ZnO纳米棒/金刚石复合结构的制备及电学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌(Zn0)和金刚石(diamond)是非常重要的宽带隙半导体材料,具有许多优异的物理和化学性质,近年来,两者的复合结构已在半导体异质结、生物电极和表面声学波器件等诸多领域被深入研究,并体现了重要的应用价值。
     本论文主要开展了利用热蒸发法在化学气相沉积(CVD)多晶金刚石膜及单晶金刚石上生长Zn0纳米棒的研究,系统地研究了生长时间、金刚石晶粒尺寸及晶面对Zn0纳米棒生长形态的影响;分别在轻、重硼掺杂CVD金刚石上生长Zn0纳米棒,制作出n型Zn0纳米棒/p型金刚石异质结结构,并研究其电学性能。获得一些创新结果,具体研究内容如下:
     1.采用热蒸发法,在CVD多晶金刚石膜上生长ZnO纳米棒。实验结果表明,在生长初始阶段,ZnO首先成核于金刚石的晶界和台阶处;随着生长时间的增加,[0001]取向Zn0纳米棒覆盖在整个金刚石膜上。金刚石的晶粒尺寸决定了Zn0纳米棒的直径。
     2.在(111)和(00)单晶金刚石上生长ZnO纳米棒,发现[0001]取向的Zn0纳米棒具有垂直于金刚石(111)面和倾斜于(001)面生长两种模式。通过分析(0001)ZnO纳米棒与金刚石各晶面界面的结构和晶格失配,得到(111)面金刚石上生长Zn0纳米棒遵循(0001)[1120]Zno//(111)[110]diamond和(0001)[1010]Zno//(111)[110]diamond外延生长关系。(001)面金刚石上生长Zn0纳米棒外延匹配关系分别是(0001)[0001]Zno//(101)[101]diamond和(0001)[1120]Zno//(001)[001]diamond。
     3.在硼掺杂CVD金刚石膜上生长Zn0纳米棒,并制作n型Zn0纳米棒/p型金刚石异质结结构。当p型金刚石为轻掺杂时,n型Zn0纳米棒/p型金刚石异质结具有良好的整流特性;当p型金刚石重掺杂到简并状态时,n型ZnO纳米棒/p型金刚石异质结出现微分负阻现象。分析异质结在热平衡状态下的能带结构,研究表明微分负阻现象是由异质结的隧穿电流引起的。
     4.研究了n型ZnO纳米棒/p型金刚石整流特性曲线随温度(室温到220oC)的变化关系,并分析各温度下的电输运性质及相应半导体参数的变化。异质结器件在高温下表现为典型的整流特性,器件的开启电压和理想因子随温度升高而减小。反向饱和电流随温度的升高而增大,载流子注入效率在高温下得到有效的增强。
Zinc oxide (ZnO) and diamond are important direct wide band semiconductormaterials. Recently, the combined structures of ZnO and diamond have been paidmore attention due to their distinguished physical and chemical properties making itsuitable for the applications such as semiconductor heterojunction, biosensorelectrodes and surface acoustic wave devices.
     In this thesis, we investigate the growth evolution of ZnO nanorods (NRs)chemical vapor deposited (CVD) polycrystalline diamond films by thermal vaportransport method and study the influence of the growth time, diamond grain size anddiamond facet for the ZnO NRs grown on diamond. The ZnO NRs are grown onlightly and heavily B-doped diamond films, respectively. The n-ZnO NRs/p-diamondheterojunctions are constructed and the electrical properties are examined. The maincontent and innovation of this thesis are listed as following:
     1. ZnO nanorods (NRs) grown on chemical vapor deposited CVD polycrystallinediamond films by thermal vapor transport method have been investigated. Theexperimental results show that, in the initial growth status, the semi-spherical ZnOnuclei were preferably deposited near the growth steps on the terraces and theboundaries of diamond grains. With increasing the growth time, the [0001] orientatedZnO nanorods appeared and further covered the whole diamond films. It is found thatthe size of diamond grains would determine the diameter of ZnO nanorods.
     2. ZnO nanorods further grown on (111) and (001) faceted single crystaldiamond was studied. The results show that [0001] oriented ZnO nanorods are of thetwo modes by vertically and inclined grown on (111) and (001) diamond facets, respectively. The epitaxial relations between the (0001) ZnO NRs and differentdiamond planes are discussed based on structural and lattice matches at thecorresponding interfaces. The epitaxial relations between the (0001) ZnO NRs anddifferent diamond planes are discussed based on structural and lattice matches at thecorresponding interfaces.
     3. The n-ZnO NR/p-diamond heterojunctions are constructed and show typicalrectifying current-voltage behavior for non-degenerated diamond. A negativedifferential resistance (NDR) phenomenon relating to the tunneling current ispresented for the heterojunctions, when the p-type diamond is heavily boron-dopedand degenerated.
     4. Temperature dependent current-voltage (I-V) characteristics of the n-ZnONR/p-diamond heterojunctions were examined from room temperature (RT) to220oC.The p-n junction parameters and the current transport mechanism are found to bestrongly related to temperature. The turn-on voltage and ideality factor are decreasedwith the increase of temperature, whereas the reverse saturation current was increasedat higher temperatures. The carrier injection efficiency is effectively enhanced at hightemperatures.
引文
[1]赵铧,李韦,刘高斌, et al. ZnO纳米材料及掺杂ZnO材料的最新研究进展[J].材料导报,2007,21(F11):105-109.
    [2] BERMAN R. Physical properties of diamonds [M]. Clarendon Press, Oxford,1965:443.
    [3] BENYOUCEF B, ELMAZIRIA O, PAN F, et al. SAW devices based on ZnOinclined c-axis on diamond [J]. Diamond and Related Materials,2008,17:1420.
    [4] LUO J, ZENG F, PAN F, et al. Filtering performance improvement in V-dopedZnO/diamond surface acoustic wave filters [J]. Applied Surface Science,256(10):3081-3085.
    [5] HUANG J, WANG L, XU R, et al. Effect of a buffer layer on the properties of UVphotodetectors based on a ZnO/diamond film structure [J]. Semiconductor Scienceand Technology,2008,23:125018.
    [6] LIU J M, XIA Y B, WANG L J, et al. Effect of grain size on the electricalproperties of ultraviolet photodetector with ZnO/diamond film structure [J].Journal of crystal growth,2007,300(2):353-357.
    [7] ZHAO J, WU D, ZHI J. A novel tyrosinase biosensor based on biofunctional ZnOnanorod microarrays on the nanocrystalline diamond electrode for detection ofphenolic compounds [J]. Bioelectrochemistry,2009,75(1):44-49.
    [8] WANG C X, YANG G W, ZHANG T, et al. Fabrication of transparent pnhetero-junction diodes by p-diamond film and n-ZnO film [J]. Diamond andrelated materials,2003,12(9):1548-1552.
    [9] LOOK D, CLAFLIN B. P-type doping and devices based on ZnO [J]. PhysicaStatus Solidi (b),2004,241(3):624-630.
    [10] TANG Z, WONG G K L, YU P, et al. Room-temperature ultraviolet laseremission from self-assembled ZnO microcrystallite thin films [J]. AppliedPhysics Letters,1998,72:3270.
    [11] DESGRENIERS S. High-density phases of ZnO: Structural and compressiveparameters [J]. Physical Review B,1998,58(21):14102.
    [12] CHOI J S, YO C H. Study of the nonstoichiometric composition op zinc oxide[J]. Journal of Physics and Chemistry of Solids,1976,37(12):1149-1151.
    [13] MAHAN G. Intrinsic defects in ZnO varistors [J]. Journal of Applied Physics,1983,54(7):3825-3832.
    [14] OBA F, NISHITANI S R, ISOTANI S, et al. Energetics of native defects in ZnO[J]. Journal of Applied Physics,2001,90:824.
    [15] ELILARASSI R, CHANDRASEKARAN G. Effect of annealing on structuraland optical properties of zinc oxide films [J]. Materials Chemistry and Physics,121:378-384.
    [16] KIM H, GILMORE C, HORWITZ J, et al. Transparent conductingaluminum-doped zinc oxide thin films for organic light-emitting devices [J].Applied Physics Letters,2000,76:259.
    [17] FOUCHET A, PRELLIER W, MERCEY B, et al. Investigation of laser-ablatedZnO thin films grown with Zn metal target: A structural study [J]. Journal ofApplied Physics,2004,96:3228.
    [18] JEONG S, LEE J, LEE S, et al. Deposition of aluminum-doped zinc oxide filmsby RF magnetron sputtering and study of their structural, electrical and opticalproperties [J]. Thin Solid Films,2003,435(1):78-82.
    [19] YU Q, LI L A, LI H D, GAO S Y, SANG D D, YUAN J J, ZHU P W. Synthesisand properties of boron doped ZnO nanorods on silicon substrate bylow-temperature hydrothermal reaction [J]. Applied Surface Science,2011,257:5984-5988.
    [20] YU Q, LI J, LI H D, WANG Q L, CHENG S H, LI L A. Fabrication structure andphotocatalytic activities of boron-doped ZnO nanorods hydrothermally grown onCVD diamond film [J]. Chemical Physics Letters,2012,http://dx.doi.org/10.1016/j.cplett.2012.04.051
    [21] KOBAYASHI A, SANKEY O F, DOW J D. Chemical trends for defect energylevels in Hg (1-x) CdxTe [J]. Physical Review B,1982,25:6367-6379.
    [22] KASUGA M O S. Jpn J Appl Phys,1983,22:794.
    [23] M P F C. Ceram Bull,1990,69:1959.
    [24] KAIDASHEV E, LORENZ M, VON WENCKSTERN H, et al. High electronmobility of epitaxial ZnO thin films on c-plane sapphire grown by multisteppulsed-laser deposition [J]. Applied Physics Letters,2003,82:3901.
    [25] YAN H, HE R, PHAM J, et al. Morphogenesis of One-dimensional ZnO Nanoand Microcrystals [J]. Advanced Materials,2003,15(5):402-405.
    [26] ZHANG J, SUN L, PAN H, et al. ZnO nanowires fabricated by a convenientroute [J]. New journal of chemistry,2002,26(1):33-4.
    [27] LIN K F, CHENG H M, HSU H C, et al. Band gap variation of size-controlledZnO quantum dots synthesized by sol-gel method [J]. Chemical Physics Letters,2005,409(4):208-211.
    [28] CHENG H M, HSU H C, CHEN S L, et al. Efficient UV photoluminescencefrom monodispersed secondary ZnO colloidal spheres synthesized by sol-gelmethod [J]. Journal of Crystal Growth,2005,277(1):192-199.
    [29] LOOK D, REYNOLDS D, LITTON C, et al. Characterization of homoepitaxialp-type ZnO grown by molecular beam epitaxy [J]. Applied Physics Letters,2002,81:1830.
    [30] STUDENIKIN S, GOLEGO N, COCIVERA M. Optical and electrical propertiesof undoped ZnO films grown by spray pyrolysis of zinc nitrate solution [J].Journal of Applied Physics,1998,83:2104.
    [31] YAN H, JOHNSON J, LAW M, et al. ZnO nanoribbon microcavity lasers [J].Advanced Materials,2003,15(22):1907-1911.
    [32] ROY V, DJURISIC A B, CHAN W, et al. Luminescent and structural propertiesof ZnO nanorods prepared under different conditions [J]. Applied Physics Letters,2003,83:141.
    [33] ZHANG B, BINH N, WAKATSUKI K, et al. Pressure-dependent ZnOnanocrsytal growth in a chemical vapor deposition process [J]. The Journal ofPhysical Chemistry B,2004,108(30):10899-902.
    [34] WEN J, LAO J, WANG D, et al. Self-assembly of semiconducting oxidenanowires, nanorods, and nanoribbons [J]. Chemical Physics Letters,2003,372(5):717-722.
    [35] DING Y, GAO P X, WANG Z L. Catalyst-nanostructure interfacial latticemismatch in determining the shape of VLS grown nanowires and nanobelts: acase of Sn/ZnO [J]. Journal of the American Chemical Society,2004,126(7):2066-2072.
    [36] LYU S C, ZHANG Y, LEE C J, et al. Low-temperature growth of ZnO nanowirearray by a simple physical vapor-deposition method [J]. Chemistry of Materials,2003,15(17):3294-3299.
    [37] PAN Z W, WANG Z L. Nanobelts of semiconducting oxides [J]. Science,2001,291(5510):1947-1949.
    [38]张立德,牟季美.纳米材料和纳米结构[M].科学出版社.2001.
    [39] ZU P, TANG Z, WONG G K L, et al. Ultraviolet spontaneous and stimulatedemissions from ZnO microcrystallite thin films at room temperature [J]. SolidState Communications,1997,103(8):459-463.
    [40] BAGNALL D, CHEN Y, ZHU Z, et al. Optically pumped lasing of ZnO at roomtemperature [J]. Applied Physics Letters,1997,70:2230.
    [41] HONG S, JOO T, PARK W I, et al. Time-resolved photoluminescence of thesize-controlled ZnO nanorods [J]. Applied Physics Letters,2003,83:4157.
    [42] JUNG S, PARK W, CHEONG H, et al. Time-resolved and time-integratedphotoluminescence in ZnO epilayers grown on AlO (0001) by metalorganicvapor phase epitaxy [J]. Applied Physics Letters,2002,80:1924.
    [43] CHOY J H, JANG E S, WON J H, et al. Soft Solution Route to DirectionallyGrown ZnO Nanorod Arrays on Si Wafer; Room-temperature Ultraviolet Laser[J]. Advanced Materials,2003,15(22):1911-1914.
    [44] JOHNSON J C, YAN H, YANG P, et al. Optical cavity effects in ZnO nanowirelasers and waveguides [J]. The Journal of Physical Chemistry B,2003,107(34):8816-8828.
    [45] JOHNSON J C, YAN H, SCHALLER R D, et al. Near-field imaging of nonlinearoptical mixing in single zinc oxide nanowires [J]. Nano Letters,2002,2(4):279-283.
    [46] JOHNSON J C, KNUTSEN K P, YAN H, et al. Ultrafast carrier dynamics insingle ZnO nanowire and nanoribbon lasers [J]. Nano Letters,2004,4(2):197-204.
    [47] LIU C, YIU W, AU F, et al. Electrical properties of zinc oxide nanowires andintramolecular pn junctions [J]. Applied Physics Letters,2003,83(15):3168-3170.
    [48] OGATA K, KIM S W, FUJITA S. ZnO growth on Si substrates by metalorganicvapor phase epitaxy [J]. Journal of Crystal Growth,2002,240(1):112-116.
    [49] WAN Q, LI Q, CHEN Y, et al. Positive temperature coefficient resistance andhumidity sensing properties of Cd-doped ZnO nanowires [J]. Applied PhysicsLetters,2004,84:3085.
    [50] LI Q, LIANG Y, WAN Q, et al. Oxygen sensing characteristics of individualZnO nanowire transistors [J]. Applied Physics Letters,2004,85:6389.
    [51] WAN Q, LI Q, CHEN Y, et al. Fabrication and ethanol sensing characteristics ofZnO nanowire gas sensors [J]. Applied Physics Letters,2004,84:3654.
    [52] JOHNSON J C, YAN H, SCHALLER R D, et al. Single nanowire lasers [J]. TheJournal of Physical Chemistry B,2001,105(46):11387-90.
    [53] WANG Z L, SONG J. Piezoelectric nanogenerators based on zinc oxidenanowire arrays [J]. Science,2006,312:242-246.
    [54]杨晓天,刘博阳,马艳,赵佰军,张源涛,杨天鹏,杨洪军,李万程,刘大力,杜国同. ZnO基紫外探测器的制作与研究[J].发光学报,2004,25(2):3.
    [55] COMINI E, FAGLIA G, SBERVEGLIERI G, et al. Stable and highly sensitivegas sensors based on semiconducting oxide nanobelts [J]. Applied PhysicsLetters,2002,81:1869.
    [56] CUI J, DAGHLIAN C, GIBSON U, et al. Low-temperature growth and fieldemission of ZnO nanowire arrays [J]. Journal of Applied Physics,2005,97:044315.
    [57] XU C, SUN X. Field emission from zinc oxide nanopins [J]. Applied PhysicsLetters,2003,83(18):3806-3808.
    [58] ZHANG Z, MENG G, XU Q, et al. Aligned ZnO nanorods with tunable size andfield emission on native Si substrate achieved via simple electrodeposition [J].The Journal of Physical Chemistry C,2009,114(1):189-193.
    [59]CAO H, ZHAO Y, HO S, et al. Random laser action in semiconductor powder [J].Physical Review Letters,1999,82(11):2278-2281.
    [60] LI H, YU S, LAU S, et al. Simultaneous formation of visible and ultravioletrandom lasings in ZnO films [J]. Applied Physics Letters,2006,89(021110.
    [61] LI H D, YU S F, LAU S P, et al. High-temperature Lasing Characteristics of ZnOEpilayers [J]. Advanced Materials,2006,18(6):771-774.
    [62] KANG H, PARK J, CHOI T, et al. n-ZnO: N/p-Si nanowire photodiode preparedby atomic layer deposition [J]. Applied Physics Letters,100(4):041117.
    [63] NOVODVORSKY O, GORBATENKO L, PANCHENKO V Y, et al. Optical andstructural characteristics of Ga-doped ZnO films [J]. Semiconductors,2009,43(4):419-424.
    [64] REDDY N K, AHSANULHAQ Q, KIM J, et al. Behavior of n-ZnOnanorods/p-Si heterojunction devices at higher temperatures [J]. Applied PhysicsLetters,2008,92:043127.
    [65] ZHANG X M, LU M Y, ZHANG Y, et al. Fabrication of a High-brightnessBlue-light emitting Diode Using a ZnO nanowire Array Grown on p-GaN ThinFilm [J]. Advanced Materials,2009,21(27):2767-2770.
    [66] IZAKI M, SHINAGAWA T, MIZUNO K T, et al. Electrochemically constructedp-Cu2O/n-ZnO heterojunction diode for photovoltaic device [J]. Journal ofPhysics D: Applied Physics,2007,40:3326.
    [67] SZE S M. Physics of Semiconductor Devices3rd edn [M]. New York:Wiley,2007.
    [68] CHEN P, MA X, LI D, et al. Electrically pumped ultraviolet random lasing fromZnO-based metal-insulator-semiconductor devices: dependence on carriertransport [J]. Optics Express,2009,17(6):4712-4717.
    [69] YANG Y, QI J, LIAO Q, et al. Negative differential resistance in PtIr/ZnOribbon/sexithiophen hybrid double diodes [J]. Applied Physics Letters,2009,95:123112.
    [70] YANG Y, LIAO Q, QI J, et al. PtIr/ZnO nanowire/pentacene hybrid back-to-backdouble diodes [J]. Applied Physics Letters,2008,93:133101.
    [71] ITO D, TOMITA T, HATAZAWA T. Room temperature observation of negativedifferential resistance effect using ZnO nanocrystal structure with doubleSchottky barriers [J]. Applied Physics Letters,2007,90(14):143118.
    [72] BALMER R, BRANDON J, CLEWES S, et al. Chemical vapour depositionsynthetic diamond: materials, technology and applications [J]. Journal of Physics:Condensed Matter,2009,21:364221.
    [73] TENNANT S. On the Nature of the Diamond. By Smithson Tennant, Esq. FRS[J]. Philosophical Transactions of the Royal Society of London,1797,87:123-127.
    [74]顾长志,金曾孙.金刚石膜的性质、应用及国内外研究现状[J].功能材料,1997,28(3):5.
    [75] FRENCH P, MURO H, SHINOHARA T, et al. SOI pressure sensor [J]. Sensorsand Actuators A: Physical,1992,35(1):17-22.
    [76] OKUZUMI F. proceedings of the International Conference on New DiamondScience and Technology F,1990[C].
    [77] YIN Z, AKKERMAN Z, YANG B, et al. Optical properties and microstructureof CVD diamond films [J]. Diamond and Related Materials,1997,6(1):153-158.
    [78]王季陶,张卫,刘志杰.金刚石低压气相生长的热力学藕合模型[M].北京;科学出版社.1998.
    [79]顾毓沁,余立新,朱德贵.金刚石薄膜的导热性质研究[J].中国科学(E辑),1996,26(2):103.
    [80]满卫东.金刚石薄膜[J].新型碳材料,2002,17:77.
    [81]郭西缅,王岚. Fe刻蚀金刚石的研究[J].复合材料学报,1997,14(2):
    [82]戴达煌,周克崧.金刚石薄膜沉积制备工艺与应用[M].北京;冶金工业出版社.2001.
    [83] OKUSHI H. Diamond Semiconductor for Electronic Device Application [J].Carbon,1997,35(10):1682.
    [84]胡陈果.高硼掺杂金刚石膜电极的电化学应用研究[J].功能材料与器件学报,2002,31(2):93-97.
    [85] WANG J, LI M, SHI Z, et al. Direct electrochemistry of cytochrome c at a glassycarbon electrode modified with single-wall carbon nanotubes [J]. AnalyticalChemistry,2002,74(9):1993-1997.
    [86] SARADA B, RAO T N, TRYK D, et al. Electrochemical oxidation of histamineand serotonin at highly boron-doped diamond electrodes [J]. AnalyticalChemistry,2000,72(7):1632-1638.
    [87] TOMIKAWA T, NISHIBAYASHI Y, SHIKATA S, et al. pn Junction diode byB-doped diamond heteroepitaxially grown on Si-doped c-BN [J]. Diamond andRelated Materials,1994,3(11):1389-92.
    [88] WANG C X, YANG G W, ZHANG T, et al. Preparation of low-threshold andhigh current rectifying heterojunction using B-doped diamond grown onSi-treated c-BN crystals [J]. Diamond and Related Materials,2003,12(8):1422-1425.
    [89] WANG C X, YANG G W, GAO C, et al. Highly oriented growth of n-type ZnOfilms on p-type single crystalline diamond films and fabrication of high-qualitytransparent ZnO/diamond heterojunction [J]. Carbon,2004,42(2):317-321.
    [90] HIRAMA K, TANIYASU Y, KASU M. Electroluminescence andcapacitance-voltage characteristics of single-crystal n-type AlN (0001)/p-typediamond (111) heterojunction diodes [J]. Applied Physics Letters,98(1):011908.
    [91] SWAIN G M. The susceptibility to surface corrosion in acidic fluoride media: acomparison of diamond, HOPG, and glassy carbon electrodes [J]. Journal of theElectrochemical Society,1994,141:3382.
    [92] CAREY J J, CHRIST JR C S, LOWERY S N. Method of electrolysis employinga doped diamond anode to oxidize solutes in wastewater [M]. Google Patents.1995.
    [93] NISHIMURA K, DAS K, GLASS J. Material and electrical characterization ofpolycrystalline boron-doped diamond films grown by microwave plasmachemical vapor deposition [J]. Journal of Applied Physics,1991,69(5):3142-3148.
    [94] EKIMOV E, SIDOROV V, BAUER E, et al. Superconductivity in diamond [J].Nature,2004,428(6982):542-545.
    [95] WANG Z, LUO Q, LIU L, et al. The superconductivity in boron-dopedpolycrystalline diamond thick films [J]. Diamond and related materials,2006,15(4):659-663.
    [96]减建兵,黄浩,赵玉成.含搀杂的金刚石[J].金刚石与磨料磨具工程,2002,1(127):17.
    [97] CHEN C H, CHANG S J, CHANG S P, et al. Novel fabrication of UVphotodetector based on ZnO nanowire/p-GaN heterojunction [J]. ChemicalPhysics Letters,2009,476(1):69-72.
    [98]李博. MPCVD法制备光学级多晶金刚石膜及同质外延金刚石单晶[D];吉林大学,2008.
    [99]卢冬.硼和氮掺杂CVD金刚石膜的生长及特性研究[D];吉林大学,2010.
    [100]李柳暗.压强及氮气对HFCVD硼掺杂金刚石膜的制备及性质影响[D];吉林大学,2010.
    [101] CHEN J, ZENG F, LI D, et al. Deposition of high-quality zinc oxide thin f ilmson diamond substrates for high-frequency surface acoustic wave filterapplications [J]. Thin Solid Films,2005,485(1):257-261.
    [102] LAMARA T, BELMAHI M, ELMAZRIA O, et al. Freestanding CVD diamondelaborated by pulsed-microwave-plasma for ZnO/diamond SAW devices [J].Diamond and Related Materials,2004,13(4):581-4.
    [103] BENSMAINE S, LE BRIZOUAL L, ELMAZRIA O, et al. Deposition of ZnOinclined c-axis on silicon and diamond by rf magnetron sputtering [J]. PhysicaStatus Solidi (a),2007,204(9):3091-3095.
    [104] SUN J, BAI Y Z, SUN J C, et al. Structural and electrical properties of ZnOfilms on freestanding thick diamond films[J]. Chinese Physics Letters,2008,53:2931-2934.
    [105] SUN J, BAI Y Z, YANG T, et al. Preparation and characteristics of ZnO filmson freestanding diamond substrates [J]. Diamond and related materials,2007,16(8):1597-601.
    [106] SUN J, BAI Y, YANG T, et al. Deposition of ZnO films on freestanding CVDthick diamond films [J]. Chinese Physics Letters,2006,23:1321.
    [107] WANG C X, YANG G W, GAO C X, et al. Highly oriented growth of n-typeZnO films on p-type single crystalline diamond films and fabrication ofhigh-quality transparent ZnO/diamond heterojunction [J]. Carbon,2004,42(2):317-321.
    [108] WANG C X, YANG G W, LIU H W, et al. Experimental analysis andtheoretical model for anomalously high ideality factors in ZnO/diamond p-njunction diode [J]. Applied Physics Letters,2004,84(13):2427-2429.
    [109] HIKAVYY A, CLAUWS P, VANBESIEN K, et al. Atomic layer deposition ofZnO thin films on boron-doped nanocrystalline diamond [J]. Diamond andRelated Materials,2007,16(4):983-986.
    [110] GEIS M, RATHMAN D, EHRLICH D, et al. High-temperature point-contacttransistors and Schottky diodes formed on synthetic boron-doped diamond [J].Electron Device Letters, IEEE,1987,8(8):341-343.
    [111] WANG X, SONG C, LI D, et al. The influence of different doping elements onmicrostructure, piezoelectric coefficient and resistivity of sputtered ZnO film[J]. Applied Surface Science,2006,253(3):1639-1643.
    [112] GAO S Y, LI H D, LIU J W, et al. Growth and characteristics of ZnO films ongrowth side of freestanding diamond substrate dependent on buffer layerthickness [J]. Thin Solid Films,518(19):5396-5399.
    [113] LI H D, LV H, SANG D D, et al. Synthesizing of ZnO Micro/Nanostructures atLow Temperature with New Reducing Agents [J]. Chinese Physics Letters,2008,25:3794.
    [114] TEII K, NAKASHIMA M. Synthesis and field emission properties ofnanocrystalline diamond/carbon nanowall composite films [J]. Applied PhysicsLetters,96:023112.
    [115] ZAPOL P, STERNBERG M, CURTISS L A, et al. Tight-bindingmolecular-dynamics simulation of impurities in ultrananocrystalline diamondgrain boundaries [J]. Physical Review B,2001,65(4):045403.
    [116] LI Q, KWONG K, OZKAYA D, et al. Self-Assembled PeriodicalPolycrystalline-ZnO/aC Nanolayers on Zn Nanowire [J]. Physical ReviewLetters,2004,92(18):186102.
    [117] YANG Y, WANG C X, WANG B, et al. ZnO nanowire and amorphous diamondnanocomposites and field emission enhancement [J]. Chemical Physics Letters,2005,403(4):248-251.
    [118] YANG Y, WANG B, YANG G W. Mechanisms of self-catalyst growth ofagave-like zinc oxide nanostructures on amorphous carbons [J]. Crystal Growth&Design,2007,7(7):1242-1245.
    [119] FERRARI A, ROBERTSON J. Interpretation of Raman spectra of disorderedand amorphous carbon [J]. Physical Review B,2000,61(20):14095.
    [120] RAJALAKSHMI M, ARORA A K, BENDRE B, et al. Optical phononconfinement in zinc oxide nanoparticles [J]. Journal of Applied Physics,2000,87(5):2445-2448.
    [121] UMAR A, HAHN Y. Aligned hexagonal coaxial-shaped ZnO nanocolumns onsteel alloy by thermal evaporation [J]. Applied Physics Letters,2006,88:173120.
    [122] VADDIRAJU S, MOHITE A, CHIN A, et al. Mechanisms of1D crystal growthin reactive vapor transport: Indium nitride nanowires [J]. Nano Letters,2005,5(8):1625-1631.
    [123] HACHIGO A, NAKAHATA H, HIGAKI K, et al. Heteroepitaxial growth ofZnO films on diamond (111) plane by magnetron sputtering [J]. AppliedPhysics Letters,1994,65(20):2556-2558.
    [124] IMURA M, NAKAJIMA K, LIAO M, et al. Growth mechanism ofc-axis-oriented AlN on (111) diamond substrates by metal-organic vaporphase epitaxy [J]. Journal of Grystal Growth,312(8):1325-1328.
    [125] BAXTER J B, AYDIL E S. Epitaxial growth of ZnO nanowires on a-and c-plane sapphire [J]. Journal of Crystal Growth,2005,274(3):407-411.
    [126] JEONG S H, AYDIL E S. Heteroepitaxial growth of Cu2O thin film on ZnO bymetal organic chemical vapor deposition [J]. Journal of Crystal Growth,2009,311(17):4188-4192.
    [127]唐斌,邓宏,张强, et al. ZnO纳米棒在Si衬底上外延生长研究[J].人工体学报,2007,36(003):540-544.
    [128] LI S Y, LEE C Y, TSENG T Y. Copper-catalyzed ZnO nanowires on silicon(100) grown by vapor–liquid–solid process [J]. Journal of Crystal Growth,2003,247(3):357-362.
    [129] TRAMPERT A, PLOOG K. Heteroepitaxy of Large-Misfit Systems: Role ofCoincidence Lattice [J]. Crystal Research and Technology,2000,35(6-7):793-806.
    [130] ZHANG X M, LU M Y, ZHANG Y, et al. Fabrication of a High-BrightnessBlue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaNThin Film [J]. Advanced materials,2009,21(27):2767-2770.
    [131] LEE S, LIN Z, JIANG X. CVD diamond films: nucleation and growth [J].Materials Science and Engineering: R: Reports,1999,25(4):123-154.
    [132] SU Q, LIU J, WANG L, et al. Effects of activated hydrogen etching on s urfaceroughness and optical properties of diamond films [J]. Scripta Materialia,2006,54(11):1871-1874.
    [133] SHU L, CHRISTOU A, BARBE D. High temperature device simulation andthermal characteristics of GaAs MESFETs on CVD diamond substrates [J].Microelectronics and reliability,1996,36(9):1177-1189.
    [134] KALISH R. Doping of diamond [J]. Carbon,1999,37(5):781-785.
    [135] LIN C C, CHEN S Y, CHENG S Y, et al. Properties of nitrogen-implantedp-type ZnO films grown on Si3N4/Si by radio-frequency magnetron sputtering[J]. Applied Physics Letters,2004,84(24):5040-2.
    [136] AGER III J W, WALUKIEWICZ W, MCCLUSKEY M, et al. Fano interferenceof the Raman phonon in heavily boron-doped diamond films grown bychemical vapor deposition [J]. Applied Physics Letters,1995,66:616.
    [137] USHIZAWA K, MIKKA N G, WATANABE K, et al. Raman spectroscopicstudy on {100} facet of boron-doped chemical-vapour-deposited diamondcrystals with Fano line fitting [J]. Journal of Raman Spectroscopy,1999,30(10):957-61.
    [138] WANG Y, LAU S, TAY B, et al. Resonant Raman scattering studies ofFano-type interference in boron doped diamond [J]. Journal of Applied Physics,2002,92:7253.
    [139] USHIZAWA K, WATANABE K, ANDO T, et al. Boron concentrationdependence of Raman spectra on {100} and {111} facets of B-doped CVDdiamond [J]. Diamond and related materials,1998,7(11):1719-1722.
    [140] ALIVOV Y I, KALININA E, CHERENKOV A, et al. Fabrication andcharacterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on6H-SiC substrates [J]. Applied Physics Letters,2003,83:4719.
    [141] LEE K W, PICKETT W. Boron spectral density and disorder broadening inB-doped diamond [J]. Physical Review B,2006,73(7):075105.
    [142] DJURI I A B, LEUNG Y H. Optical properties of ZnO nanostructures [J].Small,2006,2(8-9):944-961.
    [143] JIN B, BAE S H, LEE S, et al. Effects of native defects on optical and electricalproperties of ZnO prepared by pulsed laser deposition [J]. Materials Scienceand Engineering B,2000,71(1-3):301-305.
    [144] SHALISH I, TEMKIN H, NARAYANAMURTI V. Size-dependent surfaceluminescence in ZnO nanowires [J]. Physical Review B,2004,69(24):245401.
    [145] RAISANEN A, BRILLSON L, VANZETTI L, et al. Atomic diffusion-induceddeep levels near ZnSe/GaAs (100) interfaces [J]. Applied Physics Letters,1995,66:3301.
    [146] KRIEGER J. Electron Shielding in Heavily Doped Semiconductors [J].Physical Review,1969,178(3):1337.
    [147] MOTAYED A, DAVYDOV A V. GaN-nanowire/amorphous-Si core-shellheterojunction diodes [J]. Applied Physics Letters,2008,93:193102.
    [148] WALLENTIN J, PERSSON J M, WAGNER J B, et al. High-performancesingle nanowire tunnel diodes [J]. Nano Letters,10(3):974-979.
    [149] MA D, WANG Y, LU L, et al. Negative differential resistance inscanning-tunneling spectroscopy of diamond films [J]. Applied Physics Letters,2002,80:1231.
    [150] SANG D D, LI H D, CHENG S H. Growth and electron field emission of ZnOnanorods on diamond films [J]. Applied Surface Science,258(1):333-336.
    [151] YANG H, LI Y, NORTON D P, et al. Characteristics of unannealedZnMgO/ZnO pn junctions on bulk (100) ZnO substrates [J]. Applied PhysicsLetters,2005,86:172103.
    [152] WANG C X, YANG G W, ZHANG T C, et al. High-quality heterojunctionbetween p-type diamond single-crystal film and n-type cubic boron nitride bulksingle crystal [J]. Applied physics letters,2003,83:4854.
    [153] SZE S M, NG K K. Physics of Semiconductor Devices3rd edn [M]. New York;Wiley.2007:94.
    [154] SAH C T, NOYCE R N, SHOCKLEY W. Carrier generation and recombinationin pn junctions and pn junction characteristics [J]. Proceedings of the IRE,1957,45(9):1228-1243.
    [155] GUMUS A, TURUT A, YALCIN N. Temperature dependent barriercharacteristics of CrNiCo alloy Schottky contacts on n-type molecular-beamepitaxy GaAs [J]. Journal of Applied Physics,2002,91:245.
    [156] MAJUMDAR S, BANERJI P. Temperature dependent electrical transport inp-ZnO/n-Si heterojunction formed by pulsed laser deposition [J]. Journal ofApplied Physics,2009,105(4):043704.
    [157] YE J, GU S, ZHU S, et al. Electroluminescent and transport mechanisms ofn-ZnO/p-Si heterojunctions [J]. Applied Physics Letters,2006,88(18):182112-3.
    [158] DUTTA M, BASAK D. p-ZnO/n-Si heterojunction: Sol-gel fabrication,photoresponse properties, and transport mechanism [J]. Applied Physics Letters,2008,92(21):212112-3.
    [159] FEDISON J, CHOW T, LU H, et al. Electrical characteristics ofmagnesium-doped gallium nitride junction diodes [J]. Applied Physics Letters,1998,72(22):2841-2843.
    [160] FORMAN R. Space-Charge Limited Current Relation in High-Pressure GasDiodes [J]. Physical Review,1961,123(5):1537.
    [161] LIU S Y, CHEN T, JIANG Y L, et al. The effect of postannealing on theelectrical properties of well-aligned n-ZnO nanorods/p-Si heterojunction [J].Journal of Applied Physics,2009,105(11):114504.
    [162] ALIVOV Y I, VAN NOSTRAND J, LOOK D, et al. Observation of430nmelectroluminescence from ZnO/GaN heterojunction light-emitting diodes [J].Applied Physics Letters,2003,83:2943.
    [163] MAENG J, JO M, KANG S J, et al. Transient reverse current phenomenon in apn heterojunction comprised of poly (3,4-ethylene-dioxythiophene): poly(styrene-sulfonate) and ZnO nanowall [J]. Applied Physics Letters,2008,93:123109.
    [164] KAYA M, CETIN H, BOYARBAY B, et al. Temperature dependence of thecurrent-voltage characteristics of Sn/PANI/p-Si/Al heterojunctions [J]. Journalof Physics: Condensed Matter,2007,19:406205.
    [165] CHUNG D S, LEE D H, YANG C, et al. Origin of high mobility within anamorphous polymeric semiconductor: Space-charge-limited current and trapdistribution [J]. Applied Physics Letters,2008,93:033303.