped gold nanorods and nanowires: synthesis and SERS characterization [J]. Langmuir 28:9034-9040.
    [27]Zhang MF, Zhao AW, Sun HH, et al.2011. Rapid, large-scale, sonochemical synthesis of 3D nanotextured silver microflowers as highly efficient SERS substrates [J]. J. Mater. Chem.21:18817-18824.
    [28]Zhao NN, Wei Y, Sun NJ, et al.2008. Controlled synthesis of gold nanobelts and nanocombs in aqueous mixed surfactant solutions [J]. Langmuir 24:991-998.
    [29]Huang T, Meng F, Qi LM.2010. Controlled synthesis of dendritic gold nanostructures assisted by supramolecular complexes of surfactant with cyclodextrin [J]. Langmuir 26:7582-7589.
    [30]Wang C, Peng S, Chan Ryan, et al.2009. Synthesis of AuAg Alloy Nanoparticles from Core/Shell-Structured Ag/Au [J]. Small 5:567-570.
    [31]Bozzini B, De Gaudenzi GP, Mele C.2004. A SERS investigation of the electrodeposition of Ag-Au alloys from free-cyanide solutions [J]. J. Electroanal. Chem.563:133-143.
    [32]Zhang Y, Xing CS, Jiang DL, et al.2013. Facile synthesis of core-shell-satellite Ag/C/Ag nanocomposites using carbon nanodots as reductant and their SERS properties [J]. CrystEngComm 15:6305-6310.
    [33]An Q, Zhang P, Li JM, et al.2012. Silver-coated magnetite-carbon core-shell microspheres as substrate-enhanced SERS probes for detection of trace persistent organic pollutants [J]. Nanoscale 4:5210-5216.
    [34]Li WB, Guo YY, Zhang P.2010. General strategy to prepare TiO2-core gold-shell nanoparticles as SERS-tags [J]. J. Phys. Chem. C 114:7263-7268.
    [35]Mandal M, Jana NR, Kundu S, et al.2004. Synthesis of Au core-Ag shell type bimetallic nanoparticles for single molecule detection in solution by SERS method [J]. J. Nanopart. Res.6:53-61.
    [36]Guo HY, Ruan FX, Lu LH, et al.2009. Correlating the shape, surface plasmon resonance, and surface-enhanced Raman scattering of gold nanorods [J]. J. Phys. Chem. C 113:10459-10464.
    [37]Zhang XY, Hu AM, Zhang T, et al.2011. Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties [J]. ACS Nano 5:9082-9092.
    [38]Mayer KM, Hao F, Lee S, et al.2010. A single molecule immunoassay by localized surface plasmon resonance [J].Nanotechnology 21:255503.
    [39]Sherry LJ, Chang SH, Schatz GC, et al.2005. Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes [J]. Nano Lett.5: 2034-2038.
    [40]Orendorff CJ, Gole A, Sau TK, et al.2005. Surface-enhanced Raman spectroscopy of self-assembled monolayers:sandwich architecture and nanoparticle shape dependence [J]. Anal. Chem.77:3261-3266.
    [41]Etchegoin PG, Le Ru E.G.2008. A perspective on single molecule SERS:current status and future challenges [J]. Phys. Chem. Chem. Phys.10:6079-6089.
    [42]Camargo PHC, Rycenga M, Au L, et al.2009. Isolating and Probing the Hot Spot Formed between Two Silver Nanocubes [J]. Angew. Chem. Int. Ed.48: 2180-2184.
    [43]Wustholz KL, Henry Al, McMahon JM, et al.2010. Structure-Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy [J]. J. Am. Chem. Soc.132:10903-10910.
    [44]Li WY, Camargo PHC, Au L, et al.2009. Etching and Dimerization:A Simple and Versatile Route to Dimers of Silver Nanospheres with a Range of Sizes [J]. Angew. Chem. Int. Ed.48:1-6.
    [45]Sau TK, Murphy CJ.2005. Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes [J]. Langmuir 21:2923-2929.
    [46]Madras G, McCoy BJ.2006. A distribution kinetics model of self-assembly: Effects of coalescence and solvent evaporation [J]. J. Cryst. Growth.286: 131-136.
    [47]Bao RR, Zhang CY, Zhang XJ, et al.2013. Self-assembly and hierarchical patterning of aligned organic nanowire arrays by solvent evaporation on substrates with patterned wettability. ACS Appl. Mater. Interfaces 5:5757-5762.
    [48]Chen AQ, DePrince AE, Demortiere A, et al.2011. Self-assembled large Au nanoparticle arrays with regular hot spots for SERS [J]. Small 7:2365-2371.
    [49]Kuncicky DM, Prevo BG, Velev OD.2006. Controlled assembly of SERS substrates templated by colloidal crystal films [J]. J. Mater. Chem.16: 1207-1211.
    [50]Duan HW, Wang DY, Kurth DG, et al.2004. Directing self-Assembly of nanoparticles at water/oil interfaces [J]. Angew. Chem. Int. Ed.43:5639-5642.
    [51]Park YK, Yoo SH, Park S.2007. Assembly of highly ordered nanoparticle monolayers at a water/hexane interface [J]. Langmuir 23:10505-10510.
    [52]Li YJ, Huang WJ, Sun SG.2006. A universal approach for the self-assembly of hydrophilic nanoparticles into ordered monolayer films at a toluene/water interface [J]. Angew. Chem. Int. Ed.45:2537-2539.
    [53]Reincke F, Hickey SG, Kegel WK, et al.2004. Spontaneous assembly of a monolayer of charged gold nanocrystals at the water/oil interface [J]. Angew. Chem. Int. Ed.43:458-462.
    [54]Yun S, Park YK, Kim SK, et al.2007. Linker-Molecule-Free Gold Nanorod Layer-by-Layer Films for Surface-Enhanced Raman Scattering [J]. Anal. Chem. 79:8584-8589.
    [55]Lee D, Hong S, Park S.2011. Controlled assembly of gold nanoprism and hexagonal nanoplate films for surface enhanced Raman scattering [J]. Bull. Korean Chem. Soc.32:3575-3580.
    [56]Wang Li, Sun YJ, Che GB, et al.2011. Self-assembled silver nanoparticle films at an air-liquid interface and their applications in SERS and electrochemistry [J]. Appl. Surf. Sci.257:7150-7155.
    [57]Bandyopadhyay K, Patil V, Vijayamohanan K, et al.1997. Adsorption of silver colloidal particles through covalent linkage to self-assembled monolayers [J]. Langmuir 13:5244-5248.
    [58]Freeman RG, Grabar KC, Allison KJ, et al.1995. Self-assembled metal colloid monolayers:An approach to SERS substrates [J].Science,267:1629-1632.
    [59]Grabar KC, Allison KJ, Baker BE, et al.1996. Two-dimensional arrays of colloidal gold particles:A flexible approach to macroscopic metal surfaces [J]. Langmuir 12:2353-2361.
    [60]Ballarin B, Cassani MC, Scavetta Erika, et al.2008. Self-assembled gold nanoparticles modified ITO electrodes:The monolayer binder molecule effect [J]. Electrochim. Acta 53:8034-8044.
    [61]Kaminska A, Inya-Agha O, Forster RJ, et al.2008. Chemically bound gold nanoparticle arrays on silicon:assembly, properties and SERS study of protein interactions [J]. Phys. Chem. Chem. Phys.10:4172-4180.
    [62]Wang YL, Chen HJ, Dong SJ, et al.2006. Surface enhanced Raman scattering of p-aminothiophenol self-assembled monolayers in sandwich structure fabricated on glass [J]. J. Chem. Phys.124:074709.
    [63]Liu YJ, Wang YX, Claus RO.1998. Layer-by-layer ionic self-assembly of Au colloids into multilayer thin-films with bulk metal conductivity [J]. Chem. Phys. Lett.298:315-319.
    [64]Liu RM, Zi XF, Kang YP.2011. Surface-enhanced Raman scattering study of human serumon PVA-Ag nanofihn prepared by using electrostatic self-assembly [J]. J. Raman Spectrosc.42:137-144.
    [65]Gole A, Murphy C J.2005. Polyelectrolyte-Coated Gold Nanorods:Synthesis, Characterization and Immobilization [J]. Chem. Mater.17:1325-1330
    [66]Grabar KC, Smith PC, Musick MD, et al.1996. Kinetic control of interparticle spacing in Au colloid-based surfaces:rational nanometer-scale architecture [J] J. Am. Chem. Soc.118:1148-1153.
    [67]Langmuir I, Blodgett KB.1935. A new method of investigating unimolecular films [J]. Kolloid Z.73:258-263.
    [68]Yang P, Kim F.2002. Langmuir Blodgett assembly of one-dimensional nanostructure [J]. ChemPhysChem 3:503-506.
    [69]Xue C, Chen X, Hurst SJ, et al.2007. Self-assembled monolayer mediated silica coating of silver triangular nanoprisms [J]. Adv. Mater.19:4071-4074.
    [70]Tao AR, Huang JX, Yang PD.2008. Langmuir-Blodgettry of Nanocrystals and Nanowires[J]. Ace. Chem. Res.41:1662-1673.
    [71]Tao A, Kim F, Hess C, et al.2003. Langmuir Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy [J].Nano Lett.3:1229-1233.
    [72]Seki H.1981. SERS of pyridine on Ag island films prepared on a sapphire substrate [J]. J. Vac. Sci. Technoi.18:633-637.
    [73]Geng ZX, Liu W, Wang XD, et al.2011. A route to apply Ag nanoparticle array integrated with microfluidic for surface enhanced Raman scattering [J]. Sens. Actuators A169:37-42.
    [74]Xue G, Dong J.1991. Stable silver substrate prepared by the nitric acid etching method for a surface-enhanced Raman scattering study [J]. Anal. Chem.63: 2393-2397.
    [75]Xue G, Dong J, Zhang MS.1991. Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS) on HNO3-roughened copper foil [J]. Appl. Spectrosc.45:756-759.
    [76]Yang C, Xie YT, Yuen MMF, et al.2010. A facile chemical approach for preparing a SERS active silver substrate [J]. Phys. Chem. Chem. Phys.12: 14459.14461.
    [77]Zhu WQ, Banaee MG, Wang DX, et al.2011. Lithographically fabricated optical antennas with gaps well below 10 run [J]. Small 7:1761-1766.
    [78]Kumar A, Whitesides G M.1993. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol "ink" followed by chemical etching [J]. Appl. Phys. Lett.63:2002-2004.
    [79]Jiao Y, Ryckman JD, Ciesielski PN, et al.2011. Patterned nanoporous gold as an effective SERS template [J]. Nanotechnology 22:295302.
    [80]Masuda H, Satoh M.1996. Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask [J]. Jpn. J. Appl. Phys.35:126-129.
    [81]Han XY, Shen WZ.2011. Improved two-step anodization technique for ordered porous anodic aluminum membranes [J]. J. Electroanal. Chem.655:56-64.
    [82]Gu GH, Suh JS.2010. Hexagonally patterned silver nanoparticles electrodeposited on an aluminum plate for surface-enhanced Raman scattering [J]. J. Phys. Chem. C 114:7258-7262.
    [83]Dickey M D, Weiss E A, Smythe EJ, et al.2008. Fabrication of arrays of metal and metal oxide nanotubes by shadow evaporation [J]. ACS Nano 4:800-808.
    [84]Liao Q, Mu C, Xu DS, et al.2009. Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering [J]. Langmuir 25:4708-4714.
    [85]Dar FI, Habouti S, Minch R, et al.2012. Morphology control of ID noble metal nano/heterostructures towards multi-functionality [J]. J. Mater. Chem.22: 8671-8679.
    [86]Lang XZ, Qiu T, Zhang WJ, et al.2011. Tunable silver nanocap superlattice arrays for surface-enhanced Raman scattering [J]. J. Phys. Chem. C 115: 24328-34333.
    [87]Bok HM, Shuford KL, Kim SW, et al.2008. Multiple surface plasmon modes for a colloidal solution of nanoporous gold nanorods and their comparison to smooth gold nanorods [J]. Nano Lett.8:2265-2270.
    [88]Lang XZ, Teng Q, Yin Y, et al.2012. Silver nanovoid arrays for surface-enhanced Raman scattering [J]. Langmuir 28:8799-8803.
    [89]Liu L, Shao MW, Cheng L, et al.2011. Edge-enhanced Raman scattering effect from Au deposited nanoedge array, Appl. Phys. Lett.98:073114.
    [90]Wang HH, Liu CY, Wu SB, et al.2006. Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps [J]. Adv. Mater. 18:491-495.
    [91]Wang J, Huang LQ, Yuan L, et al.2012. Silver nanostructure arrays abundant in sub-5 nm gaps as highly Raman-enhancing substrates [J]. Appl. Surf. Sci.258: 3519-3523.
    [92]Luo ZX, Yang WS, Peng AD, et al.2009. Net-like assembly of Au nanoparticles as a highly active substrate for surface-enhanced Raman and infrared spectroscopy [J]. J. Phys. Chem. A113:2467-2472.
    [93]Crouse D, Lo YH, Miller AE, et al.2000. Self-ordered pore structure of anodized aluminum on silicon and pattern transfer [J]. Appl. Phys. Lett.76:49-51.
    [94]Chang WY, Lin KH, Wu JT, et al.2011. Novel fabrication of an Au nanocone array on polycarbonate for high performance surface-enhanced Raman scattering [J]. J. Micromech. Microeng.21:035023.
    [95]Jensen TR, Duval ML, Kelly KL, et al.1999. Nanosphere lithography effect of the external dielectric medium on the surface plasmon [J]. J. Phys. Chem. B 103: 9846-9853.
    [96]Jensen TR, Malinsky MD, Haynes CL, et al.2000. Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles [J]. J. Phys. Chem. B 104:10549-10556.
    [97]Haynes JC, Van Duyne RP.2001. Nanosphere lithography a versatile nanofabrication tool for studies of size-dependent [J]. J. Phys. Chem. B 105: 5599-5611.
    [98]Jiang P, McFarland M J.2004. Large-Scale Fabrication of Wafer-Size Colloidal Crystals,Macroporous Polymers and Nanocomposites by Spin-Coating [J]. J. Am. Chem. Soc.126:13778-13786.
    [99]Liu XF, Sun CH, Linn NC, et al.2009. Wafer-Scale Surface-Enhanced Raman Scattering Substrates with Highly Reproducible Enhancement [J].J. Phys. Chem. C 113:14804-14811.
    [100]Wang CX, Ruan WD, Ji N, et al.2010. Preparation of Nanoscale Ag Semishell Array with Tunable Interparticle Distance and Its Application in Surface-Enhanced Raman Scatterin [J]. J. Phys. Chem. C 114:2886-2890.
    [101]Liu GQ, Li Y, Duan GT, et al.2012.Tunable Surface Plasmon Resonance and Strong SERS Performances of Au Opening-Nanoshell Ordered Arrays [J]. ACS Appl. Mater. Interfaces 4:1-5.
    [102]Xu MJ, Lu N, Xu HB, et al.2009. Fabrication of functional silver nanobowl arrays via sphere lithography [J]. Langmuir 25:11216-11220.
    [103]Chen L, Liu FX, Zhan P, et al.2011. Ordered gold nanobowl arrays as substrates for surface-enhanced Raman spectroscopy [J]. Chin. Phys. Lett.28:057801.
    [104]Rao YY, Tao Q, An M, et al.2011. Novel and Simple Route to Fabricate 2D Ordered Gold Nanobowl Arrays Based on 3D Colloidal Crystals [J]. Langmuir 27:13308-13313.
    [105]Li XL, Zhang YZ, Shen ZX, et al.2012. Highly Ordered Arrays of Particle-in-Bowl Plasmonic Nanostructures for Surface-Enhanced Raman Scattering [J]. Small 8:2548-2554.
    [106]Sun CH, Linn NC, Jiang P.2007. Templated Fabrication of Periodic Metallic Nanopyramid Arrays [J].Chem. Mater.19:4551-4556.
    [107]Linn NC, Sun CH, Arya A, et al.2009. Surface-enhanced Raman scattering on periodic metal nanotips with tunable sharpness [J]. Nanotechnology 20:225303.
    [10]Sun MR, Qian C, Wu WG, et al.2012. Self-assembly nanoparticle based tripetaloid structure arrays as surface-enhanced Raman scattering substrates [J]. Nanotechnology 23:385303.
    [109]Kiraly B, Yang SK, Huang TJ.2013. Multifunctional porous silicon nanopillar arrays:antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering [J]. Nanotechnology 24:245704.
    [110]Lee W, Lee SY, Briber RM, et al.2011. Self-Assembled SERS Substrates with Tunable Surface Plasmon Resonances [J]. Adv. Funct. Mater.21:3424-3429.
    [111]Cho WJ, Kim Y, Kim JK.2012. Ultrahigh-Density Array of Silver Nanoclusters for SERS Substrate with High Sensitivity and Excellent Reproducibility [J]. ACS nano.6:249-255.
    [112]Li XH, Chen GY, Yang LB, et al.2010. Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection [J]. Adv. Funct. Mater.20:2815-2824.
    [113]Zhou Y, Chen J, Zhang L, et al.2012. Multifunctional TiO2-coated Ag nanowire arrays as recyclable SERS substrates for the detection of organic pollutants [J]. Eur. J. Inorg. Chem.3176-3182.
    [114]Li XL, Hu HL, Li DH, et al.2012. Ordered array of gold semishells on TiO2 spheres:an ultrasensitive and recyclable SERS substrate [J]. ACS Appl. Mater. Interfaces.4:2180-2185.
    [115]Ding QQ, Liu HL, Yang LB, et al.2012. Speedy and surfactant-free in situ synthesis of nickel/Ag nanocomposites for reproducible SERS substrates [J]. J. Mater. Chem.22:19932-19939.
    [116]Ding QQ, Ma YM, Ye YJ, et al.2013. A simple method to prepare the magnetic Ni@Au core-shell nanostructures for the cycle SERS substrates [J]. J. Raman Spectrosc.44:987-993.
    [117]Jun B, Nob. MS, Kim J, et al.2010. Multifunctional Silver-Embedded Magnetic Nanoparticles as SERS Nanoprobes and Their Applications [J]. Small 6: 119-125.
    [118]Hu XY, Meng GW, Huang Q, et al.2012. Large-scale homogeneously distributed Ag-NPs with sub-10 nm gaps assembled on a two-layered honeycomb-like TiO2 film as sensitive and reproducible SERS substrates [J]. Nanotechnology 23:385705.
    [119]Zhang B, Xu P, Xie XM et al.2011. Acid-directed synthesis of SERS-active hierarchical assemblies of silver nanostructures.J. Mater. Chem.21:2495-2501.
    [120]Ko H, Chang S, Tsukruk W.2009. Porous substrates for label-free molecular level detection of nonresonant organic molecules [J]. ACS Nano 3:181-188.
    [121]Koand H, Tsukruk W.2008. Nanoparticle-decorated nanocanals for surface-enhanced Raman scattering [J]. Small 4:1980-1984.
    [122]Wang XT, Shi WS, She GW, et al.2010. High-performance surface-enhanced Raman scattering sensors based on Ag nanoparticles-coated Si nanowire arrays for quantitative detection of pesticides [J]. Appli. Phys. Lett.96:053104.
    [123]Li JF, Huang YF, Ding Y, et al.2010. Shell-isolated nanoparticle-enhanced Raman spectroscopy [J]. Nature 464:392-395.
    [124]Liu BH, Han GM, Zhang ZP, et al.2012. Shell Thickness-dependent Raman enhancement for rapid identification and detection of pesticide residues at fruit peels [J]. Anal. Chem.84:255-261.
    [125]Smith WE.2008. Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis [J]. Chem. Soc. Rev.37:955-964.
    [126]Bantz KC, Meyer AF, Wittenberg NJ, et al.2011. Recent progress in SERS biosensing [J]. Phys. Chem. Chem. Phys.13:11551-11567.
    [127]Cao YWC, Jin R, Mirkin CA.2002. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNAdetection [J]. Science,297:1536-1540.
    [1]Harutaa M, Date M.2001. Advances in the catalysis of Au nanoparticles [J]. Appl. Catal. A 222:427-437.
    [2]Dong XC, Huang W, Chen P.2011. In Situ Synthesis of Reduced Graphene Oxide and Gold Nanocomposites for Nanoelectronics and Biosensing [J]. Nanoscale Res. Lett.6:60.
    [3]Himmelhaus M, Takei H.2000. Cap-shaped gold nanoparticles for an optical biosensor [J]. Sens. Actuators, B:Chemical 63:24-30.
    [4]Talley CE, Jackson JB, Oubre C, et al.2005. Surface-Enhanced Raman Scattering from Individual Au Nanoparticles and Nanoparticle Dimer Substrates [J]. Nano Lett.5:1569-1574.
    [5]Li LS, Wang ZJ, Huang T, et al.2010. Porous Gold Nanobelts Templated by Metal-Surfactant Complex Nanobelts [J]. Langmuir 26:12330-12335.
    [6]Nehl CL, Liao HW, Hafher JH.2006. Optical Properties of Star-Shaped Gold Nanoparticles [J]. Nano Lett.6:683-688.
    [7]Liu XL, Liang S, Nan F, et al.2013. Solution-dispersible Au nanocube dimers with greatly enhanced two-photon luminescence and SERS [J]. Nanoscale 5: 5368-5374.
    [8]Zhu J, Jin XL.2007. Electrochemical synthesis of gold triangular nanoplates and self-organized into rhombic nanostructures [J]. Superlattice Microstruct.41: 271-276.
    [9]Hu JQ, Zhang Y, Liu B, et al.2004. Synthesis and Properties of Tadpole-Shaped GoldNanoparticles[J]. J. Am. Chem. Soc.126:9470-9471.
    [10]Tian CF, Liu Z, Jin JH, et al.2012. Gold mesoflower arrays with sub-10 nm intraparticle gaps for highly sensitive and repeatable surface enhanced Raman spectroscopy [J]. Nanotechnology 23:16560.
    [11]Lu GW, Li C, Shi GQ.2007. Synthesis and characterization of 3D dendritic gold nanostructures and their use as substrates for surface-enhanced raman scattering [J] Chem. Mater.19:3433-3440.
    [12]Xie JP, Zhang QB, Lee JY, et al.2008. The Synthesis of SERS-Active Gold Nanoflower Tags for In Vivo Applications [J]. ACS Nano 2:2473-2480.
    [13]Zhou Q, Wang S, Jia NQ, et al.2006. Synthesis of highly crystalline silver dendrites microscale nanostractures by electrodeposition [J]. Mater. Lett.60: 3789-3792.
    [14]Huang DP, Bai XT, Zheng LQ.2011. Ultrafast Preparation of Three-Dimensional Dendritic Gold Nanostructures in Aqueous Solution and Their Applications in Catalysis and SERS [J]. J. Phys. Chem. C 115:14641-14647.
    [15]Zhang JC, Meng LJ, Zhao DB, e al.2008. Fabrication of dendritic gold nanoparticles by use of an ionic polymer template [J] Langmuir 24:2699-26704.
    [16]Huang T, Meng F, Qi LM.2010. Controlled Synthesis of Dendritic Gold Nanostructures Assisted by Supramolecular Complexes of Surfactant with Cyclodextrin [J]. Langmuir 26:7582-7589.
    [17]Wen XG, Xie YT, Mak MWC, et al.2006. Dendritic Nanostructures of Silver: Facile Synthesis, Structural Characterizations, and Sensing Applications [J]. Langmuir 22:4836-4842.
    [18]Zhang GX, Sun SH, Banis MN, et al.2011. Morphology-Controlled Green Synthesis of Single Crystalline Silver Dendrites, Dendritic Flowers, and Rods, and Their Growth Mechanism [J]. Cryst. Growth Des.11:2493-2499.
    [19]Mabbott S, Larmour IA, Vishnyakov V, et al.2012. The optimisation of facile substrates for surface enhanced Raman scattering through galvanic replacement of silver onto copper [J]. Analyst 137:2791-2798.
    [20]Gutes A, Carraro C, Maboudian R, et al.2010. Silver Dendrites from Galvanic Displacement on Commercial Aluminum Foil As an Effective SERS Substrate [J]. J. Am. Chem. Soc.132:1476-1477.
    [21]Ye WC, Chen Y, Zhou F,et al.2012. Fluoride-assisted galvanic replacement synthesis of Ag and Au dendrites on aluminum foil with enhanced SERS and catalytic activities [J] J. Mater. Chem.22:18327-18334.
    [22]连国奇,胡继伟,秦樊鑫等.2008.氟对人体的危害及检测方法研究进展[J].疾病预防控制通报5:129-131.
    [23]生命元素(19)-氟.2004.[J].青年科学10:33.
    [24]陈军,杨克敌,王桂珍等.1998.不同浓度的硒对氟所致大鼠肾脏损害的影响[J].中国地方病学杂志18:411-414.
    [25]Alivisatos AP.2000. Naturally Aligned Nanocrystals [J]. Science 289:736-737.
    [26]Tang SC, Meng XK, Wang CC et al.2009. Flowerlike Ag microparticles with novel nanostructure synthesized by an electrochemical approach [J].Mater. Chem. Phys.114:842-847.
    [27]Cotton FA, Wilkinson G, Murillo CA, Bochmann M. Advanced Inorganic Chemistry, sixth ed. New York:John Wiley & Sons; 1999.
    [28]Fu JJ, Ye WC, Wang CM, et al.2013. Facile synthesis of Ag dendrites on Al foil via galvanic replacement reaction with [Ag(NH3)2]Cl for ultrasensitive SERS detecting of biomolecules [J]. Mater. Chem. Phys.141:107-113.
    [29]Wang YL, Chen HJ, Dong SJ, et al.2006. Surface-enhanced Raman scattering of silver-gold bimetallic nanostructures with hollow interiors [J]. J. Chem. Phys. 125:044710.
    [30]Zhou Q, Li XW, Fan Q, et al.2006. Charge transfer between metal nanoparticles interconnected with a functionalized molecule probed by surface-enhanced Raman spectroscopy [J]. Angew. Chem. Int. Ed.45:3970-3973.
    [31]Osawa M, Matsuda N, Yoshll K, et al.1994. Charge-Transfer Resonance Raman Process in Surface-enhanced Raman-Scattering From P-aminothiophenol Adsorbed on Silver-Herzberg-Teller Contribution [J]. J. Phys. Chem.98: 12702-12707.
    [32]Kim K, Yoon JK.2005. Raman scattering of 4-aminobenzenethiol sandwiched between Ag/Au nanoparticle and macroscopically smooth Au substrate [J].J. Phys. Chem. B109:20731-20736.
    [33]Bai XT, Gao YA, Liu HG, et al.2009. Synthesis of Amphiphilic Ionic Liquids Terminated Gold Nanorods and Their Superior Catalytic Activity for the Reduction of Nitro Compounds [J]. J. Phys. Chem. C 113:17730-17736.
    [34]Hu XG, Wang T, Wang L, et al.2007. Surface-Enhanced Raman Scattering of 4-Aminothiophenol Self-Assembled Monolayers in Sandwich Structure with Nanoparticle Shape Dependence:Off-Surface Plasmon Resonance Condition [J] J. Phys. Chem. C 111:6962-6969.
    [35]Jensen T, Kelly L, Lazarides A, et al.1999. Electrodynamics of noble metal nanoparticles and nanoparticle clusters [J]. J. Cluster Sci.10:295-317.
    [36]高洪,袁华,对氨基苯酚的合成及应用述评[J].湖北化工,2000,2:1-2.
    [37]Liu XY, Wang AQ, Zhang T, et al.2013. Catalysis by gold:New insights into the support effect [J]. Nano Today 8:403-416.
    [38]Wu H, Huang X, Gao MM, et al.2011. Polyphenol-grafted collagen fiber as reductant and stabilizer for one-step synthesis of size-controlled gold nanoparticles and their catalytic application to 4-nitrophenol reduction [J]. Green Chem.13:651-658.
    [39]Chen L, Kuai L, Yu X, et al.2013. Advanced Catalytic Performance of Au-Pt Double-Walled Nanotubes and Their Fabrication through Galvanic Replacement Reaction [J]. Chem. Eur. J.19:11753-11758.
    [40]Rashid MH, Bhattacharjee RR, Kotal A, et al.2006. Synthesis of Spongy Gold Nanocrystals with Pronounced Catalytic Activities [J] Langmuir 22:7141-7143.
    [1]Li JF, Huang YF, Ding Y, et al.2010. Shell-isolated nanoparticle-enhanced Raman spectroscopy [J].Nature 464:392-395.
    [2]Kneipp K, Kneipp H, et al.2006. Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells [J]. Ace. Chem. Res.39: 443-450.
    [4]Banholzer MJ, Millstone JE, Qin LD, et al.2008. Rationally designed nanostructures for surface-enhanced Raman spectroscopy [J]. Chem. Soc. Rev. 37:885-897.
    [5]Fan MK, Andrade GFS, Brolo AG.2011. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry [J]. Anal. Chim. Acta 693:7-25.
    [6]Bell SEJ, McCourt MR.2009. SERS enhancement by aggregated Au colloids: effect of particle size [J]. Phys.Chem.Chem.Phys.11:7455-7462.
    [7]Tiwari VS, Oleg T, Darbha GK, et al.2007. Non-resonance SERS effects of silver colloids with different shapes [J]. Chem.Phys.Lett.446:77-82.
    [8]Larmour IA, Faulds K, Graham D.2012. SERS activity and stability of the most frequently used silver colloids [J]. J. Raman Spectrosc.43:202-206.
    [9]Jana NR, Gearheart L, Murphy CJ.2001. Seed-Mediated Growth Approach for ShapeControlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template [J]. Adv. Mater.13:1389-1393.
    [10]Song JL, Chu Y, Liu Y, et al.2008. Room-temperature controllable fabrication of silver nanoplates reduced by aniline [J]. Chem. Commun.10:1223-1225.
    [11]Rycenga M, Xia XH, Moran CH, et al.2011. Generation of Hot Spots with Silver Nanocubes for Single-Molecule Detection by Surface-Enhanced Raman Scattering Angew [J]. Chem. Int. Ed.50:5473-5477.
    [12]Lu HF, Kang ZW, Zhang HX, et al.2013. Synthesis of size-controlled silver nanodecahedrons and their application for core-shell surface enhanced Raman scattering (SERS) tags [J]. RSC Adv.3:966-974.
    [13]Aizpurua J, Hanarp P, Sutherland DS, et al.2003. Optical properties of gold nanorings [J]. Phys. Rev. Lett.90:05740.
    [14]Dick LA, McFarland AD, Haynes CL, et al.2002. Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss [J]. J. Phys. Chem. B 106:853-860.
    [15]Ye J, Shioi M, Lodewijks K, et al.2010. Tuning plasmonic interaction between gold nanorings and a gold film for surface enhanced Raman scattering [J]. Appl. Phys. Lett.97:163106.
    [16]Camargo PHC, Rycenga M, Au L, et al.2009. Isolating and Probing the Hot Spot Formed between Two Silver Nanocubes [J]. Angew. Chem., Int. Ed.48: 2180-2184.
    [17]Stober W, Fink A, Bohn E.1968. Controlled growth of monodisperse silica spheres in the micron size range [J]J. Colloid Interface Sci.26:62-69.
    [18]Li C, Hong GS, Wang PW, et al,2009. Wet Chemical Approaches to Patterned Arrays of Well-Aligned ZnO Nanopillars Assisted by Monolayer Colloidal Crystals [J] Chem. Mater.21:891-897.
    [19]Kunz K, Luebbers R. The Finite Difference Time Domain Methods for Electromagnetics,1993, New York, CRC press.
    [20]Byun KM, Kim SJ, Kim D.2005. Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis [J]. Opt. Express 13:3737-3742.
    [21]Le Ru EC, Blackie E, Meyer M, et al.2007. Surface enhanced Raman scattering enhancement factors a comprehensive study [J]. J. Phys. Chem. C 111: 13794-13803.
    [22]Lin WC, Liao LS, Chen YH, et al.2011. Size Dependence of Nanoparticle-SERS Enhancement from Silver Film over Nanosphere (AgFON) Substrate Plasmonics 6:201-206.
    [23]Sun LL, Song YH, Wang L, et al.2008. Ethanol-induced formation of silver nanoparticle aggregates for highly active SERS substrates and application in DNA detection [J]. J. Phys. Chem. C 112:1415-1422.
    [24]Watanabe H, Hayazawa N, Inouye Y, et al.2005. DFT vibrational calculations of Rhodamine 6G adsorbed on silver:Analysis of tip-enhanced Raman spectroscopy [J]. J. Phys. Chem. B 109:5012-5020.
    [25]Xu HX, Bjerneld EJ, Kall M, et al.1999. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering [J]. Phys. Rev. Lett.83: 4357-4360.
    [26]Farcau C, Astilean S.2010. Mapping the SERS Efficiency and Hot-Spots Localization on Gold Film over Nanospheres Substrates [J]. J. Phys. Chem. C 114:11717-11722.
    [27]Gupta B, Rani M, Kumar R.2012. Degradation of thiram in water, soil and plants:a study by high-performance liquid chrornatography [J]. Biomed. Chromatogr.26:69-75.
    [28]Rastegarzadeh S, Pourreza N, Larki A.2013. Dispersive liquid-liquid microextraction of thiram followed by microvolume UV-vis spectrophotometric determination [J]. Spectrochim. Acta Part A:Molecular and Biomolecular Spectroscopy 114:46-50.
    [29]Queffelec AL, Boisde F, Larue JP, et al.2001. Development of an immunoassay (ELISA) for the quantification of thiram in lettuce [J]. J. Agric. Food Chem.49: 1675-1680.
    [30]Waseem A, Yaqoob Ms Nabi A.2010. Determination of thiram in natural waters using flow-injection with cerium (TV)-quinine chemiluminescence system [J]. Luminescence 25:71-75.
    [31]Wang XT, Shi WS, She GW, et al.2010. High-performance surface-enhanced Raman scattering sensors based on Ag nanoparticles-coated Si nanowire arrays for quantitative detection of pesticides [J]. Appl. Phys. Lett.96:053104.
    [32]Kang JS, Hwang SY, Lee CJ, et al.2002. SERS of dithiocarbamate pesticides adsorbed on silver surface; Thiram [J]. Bull. Korean Chem. Soc.23:1604-1610.
    [1]Ciou SH, Cao YW, Huang HC, et al.2009. SERS Enhancement Factors Studies of Silver Nanoprism and Spherical Nanoparticle Colloids in The Presence of Bromide Ions [J]. J. Phys. Chem. C 113:9520-9525.
    [2]Virga A, Rivolo Paola, Frascella F, et al.2013. Silver Nanoparticles on Porous Silicon:Approaching Single Molecule Detection in Resonant SERS Regime [J]. J. Phys. Chem. C 117:20139-20145.
    [3]Huang ZL, Meng GW, Huang Q.2013. Large-area Ag nanorod array substrates for SERS:AAO template-assisted fabrication, functionalization, and application in detection PCBs[J]J. Raman Spectrosc.44:240-246.
    [4]Xiao XY, Nogan J, Beechem T, et al.2011. Lithographically-defined 3D porous networks as active substrates for surface enhanced Raman scattering [J]. Chem. Commun.47:9858-9860.
    [5]Zhang MF, Zhao AW, Guo HY, et al.2011. Green synthesis of rosettelike silver nanocrystals with textured surface topography and highly efficient SERS performances [J]. CrystEngComm 13:5709-5717.
    [6]Zhang MF, Zhao AW, Sun HH, et al.2011. Rapid, large-scale, sonochemical synthesis of 3D nanotextured silver microflowers as highly efficient SERS substrates [J]. J. Mater. Chem.21:18817-18824.
    [7]McLellan JM, Siekkinen A, Chen JY, et al.2006. Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes [J]. Chem.Phys. Lett.427:122-126.
    [8]李小灵,徐蔚青,张俊虎等.2003.一种新型表面增强拉曼话性基底的制备方法[J].高等学校化学学报24:2092-2094。
    [9]Zhang XY, Zhao J, Whitney AV, et al.2006. Ultrastable Substrates for Surface-Enhanced Raman Spectroscopy:AI2O3 Overlayers Fabricated by Atomic Layer Deposition Yield Improved Anthrax Biomarker Detection [J]. J. Am. Chem. Soc.128:10304-10309.
    [10]Yang C, Xie YT, Yuen MMF, et al.2010. A facile chemical approach for preparing a SERS active silver substrate [J]. Phys. Chem. Chem. Phys.12: 14459-14461.
    [11]甘自保,赵爱武,张茂峰等.2012.原位获取新鲜Ag及其SERS活性研究。[J].光散射学报24:234-239.
    [12]Gan ZB, Zhao AW, Zhang MF, et al.2012. A facile strategy for obtaining fresh Ag as SERS active substrates [J]. J. Colloid Interface Sci.366:23-27.
    [13]Tang DP, Yuan R, Chai YQ.2006. Ligand-Functionalized Core/Shell Ag@Au Nanoparticles Label-Free Amperometric Immun-Biosensor [J]. Biotechnol. Bioeng.94:996-1004.
    [14]Samal AK, Polavarapu L, Rodal-Cedeira S, et al.2013. Size Tunable Au@Ag Core-Shell Nanoparticles:Synthesis and Surface-Enhanced Raman Scattering Properties [J]. Langmuir 29:15076-15082.
    [15]Yang Y, Shi JL, Kawamurab G, et al.2008. Preparation of Au-Ag, Ag-Au core-shell bimetallic nanoparticles for surface-enhanced Raman scattering. Scripta Mater.58:862-865.
    [16]Fu CY, Kho KW, Dinish US, et al.2012. Enhancement in SERS intensity with hierarchical nanostructures by bimetallic deposition approach [J]. J. Raman Spectrosc.43:977-985.
    [17]Liu GQ, Li Y, Duan GT, et al.2012. Tunable surface plasmon resonance and strong SERS performances of Au opening-nanoshell ordered arrays [J]. ACS Appl. Mater. Interfaces 4:1-5.
    [18]Wang H, Kundu J, Halas NJ.2007. Plasmonic Nanoshell Arrays Combine Surface-Enhanced Vibrational Spectroscopies on a Single Substrate [J]. Angew. Chem. Int. Ed 46:9040-9044.
    [19]Wang CX, Ruan WD, Ji N, et al.2010. Preparation of nanoscale Ag semishell array with tunable interparticle distance and its application in surface-enhanced Raman scattering [J]. J. Phys. Chem. C 114:2886-2890.
    [20]Denkov, N. D.; Velev, O. D.; Kralchevsky, P. A.; Ivanov, I. B.; Yoshimura, H.; Nagayama, K. Langmuir 1992,8,3183.
    [21]Baia L, Baia M, Popp J, et al.2006. Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR [J]. J. Phys. Chem. B 110:23982-23986.
    [22]Maaroof Al, Cortie MB, Harris N, et al.2008. Mie and Bragg plasmons in subwavelength silver semi-shells [J]. Small 4:2292-2299.
    [23]Chu JY, Wang TJ, Yeh JT, et al.2007. Near-field observation of plasmon excitation and propagation on ordered elliptical hole arrays [J]. Appl. Phys. A 89: 387-390.
    [24]Takeuchi H, Harada I. In Spectroscopy of Biological Systems, Advances in Spectroscopy; Clark, R. J. H., Hester, R. E., Eds.; John Wiley & Sons:New York, 1986; Vol.13, Chapter 3, p 1476.
    [25]Wang YL, Chen HJ, Dong SJ, et al.2006. Surface-enhanced Raman scattering of silver-gold bimetallic nanostructures with hollow interiors [J]. J. Chem. Phys, 125:044710.
    [26]Osawa M, Matsuda N, Yoshii K, et al.1994. Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-Aminothiophenol adsorbed on silver:Herzberg-Teller contribution [J]. J. Phys. Chem 100: 12702-12707.
    [27]Zhou Q, Li XW, Fan Q, et al.2006. Charge Transfer between Metal Nanoparticles Interconnected with a Functionalized Molecule Probed by Surface-Enhanced Raman Spectroscopy [J]. Angew. Chem. Int. Ed 45: 3970-3973.
    [28]Huang YF, Zhu HP, Liu GK, et al.2010. When the signal is not from the original molecule to be detected:chemical transformation of para-Aminothiophenol on Ag during the SERS measurement [J]. J. Am. Chem. Soc 132:9244-9246.
    [29]Li WY, Camargo PHC, Lu XM, et al.2009. Dimers of silver nanospheres:facile synthesis and their use as hot spots for surface-enhanced Raman scattering [J]. Nano Lett.9:485-490.
    [30]Wang YL, Zou XQ, Ren W, et al.2007. Effect of silver nanoplates on Raman spectra of p-Aminothiophenol assembled on smooth macroscopic gold and silver surface [J]. J. Phys. Chem. C 111:3259-3265.
    [31]McFarland AD, Young MA, Dieringer JA, et al.2005. Wavelength-Scanned Surface-Enhanced Raman Excitation Spectroscopy [J]. J. Phys. Chem. B 109: 11279-11285.
    [32]Farcau C, Astilean S.2010. Mapping the SERS efficiency and hot-spots localization on gold film over nanospheres substrates [J]. J. Phys. Chem. C 114: 11717-11722.
    [33]胡建强,张勇,任斌等.2003.不同形状的金纳米粒子的表面增强拉曼光谱[J].光散射学报.15:63-65.
    [I]Kuo CW, Shiu JY, Cho YH, et al.2003. Fabrication of large-area periodic nanopillar arrays for nanoimprint lithography using polymer colloid masks [J]. Adv. Mater.15:1065-1068.
    [2]Cheng JY, Ross C A, Chan VZH, et al.2001. Formation of a cobalt magnetic dot array via block copolymer lithography [J]. Adv. Mater.13:1174-1178.
    [3]Haes AJ, van Duyne RP.2002. A nanoscale optical biosensor:sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles[J].J. Am. Chem. Soc.124: 10596-10604.
    [4]Park SG, Moon JH, Lee SK, et al.2010. Bioinspired Holographically Featured Superhydrophobic and Supersticky Nanostructured Materials [J]. Langmuir 26: 1468-1472.
    [5]Ross BM, Wu LY, Lee LP.2011. Omnidirectional 3D Nanoplasmonic Optical Antenna Array via Soft-Matter Transformation[J]. Nano Lett.11:2590-2595.
    [6]Chang WY, Lin KH, Wu JT, et al.2011. Novel fabrication of an Au nanocone array on polycarbonate for high performance surface-enhanced Raman scattering[J]. J. Micromech. Microeng.21:035023.
    [7]Huang XJ, Kim JH, Choi YK.2008. Wafer-Scale Controlled Au/Pt Bimetallic Flowerlike Structure Array. Gold Bulletin 41:58-65.
    [8]Heo CJ, Kim SH, Jang SG, et al.2009. Gold "Nanograils" with Tunable Dipolar Multiple Plasmon Resonances [J]. Adv. Mater.21:1726-1731.
    [9]Liu XF, Sun CH, Linn NC, et al.2009. Wafer-Scale Surface-Enhanced Raman Scattering Substrates with Highly Reproducible Enhancement[J]. J. Phys. Chem. C 113:14804-14811.
    [10]Klein MJK, Guillaumee M, Wenger B, et al.2010. Inexpensive and fast wafer-scale fabrication of nanohole arrays in thin gold films for plasmonics[J]. Nanotechnology 21:205301.
    [11]Wang XD, Graugnard E, King JS, et al.2004. Large-Scale Fabrication of Ordered Nanobowl Arrays. Nano Lett.4:2223-2226.
    [12]Lee SY, Kim SH, Kim MP, et al.2013. Freestanding and Arrayed Nanoporous Microcylinders for Highly Active 3D SERS Substrate[J]. Chem. Mater.25: 2421-2426.
    [13]Cui B, Clime L, Li K, et al.2008. Fabrication of large area nanoprism arrays and their application for surface enhanced Raman spectroscopy[J]. Nanotechnology 19:145302.
    [14]Seol ML, Choi SJ, Baek DJ, et al.2012. A nanoforest structure for practical surface-enhanced Raman scattering substrates [J]. Nanotechnology 23:095301.
    [15]Kiraly B, Yang SK, Huang TJ.2013. Multifunctional porous silicon nanopillar arrays:antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering [J]. Nanotechnology 24:245704
    [16]Wang YD, Lu N, Wang WT.2013. Highly effective and reproducible surface-enhanced Raman scattering substrates based on Ag pyramidal arrays [J].Nano Res.6:159-166.
    [17]Lapeyrade M, Muhin A, Einfeldt S, et al.2013. Electrical properties and microstructure of vanadium-based contacts on ICP plasma etched n-type AlGaN: Si and GaN:Si surfaces [J]. Semicond. Sci. Technol.28:125015.
    [18]Chiang CC, Tsai LR.2012. Perfectly notched long-period fiber grating filter based on ICP dry etching technique [J]. Optics Lett.37:193-195.
    [19]Chen Q, Fang J, Ji HF, et al.2007. Fabrication of SiO2 microcantilever using isotropic etching with ICP [J]. IEEE Sens. J.7:1362-1368.
    [21]Sun CH, Linn NC, Jiang P.2007. Templated fabrication of periodic metallic nanopyramid arrays [J]. Chem. Mater.19:4551-4556.
    [22]Neinhuis C, Barthlott W.1997. Characterization and distribution of water-repellent, self-cleaning plant surfaces [J]. Ann. Bot.79:667-677.
    [23]Sun TL, Feng L, Gao XF, et al.2005. Bioinspired Surfaces with Special Wettability [J]. Ace. Chem. Res.38:644-652.
    [24]Lu LQ, Zheng Y, Qu WG, et al.2012. Hydrophobic Teflon films as concentrators for single-molecule SERS detection [J]. J. Mater. Chem.22:20986-20990.