一维纳米电催化剂的设计、合成及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面临能源短缺和环境污染,全球致力于清洁能源技术的开发和发展。在众多新能源中,燃料电池因其具有零排放、无污染、效率高、燃料来源多元化等优势,同时由于燃料电池在交通运输、便携式移动电源、发电系统等领域的迅速发展,因此被认为是最具潜力和有望全面市场化的选择。然而,高成本和运行稳定性依然是目前燃料电池商业化道路上的最大障碍。当前,纳米尺度上催化剂的结构和组分的调控对降低成本、提高铂利用率和改善催化性能均具有重要的研究意义,逐渐成为催化领域研究的重点。同时,对合成反应机理的理解和研究有利于特定结构、尺寸和组分催化剂的有效制备。
     本论文将集中阐述部分模板牺牲法宏量制备一维纳米结构催化剂,并系统研究其催化性能。为了进一步降低成本推动燃料电池商业化,我们发展了一种改良的模板牺牲法,即部分模板牺牲法,它充分利用了模板材料构建一维结构催化剂的同时,未被取代的原子与贵金属形成了合金而产生的配位效应和应力效应有利于催化性能的提升和铂载量的降低;基于对反应的合成机理的理解,充分利用一维结构模板材料的高反应活性、均一分散性和可控性,通过组分调控和在一维纳米结构尺度上的精细结构调控,有针对性的合成一系列高活性面积和结构稳定的一维纳米结构催化剂,体现了部分模板牺牲法的独特优势和广泛适用性;基于对表面活性位点的深入理解,对催化剂进行进一步的去合金等后处理,增加表面粗糙度和改善铂电子结构,从而提高催化剂活性和稳定性,满足实际应用要求。本论文所取得主要研究成果总结如下:
     1.发展了部分模板牺牲法合成一系列不同组分比例的一维纳米结构催化剂的制备技术。以铜纳米线作为部分牺牲模板,当未被取代的铜原子与贵金属形成合金后,其对贵金属的电子结构的修饰和晶格常数的差异所带来的应力效应,在降低载量的同时提高了催化性能。研究结果表明,成功合成表面颗粒组成的纳米管催化剂的关键因素是铜纳米线的高反应活性和较高的反应温度。结合柯肯达尔效应,我们最终得到表面由颗粒组成和内部中空的一维纳米管催化剂,并系统的研究和讨论了组成与结构对氧气电还原(ORR)和甲醇氧化(MOR)反应的催化影响。
     2.利用部分模板牺牲法制备不同组分比例的超细一维纳米结构催化剂。选择超细和高长径比(大于104)的碲纳米线为牺牲模板,它具有高反应活性、好的柔韧性和可在不同的溶剂中(诸如水,乙醇,乙二醇,正己烷,二甲哑砜等)易分散等优势,为设计和制备不同结构和组成的催化剂创造了条件。我们选择了铂和钯为前驱物与碲进行置换取代反应得到不同组分比例的超细PtPdTe和PtTe纳米线催化剂,这些纳米线继承了碲纳米线的超细和高长径比的结构特点,同时结合柯肯达尔效应形成了多孔结构。更重要的是,PtPdTe纳米线表面分布了大量单晶段,这种高结晶性和光滑的表面有利于催化性能的提高。此外,碲纳米线的合成是采用我们课题组已经发展成熟和可规模化的制备技术,为下一步催化剂的规模化制备提供了可能性。
     3.设计并成功制备了集超细、超长、内部多孔、表面有颗粒等于一身的一维点画线结构催化剂。我们发现并证明了铂前驱物中间态在低温下可稳定存在并可用于置换取代反应,通过紫外可见吸收光谱和X射线吸收光谱证明了Pt-Pt键的形成。氯铂酸根离子和长链聚合物PtmCln的共存以及氧化速率的差异是成功制备Pt/PtTe点画线结构催化剂的关键所在。采用氯铂酸钾的乙二醇溶液为前驱物,对不同置换取代反应时间的产物Pt/PtTe和长链聚合物PtmCln为前驱物得到的PtTe催化剂的物相分析,探明了其反应机理。前驱物的调控可扩展到制备其他组成的点画线结构的催化剂,进一步丰富和扩展了模板牺牲法。
     4.制备了核壳结构的一维纳米电催化剂,并且探讨和研究了铂壳层厚度和基底材料组分对催化性能的影响。首先采用部分模板牺牲法制备超细Pd和PdAu纳米线催化剂,然后结合欠电位沉积铜和置换取代的方法得到表面包覆铂壳层的催化剂。因为铜也可以欠电位沉积到铂表面,因此将欠电位沉积铜和置换取代的过程循环不同的次数,得到不同铂壳层厚度的催化剂。核壳结构的催化剂可充分利用铂原子,其中铂单层催化剂能够实现降低铂载量的同时最大化提高的铂利用率。更重要的是,核通常是由非贵金属或非贵金属合金组成,利用它们对铂的配位效应和应力效应可在很大程度上改善催化性能。
Access to clean and reliable energy has become the main strategy and cornerstone of dealing with the global energy and pollution problems. Fuel cells are regarded as the most potential choice and ideal solution for transportation, portable mobile power supply and power generation devices applications, due to their non-polluting, high efficiency and various fuels. However, the poor stability and high cost remain severe challenges to the ultimate commercialization of fuel cells. Till now, advanced stratigies have been developed and investigated to lower the cost, heighten platinum (Pt) utilization and improve the catalytic performence through composition and structure control. Understanding of the synthesis reaction mechanism is advantageous to synthesize the catalysts with specific structure, size and composition.
     The present dissertation will foucus on large-scale synthesis and catalytic application of one-dimensional (1D) electrocatalysts. We developed a modified template-scrificial method with low cost. The templates not only used to maintain1D morphology of the final products and the reducing agents, but also the not-reacted template atoms would be further form alloy with noble metal. The formation of the alloy and the addition of non-noble metal will improve the electronic structure of Pt and reduce the adsorption energy of the reaction intermediates to enhance the catalytic activity and stability. It is a broad applicable synthetic method with unique superiority owing to the high reactivity, well dispersity and controllability of the templates. It is efficient to prepare a series of ID material with high active surface area and structure stability. In addition, dealloying process is useful to expose more active sites, increase surface roughness and improve catalytic performance. The main results can be summarized as follows:
     1. A partial sacrificial template route was developed for preparing1D electrocatalysts with different composition by using cheap Cu nanowires (NWs) as templates. Although pure Cu NWs do not have high catalytic activity, alloying Cu with Pt, Pd or Ru metals would improve the activity of the alloy electrocatalysts owing the ligand effect and strain effect. The keys for successful synthesis of nanoparticle-on-nanotube structure catalysts are to use high active Cu NWs as templates and high reaction temperature coupling with Kirkendall effect. We also investigated the composition and structure effect on the activity of oxygen reduction reaction (ORR) and methonal oxidation reaction (MOR).
     2. One-dimensional ultrathin electrocatalysts with various compositions were prepared by partial sacrificial template route. Ultrathin tellurium (Te) NWs with high aspect ratio (>104), high reactivity, good flexibility and easy dispersion in different solvent (eg. water, ethanol, ethylene glycol, n-hexane etal.) were selected as templates for preparing ultrathin and porous PtPdTe and PtTe NWs catalysts. More importantly, the existence of single-crystalline segments (SCSs) of the PtPdTe NWs allowed for the preferential exposure of long segments with high crystallinity and low energy crystal facets, which is highly advantageous for the electrocatalytic reactions. In addition, these Te NWs can be synthesized in large scale by our group and provide the possibility for large-scale preparation of catalysts.
     3. We design and successfully synthesize ultrathin, ultralong and porous1D dotted line structure catalysts with NPs on the surface. The ultrathin Te NWs are used as template to confine the size in the range of5-7nm, to generate complex but tunable nanostructures from homogeneous PtTe to heteronanostructured and Pt decorated Pt/PtTe electrocatalysts. We revealed the formation of weaker oxidant PtmCln complexes from m×PtCl42-ions through the Pt-Pt bond during aging of K2PtCl4in ethylene glycol (EG) solution by using time-resolved in-situ UV-vis and X-ray absorption fine structure (XAFS) spectroscopies. The coexistence of PtCl42-ions and PtmCln complexes is the key of successful synthesis of ultrathin NWs with holes in the interior and Pt NPs on the surface of the NWs (increased structural complexity) coupling with the Kirkendall effect and improving upon Pt utilization and stability for electrocatalysis. The reaction kinetics is refined by tuning the coordination state of Pt precursors further enriched and expanded the template sacrificial method.
     4. The sacrificial template method was further developed for fabricating core-shell structure catalysts, including Pt monolayer catalysts. We examined the effects of the thickness of the Pt shell, lattice mismatch, and composition of the core on catalytic activities for ORR. Firstly, we prepared ultrathin PdTe and PdAuTe NWs using Te NWs as templates. Then, Pt-shell could be deposited on the PdTe and PdAuTe NWs combing the under potential deposition method with galvanic replacement reaction. The thickness of Pt shell could be tuned by repeat such processes. The synthesis of core-shell structure catalysts is useful to optimize the Pt utilization and loading.
引文
[1]Steele, B. C. H., Heinzel, A.2001. Materials for fuel-cell technologies [J], Nature,414: 345-352.
    [2]Tanuma, T., Terazono, S.2008. Improving MEA durability by using surface-treated catalysts [J], J. Power Sources 181:287-291.
    [3]Chen, A., Holt-Hindle, P.2010. Platinum-Based Nanostructured Materials:Synthesis, Properties, and Applications [J], Chem. Rev.,110:3767-3804.
    [4]Debe, M. K.2012. Electrocatalyst approaches and challenges for automotive fuel cells [J], Nature,486:43-51.
    [5]Stephan, D. W.2013. Catalysis:A step closer to a methanol economy [J], Nature,495:54-55.
    [6]2013. Chemistry:Catalysts on the cheap [J], Nature,504:11-11.
    [7]Zhang, H., Jin, M., Xia, Y.2012. Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd [J], Chem. Soc. Rev.,41: 8035-8049.
    [8]Rabis, A., Rodriguez, P., Schmidt, T. J.2012. Electrocatalysis for Polymer Electrolyte Fuel Cells:Recent Achievements and Future Challenges [J], ACS Catalysis,2:864-890.
    [9]Xia, Y., Yang, H., Campbell, C. T.2013. Nanoparticles for Catalysis [J], Acc. Chem. Res.,46: 1671-1672.
    [10]Zhang, J., Yang, H., Fang, J., Zou, S.2010. Synthesis and Oxygen Reduction Activity of Shape-Controlled Pt3Ni Nanopolyhedra [J], Nano Lett.,10:638-644.
    [11]Cui, C. H., Yu, S. H.2013. Engineering Interface and Surface of Noble Metal Nanoparticle Nanotubes toward Enhanced Catalytic Activity for Fuel Cell Applications [J], Acc. Chem. Res.,46:1427-1437.
    [12]Subhramannia, M., Pillai, V. K.2008. Shape-dependent electrocatalytic activity of platinum nanostructures [J], J. Mater. Chem.,18:5858-5870.
    [13]Wang, A.-L., Xu, H., Feng, J.-X., Ding, L.-X., Tong, Y.-X., Li, G.-R.2013. Design of Pd/PANI/Pd Sandwich-Structured Nanotube Array Catalysts with Special Shape Effects and Synergistic Effects for Ethanol Electrooxidation [J], J. Am. Chem. Soc.,135:10703-70709.
    [14]Tian, N., Zhou, Z.-Y, Sun, S.-G, Ding, Y, Wang, Z. L.2007. Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity [J], Science,316:732-735.
    [15]van der Vliet, D. F., Wang, C., Tripkovic, D., Strmcnik, D., Zhang, X. F., Debe, M. K., Atanasoski, R. T., Markovic, N. M., Stamenkovic, V. R.2012. Mesostructured thin films as electrocatalysts with tunable composition and surface morphology [J], Nat. Mater.,11: 1051-1058.
    [16]Wang, C., Chi, M. F., Li, D. G., Strmcnik, D., van der Vliet, D., Wang, G., Komanicky, V., Chang, K.-C., Paulikas, A. P., Tripkovic, D., Pearson, J., More, K. L., Markovic, N. M., Stamenkovic, V. R.2011.7Design and Synthesis of Bimetallic Electrocatalyst with Multilayered Pt-Skin Surfaces [J], J. Am. Chem. Soc.,133:14396-14403.
    [17]Koenigsmann, C., Zhou, W.-p., Adzic, R. R., Sutter, E., Wong, S. S.2010. Size-Dependent Enhancement of Electrocatalytic Performance in Relatively Defect-Free, Processed Ultrathin Platinum Nanowires [J],Nano Lett.,10:2806-2811.
    [18]Xia, X., Wang, Y., Ruditskiy, A., Xia, Y.2013.25th Anniversary Article:Galvanic Replacement:A Simple and Versatile Route to Hollow Nanostructures with Tunable and Well-Controlled Properties [J],Adv. Mater.,25:6313-6333.
    [19]Tao, F.2012. Synthesis, catalysis, surface chemistry and structure of bimetallic nanocatalysts [J], Chem. Soc. Rev.,41:7977-7979.
    [20]Morozan, A., Jousselme, B., Palacin, S.2011. Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes [J], Energy Environ. Sci.,4:1238-1254.
    [21]Liang, H.-W, Liu, J. W., Qian, H. S., Yu, S. H.2013. Multiplex Templating Process in One-Dimensional Nanoscale:Controllable Synthesis, Macroscopic Assemblies, and Applications [J], Acc. Chem. Res.,46:1450-1461.
    [22]Zhang, L. G., Li, N., Gao, F. M., Hou, L., Xu, Z. M.2012. Insulin amyloid fibrils:an excellent platform for controlled synthesis of ultrathin superlong platinum nanowires with high electrocatalytic activity [J], J. Am. Chem. Soc.,134:11326-11329.
    [23]McAlpine, M. C., Ahmad, H., Wang, D. W., Heath, J. R.2007. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors [J], Nat. Mater.,6: 379-384.
    [24]2013. From particles to nanowires [J], Nat. Nanotechnol.,8:145-145.
    [25]Koenigsmann, C., Wong, S. S.2011. One-dimensional noble metal electrocatalysts:a promising structural paradigm for direct methanol fuel cells [J], Energy Environ. Sci.,4: 1161-1176.
    [26]Zhang, Z., et al.2011. Ultra-thin PtFe-nanowires as durable electrocatalysts for fuel cells [J], Nanotechnology,22:015602.
    [27]Rauber, M., Alber, I., Muller, S., Neumann, R., Picht, O., Roth, C., Schokel, A., Toimil-Molares, M. E., Ensinger, W.2011. Highly-Ordered Supportless Three-Dimensional Nanowire Networks with Tunable Complexity and Interwire Connectivity for Device Integration [J], Nano Lett.,11:2304-2310.
    [28]Koenigsmann, C., Wong, S. S.2013. Tailoring Chemical Composition To Achieve Enhanced Methanol Oxidation Reaction and Methanol-Tolerant Oxygen Reduction Reaction Performance in Palladium-Based Nanowire Systems [J], ACS Catalysis,3:2031-2040.
    [29]Zhou, H., Zhou, W.-p., Adzic, R. R., Wong, S. S.2009. Enhanced Electrocatalytic Performance of One-Dimensional Metal Nanowires and Arrays Generated via an Ambient, Surfactantless Synthesis [J], J. Phys. Chem. C 113:5460-5466.
    [30]Koenigsmann, C., Santulli, A. C., Gong, K., Vukmirovic, M. B., Zhou, W.-p., Sutter, E., Wong, S. S., Adzic, R. R.2011.22 Enhanced Electrocatalytic Performance of Processed, Ultrathin, Supported Pd-Pt Core-Shell Nanowire Catalysts for the Oxygen Reduction Reaction [J], J. Am. Chem. Soc.,133:9783-9795.
    [31]Zhou, W.-P., Li, M., Koenigsmann, C., Ma, C., Wong, S. S., Adzic, R. R.2011. Morphology-dependent activity of Pt nanocatalysts for ethanol oxidation in acidic media: Nanowires versus nanoparticles [J], Electrochim. Acta 56:9824-9830.
    [32]Alia, S. M., Jensen, K., Contreras, C., Garzon, F., Pivovar, B., Yan, Y.2013. Platinum Coated Copper Nanowires and Platinum Nanotubes as Oxygen Reduction Electrocatalysts [J], ACS Catalysis,3:358-362.
    [33]Shui, J.l., Chen, C., Li, J. C. M.2011. Evolution of Nanoporous Pt-Fe Alloy Nanowires by Dealloying and their Catalytic Property for Oxygen Reduction Reaction [J], Adv. Funct. Mater.,21:3357-3362.
    [34]Meyers, J. P., Darling, R. M.2006. Model of carbon corrosion in PEM fuel cells [J], J. Electrochem. Soc.,153:A1432-A1442.
    [35]Xia, B. Y., Wu, H. B., Yan, Y., Lou, X. W., Wang, X.2013. Ultrathin and Ultralong Single-crystal Pt Nanowire Assemblies with Highly Stable Electrocatalytic Activity [J], J. Am. Chem. Soc.,135:9480-9485.
    [36]Koenigsmann, C., Semple, D. B., Sutter, E., Tobierre, S. E., Wong, S. S.2013. Ambient Synthesis of High-Quality Ruthenium Nanowires and the Morphology-Dependent Electrocatalytic Performance of Platinum-Decorated Ruthenium Nanowires and Nanoparticles in the Methanol Oxidation Reaction [J], ACS Appl. Mater. Interfaces 5: 5518-5530.
    [37]Chen, Z., Waje, M., Li, W., Yan, Y.2007.23Supportless Pt and PtPd Nanotubes as Electrocatalysts for Oxygen-Reduction Reactions [J], Angew. Chem. Int. Ed.,46: 4060-4063.
    [38]Wu, J. B., Peng, Z. M., Yang, H.2010. Supportless oxygen reduction electrocatalysts of CoCuPt hollow nanoparticles [J], Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences,368:4261-4274.
    [39]Tiwari, J. N., Nath, K., Kumar, S., Tiwari, R. N., Kemp, K. C., Le, N. H., Youn, D. H., Lee, J. S., Kim, K. S.2013. Stable platinum nanoclusters on genomic DNA-graphene oxide with a high oxygen reduction reaction activity [J], Nat. Commun.,4:2221.
    [40]Toyoda, E., Jinnouchi, R., Ohsuna, T., Hatanaka, T., Aizawa, T., Otani, S., Kido, Y., Morimoto, Y.2013. Catalytic Activity of Pt/TaB2(0001) for the Oxygen Reduction Reaction [J], Angew. Chem. Int. Ed.,52:4137-4140.
    [41]Xia, B. Y., Wu, H. B., Wang, X., Lou, X. W.2013. Highly Concave Platinum Nanoframes with High-Index Facets and Enhanced Electrocatalytic Properties [J], Angew. Chem. Int. Ed., 52:12337-12340.
    [42]Xia, B. Y, Ng, W. T., Wu, H. B., Wang, X., Lou, X. W.2012. Self-Supported Interconnected Pt Nanoassemblies as Highly Stable Electrocatalysts for Low-Temperature Fuel Cells [J], Angew. Chem. Int. Ed.,51:7213-7216.
    [43]Zhu, H., Zhang, S., Guo, S., Su, D., Sun, S.2013. Synthetic Control of FePtM Nanorods (M =Cu, Ni) to Enhance Oxygen Reduction Reaction [J], J. Am. Chem. Soc.,135:7130-7133.
    [44]Stamenkovic, V. R., Mun, B. S., Arenz, M., Mayrhofer, K. J. J., Lucas, C. A., Wang, G F., Ross, P. N., Markovic, N. M.2007. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces [J], Nat. Mater.,6:241-247.
    [45]Xu, Y, Zhang, B.2014. Recent advances in porous Pt-based nanostructures:synthesis and electrochemical applications [J], Chem. Soc. Rev.,43:2439-2450.
    [46]Zhang, S., Metin,O., Su, D., Sun, S.2013. Monodisperse AgPd Alloy Nanoparticles and Their Superior Catalysis for the Dehydrogenation of Formic Acid [J], Angew. Chem. Int. Ed., 52:3681-3684.
    [47]Wang, Z. L., Yan, J.-M., Ping, Y, Wang, H. L., Zheng, W. T., Jiang, Q.2013. An Efficient CoAuPd/C Catalyst for Hydrogen Generation from Formic Acid at Room Temperature [J], Angew. Chem. Int. Ed.,52:4406-4409.
    [48]Zhang, L., Iyyamperumal, R., Yancey, D. F., Crooks, R. M., Henkelman, G.2013. Design of Pt-Shell Nanoparticles with Alloy Cores for the Oxygen Reduction Reaction [J], ACS Nano, 7:9168-9172.
    [49]Cui, C., Gan, L., Neumann, M., Heggen, M., Roldan Cuenya, B., Strasser, P.2014. Carbon Monoxide-Assisted Size Confinement of Bimetallic Alloy Nanoparticles [J], J. Am. Chem. Soc.,136:4813-4816.
    [50]Stamenkovic, V. R., Fowler, B., Mun, B. S., Wang, G, Ross, P. N., Lucas, C. A., Markovic, N. M.2007. Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability [J], Science,315:493-497.
    [51]Stamenkovic, V., Mun, B. S., Mayrhofer, K. J. J., Ross, P. N., Markovic, N. M., Rossmeisl, J., Greeley, J., Norskov, J. K.2006. Changing the Activity of Electrocatalysts for Oxygen Reduction by Tuning the Surface Electronic Structure [J], Angew. Chem. Int. Ed.,45: 2897-2901.
    [52]Zhang, J., Vukmirovic, M. B., Xu, Y., Mavrikakis, M., Adzic, R. R.2005.9Controlling the Catalytic Activity of Platinum-Monolayer Electrocatalysts for Oxygen Reduction with Different Substrates [J], Angew. Chem. Int. Ed.,44:2132-2135.
    [53]Zhou, W. P., Yang, X., Vukmirovic, M. B., Koel, B. E., Jiao, J., Peng, G., Mavrikakis, M., Adzic, R. R.2009. Improving Electrocatalysts for O2 Reduction by Fine-Tuning the Pt-Support Interaction:Pt Monolayer on the Surfaces of a Pd3Fe(111) Single-Crystal Alloy [J], J. Am. Chem. Soc.,131:12755-12762.
    [54]Rossmeisl, J., Karlberg, G. S., Jaramillo, T., Norskov, J. K.2009. Steady state oxygen reduction and cyclic voltammetry [J], Faraday Discuss.,140:337-346.
    [55]Wang, C., Markovic, N. M., Stamenkovic, V. R.2012. Advanced Platinum Alloy Electrocatalysts for the Oxygen Reduction Reaction [J], ACS Catalysis,2:891-898.
    [56]Wang, C., van der Vliet, D., More, K. L., Zaluzec, N. J., Peng, S., Sun, S., Daimon, H., Wang, G., Greeley, J., Pearson, J., Paulikas, A. P., Karapetrov, G, Strmcnik, D., Markovic, N. M., Stamenkovic, V. R.2010.5Multimetallic Au/FePt3 Nanoparticles as Highly Durable Electrocatalyst [J], Nano Lett.,11:919-926.
    [57]Wang, C., Chi, M., Wang, G., van der Vliet, D., Li, D., More, K., Wang, H. H., Schlueter, J. A., Markovic, N. M., Stamenkovic, V. R.2011.8Correlation Between Surface Chemistry and Electrocatalytic Properties of Monodisperse PtxNi1-x Nanoparticles [J], Adv. Funct. Mater., 21:147-152.
    [58]Yang, H.2011. Platinum-Based Electrocatalysts with Core-Shell Nanostructures [J], Angew. Chem. Int. Ed.,50:2674-2676.
    [59]Stamenkovic, V. R., Mun, B. S., Mayrhofer, K. J. J., Ross, P. N., Markovic, N. M.2006. Effect of Surface Composition on Electronic Structure, Stability, and Electrocatalytic Properties of Pt-Transition Metal Alloys:Pt-Skin versus Pt-Skeleton Surfaces [J], J. Am. Chem. Soc.,128:8813-8819.
    [60]Strasser, P., Koh, S., Anniyev, T., Greeley, J., More, K., Yu, C., Liu, Z., Kaya, S., Nordlund, D., Ogasawara, H., Toney, M. F., Nilsson, A.2010. Lattice-Strain Control of the Activity in Dealloyed Core-Shell Fuel Cell Catalysts [J], Nat. Chem.,2:454-460.
    [61]Oezaslan, M., Hasche, F., Strasser, P.2013. Pt-based Core-Shell Catalyst Architectures for Oxygen Fuel Cell Electrodes [J], J. Phys. Chem. Lett.,4:3273-3291.
    [62]Zhang, J., Vukmirovic, M. B., Sasaki, K., Nilekar, A. U., Mavrikakis, M., Adzic, R. R.2005. Mixed-Metal Pt Monolayer Electrocatalysts for Enhanced Oxygen Reduction Kinetics [J], J. Am. Chem. Soc.,127:12480-12481.
    [63]Zhang, Y., Ma, C., Zhu, Y, Si, R., Cai, Y, Wang, J. X., Adzic, R. R.2013. Hollow Core Supported Pt Monolayer Catalysts for Oxygen Reduction [J], Catal. Today 202:50-54.
    [64]Adzic, R. R., Zhang, J., Sasaki, K., Vukmirovic, M. B., Shao, M., Wang, J. X., Nilekar, A. U., Mavrikakis, M., Valerio, J. A., Uribe, F.2007. Platinum Monolayer Fuel Cell Electrocatalysts [J], Top. Catal.,46:249-262.
    [65]Shao, M., Peles, A., Shoemaker, K., Gummalla, M., Njoki, P. N., Luo, J., Zhong, C.-J.2010. Enhanced Oxygen Reduction Activity of Platinum Monolayer on Gold Nanoparticles [J], J. Phys. Chem. Lett.,2:67-72.
    [66]Sasaki, K., Naohara, H., Choi, Y, Cai, Y, Chen, W.-F., Liu, P., Adzic, R. R.2012. Highly Stable Pt Monolayer on PdAu Nanoparticle Electrocatalysts for The Oxygen Reduction Reaction [J], Nat. Commun.,3:1115.
    [67]Zhang, J., Lima, F. H. B., Shao, M. H., Sasaki, K., Wang, J. X., Hanson, J., Adzic, R. R.2005. Platinum Monolayer on Nonnoble Metal-Noble Metal Core-Shell Nanoparticle Electrocatalysts for O2 Reduction [J], J. Phys. Chem. B 109:22701-22704.
    [68]Sasaki, K., Naohara, H., Cai, Y., Choi, Y. M., Liu, P., Vukmirovic, M. B., Wang, J. X., Adzic, R. R.2010. Core-Protected Platinum Monolayer Shell High-Stability Electrocatalysts for Fuel-Cell Cathodes [J], Angew. Chem. Int. Ed.,49:8602-8607.
    [69]Lim, B., Jiang, M. J., Camargo, P. H. C., Cho, E. C., Tao, J., Lu, X. M., Zhu, Y M., Xia, Y N. 2009. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction [J], Science, 324:1302-1305.
    [70]Niu, Z. Q., Wang, D. S., Yu, R., Peng, Q., Li, Y D.2012. Highly branched Pt-Ni nanocrystals enclosed by stepped surface for methanol oxidation [J], Chem. Sci.,3:1925-1929.
    [71]Lee, S. W., Chen, S., Suntivich, J., Sasaki, K., Adzic, R. R., Shao-Horn, Y.2010. Role of Surface Steps of Pt Nanoparticles on the Electrochemical Activity for Oxygen Reduction [J], J. Phys. Chem. Lett.,1:1316-1320.
    [72]Shao, M. H., Peles, A., Shoemaker, K.2011. Electrocatalysis on Platinum Nanoparticles: Particle Size Effect on Oxygen Reduction Reaction Activity [J], Nano Lett.,11:3714-3719.
    [73]Oezaslan, M., Heggen, M., Strasser, P.2011. Size-dependent morphology of dealloyed bimetallic catalysts:Linking the nano to the macro scale [J], J. Am. Chem. Soc.,133: 514-524.
    [74]Li, H. H., Cui, C. H., Yu, S. H.2013. Alloyed Ultrathin Nanowires:A New Choice in Electrocatalysts [J], ChemCatChem 5:1693-1695.
    [75]Koenigsmann, C., Scofield, M. E., Liu, H., Wong, S. S.2012. Designing Enhanced One-Dimensional Electrocatalysts for the Oxygen Reduction Reaction:Probing Size-and Composition-Dependent Electrocatalytic Behavior in Noble Metal Nanowires [J], J. Phys. Chem. Lett.,3:3385-3398.
    [76]Matanovic, I., Kent, P. R. C., Garzon, F. H., Henson, N. J.2012. Density Functional Theory Study of Oxygen Reduction Activity on Ultrathin Platinum Nanotubes [J], J. Phys. Chem. C 116:16499-16510.
    [77]Guo, S. J., Li, D. G., Zhu, H. Y., Zhang, S., Markovic, N. M., Stamenkovic, V. R., Sun, S. H. 2013. FePt and CoPt Nanowires as Efficient Catalysts for the Oxygen Reduction Reaction [J], Angew. Chem. Int. Ed.,52:3465-3468.
    [78]Li, H. H., Zhao, S., Gong, M., Cui, C. H., He, D., Liang, H. W., Wu, L., Yu, S. H.2013. Ultrathin PtPdTe Nanowires as Superior Catalysts for Methanol Electrooxidation [J], Angew. Chem. Int. Ed.,52:7472-7476.
    [79]Alia, S. M., Zhang, G., Kisailus, D., Li, D., Gu, S., Jensen, K., Yan, Y.2010. Porous Platinum Nanotubes for Oxygen Reduction and Methanol Oxidation Reactions [J], Adv. Funct. Mater., 20:3742-3746.
    [80]Xu, C., Wang, L., Wang, R., Wang, K., Zhang, Y, Tian, F., Ding, Y.2009. Nanotubular Mesoporous Bimetallic Nanostructures with Enhanced Electrocatalytic Performance [J], Adv. Mater.,21:2165-2169.
    [81]Guo, D. J., Ding, Y.2012. Porous Nanostructured Metals for Electrocatalysis [J], Electroanalysis,24:2035-2043.
    [82]Liu, L., Pippel, E.2011. Low-Platinum-Content Quaternary PtCuCoNi Nanotubes with Markedly Enhanced Oxygen Reduction Activitysupporting [J], Angew. Chem. Int. Ed. 2729-2733.
    [83]Cui, C. H., Li, H. H., Yu, S. H.2010. A general approach to electrochemical deposition of high quality free-standing noble metal (Pd, Pt, Au, Ag) sub-micron tubes composed of nanoparticles in polar aprotic solvent [J], Chem. Commun.,46:940-942.
    [84]Cui, C. H., Li, H. H., Yu, J. W., Gao, M. R., Yu, S. H.2010. Ternary Heterostructured Nanoparticle Tubes:A Dual Catalyst and Its Synergistic Enhancement Effects for O2/H2O2 Reduction [J], Angew. Chem. Int. Ed.,49:9149-9152.
    [85]Sun, S. H., Zhang, G. X., Geng, D. S., Chen, Y. G., Li, R. Y, Cai, M., Sun, X. L.2010. A Highly Durable Platinum Nanocatalyst for Proton Exchange Membrane Fuel Cells: Multiarmed Starlike Nanowire Single Crystal [J], Angew. Chem. Int. Ed.,50:422-426.
    [86]Zhang, G, Sun, S., Cai, M., Zhang, Y, Li, R., Sun, X.2013. Porous Dendritic Platinum Nanotubes with Extremely High Activity and Stability for Oxygen Reduction Reaction [J], Sci. Rep.,3:1526.
    [87]Cui, C. H., Li, H. H., Liu, X. J., Gao, M. R., Yu, S. H.2012. Surface Composition and Lattice Ordering Controlled Activity and Durability of CuPt Electrocatalysts for Oxygen Reduction Reaction [J], ACS Catalysis,2:916-924.
    [88]Hsieh, Y.-C., Zhang, Y., Su, D., Volkov, V, Si, R., Wu, L., Zhu, Y, An, W., Liu, P., He, P., Ye, S., Adzic, R. R., Wang, J. X.2013. Ordered bilayer ruthenium-platinum core-shell nanoparticles as carbon monoxide-tolerant fuel cell catalysts [J], Nat. Commun.,4:2466.
    [89]Mazumder, V., Chi, M., More, K. L., Sun, S.2010. Core/Shell Pd/FePt Nanoparticles as an Active and Durable Catalyst for the Oxygen Reduction Reaction [J], J. Am. Chem. Soc.,132: 7848-7849.
    [90]Yang, L., Vukmirovic, M. B., Su, D., Sasaki, K., Herron, J. A., Mavrikakis, M., Liao, S., Adzic, R. R.2012. Tuning the Catalytic Activity of Ru@Pt Core-Shell Nanoparticles for the Oxygen Reduction Reaction by Varying the Shell Thickness [J], J. Phys. Chem. C 117: 1748-1753.
    [91]Guo, S., Dong, S., Wang, E.2010. Ultralong Pt-on-Pd bimetallic nanowires with nanoporous surface:nanodendritic structure for enhanced electrocatalytic activity [J], Chem. Commun., 46:1869-1871.
    [92]Hong, J. W., Kang, S. W., Choi, B.-S., Kim, D., Lee, S. B., Han, S. W.2012. Controlled Synthesis of Pd-Pt Alloy Hollow Nanostructures with Enhanced Catalytic Activities for Oxygen Reduction [J], ACS Nano,6:2410-2419.
    [93]Kang, Y, Qi, L., Li, M., Diaz, R. E., Su, D., Adzic, R. R., Stach, E., Li, J., Murray, C. B. 2012. Highly Active Pt3Pb and Core-Shell Pt3Pb-Pt Electrocatalysts for Formic Acid Oxidation [J], ACS Nano,6:2818-2825.
    [94]Cademartiri, L., Ozin, G. A.2009. Ultrathin nanowires-a materials chemistry perspective [J], Adv. Mater.,21:1013-1020.
    [95]Lim, B., Yu, T., Xia, Y.2010. Shaping a Bright Future for Platinum-Based Alloy Electrocatalysts [J], Angew. Chem. Int. Ed.,49:9819-9820.
    [96]Zhang, J., Li, C. M.2012. Nanoporous metals:fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems [J], Chem. Soc. Rev., 41:7016-7031.
    [97]Lee, Y, Kim, J., Yun, D. S., Nam, Y S., Shao-Horn, Y, Belcher, A. M.2012. Virus-templated Au and Au-Pt core-shell nanowires and their electrocatalytic activities for fuel cell applications [J], Energy Environ. Sci.,5:8328-8334.
    [98]Guo, S., Sun, S.2012. FePt Nanoparticles Assembled on Graphene as Enhanced Catalyst for Oxygen Reduction Reaction [J], J. Am. Chem. Soc.,134:2492-2495.
    [99]Cui, C. H., Liu, X. J., Li, H. H., Gao, M. R., Liang, H. W., Yao, H. B., Yu, S. H.2012. Ternary PtPdCu Electrocatalyst Formed through Surface-Atomic Redistribution against Leaching [J], ChemCatChem 4:1560-1563.
    [100]Sun, S. H., Yang, D. Q., Villers, D., Zhang, G. X., Sacher, E., Dodelet, J. P.2008. Template-and Surfactant-free Room Temperature Synthesis of Self-Assembled 3D Pt Nanoflowers from Single-Crystal Nanowires [J], Adv. Mater.,20:571-574.
    [101]Alia, S. M., Pivovar, B. S., Yan, Y.2013. Platinum-Coated Copper Nanowires with High Activity for Hydrogen Oxidation Reaction in Base [J], J. Am. Chem. Soc.,135: 13473-13478.
    [102]Liang, H. W., Cao, X., Zhou, F., Cui, C. H., Zhang, W. J., Yu, S. H.2011. A free-standing Pt-nanowire membrane as a highly stable electrocatalyst for the oxygen reduction reaction [J], Adv. Mater.,23:1467-1471.
    [103]Wan, D., Xia, X., Wang, Y, Xia, Y.2013. Robust Synthesis of Gold Cubic Nanoframes through a Combination of Galvanic Replacement, Gold Deposition, and Silver Dealloying [J], Small,9:3111-3117.
    [104]Chen, J., Wiley, B., McLellan, J., Xiong, Y., Li, Z.-Y, Xia, Y.2005. Optical Properties of Pd-Ag and Pt-Ag Nanoboxes Synthesized via Galvanic Replacement Reactions [J], Nano Lett.,5:2058-2062.
    [105]Yin, Y., Rioux, R. M., Erdonmez, C. K., Hughes, S., Somorjai, G. A., Alivisatos, A. P.2004. Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect [J], Science, 304:711-714.
    [106]Li, H. H., Cui, C. H., Zhao, S., Yao, H. B., Gao, M. R., Fan, F. J., Yu, S. H.2012. Mixed-PtPd-shell PtPdCu nanoparticle nanotubes templated from copper nanowires as efficient and highly durable electrocatalysts [J], Adv. Energy Mater.,2:1182-1187.
    [107]Sun, Y., Xia, Y.2004. Mechanistic Study on the Replacement Reaction between Silver Nanostructures and Chloroauric Acid in Aqueous Medium [J], J. Am. Chem. Soc.,126: 3892-3901.
    [108]Liang, H. W., Liu, S., Gong, J. Y, Wang, S. B., Wang, L., Yu, S. H.2009. Ultrathin Te Nanowires:An Excellent Platform for Controlled Synthesis of Ultrathin Platinum and Palladium Nanowires/Nanotubes with Very High Aspect Ratio [J], Adv. Mater.,21: 1850-1854.
    [109]Zhang, H., Jin, M. S., Wang, J. G., Li, W. Y., Camargo, P. H. C., Kim, M. J., Yang, D. R., Xie, Z. X., Xia, Y. N.2011. Synthesis of Pd-Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanicreplacement reaction [J], J. Am. Chem. Soc.,133: 6078-6089.
    [110]Ruan, L., Zhu, E., Chen, Y., Lin, Z., Huang, X., Duan, X., Huang, Y.2013. Biomimetic Synthesis of an Ultrathin Platinum Nanowire Network with a High Twin Density for Enhanced Electrocatalytic Activity and Durability [J], Angew. Chem. Int. Ed.,52: 12577-12581.
    [111]Cui, C. H., Li, H. H., Yu, S. H.2011. Large scale restructuring of porous Pt-Ni nanoparticle tubes for methanol oxidation:A highly reactive, stable, and restorable fuel cell catalyst [J], Chem. Sci.,2:1611-1614.
    [112]Guo, S., Zhang, S., Su, D., Sun, S.2013. Seed-Mediated Synthesis of Core/Shell FePtM/FePt (M=Pd, Au) Nanowires and Their Electrocatalysis for Oxygen Reduction Reaction [J], J. Am. Chem. Soc.,135:13879-13884.
    [113]Antolini, E.2009. Palladium in fuel cell catalysis [J], Energy Environ. Sci.,2:915-931.
    [114]Bianchini, C., Shen, P. K.2009. Palladium-Based Electrocatalysts for Alcohol Oxidation in Half Cells and in Direct Alcohol Fuel Cells [J], Chem. Rev.,109:4183-4206.
    [115]Wang, Y., Choi, S.-L., Zhao, X., Xie, S., Peng, H.-C., Chi, M., Huang, C. Z., Xia, Y.2013. Polyol Synthesis of Ultrathin Pd Nanowires via Attachment-Based Growth and Their Enhanced Activity towards Formic Acid Oxidation [J], Adv. Funct. Mater.,24:131-139.
    [116]Xiao, L., Zhuang, L., Liu, Y, Lu, J., Abruna, H. c. D.2008. Activating Pd by Morphology Tailoring for Oxygen Reduction [J], J. Am. Chem. Soc.,131:602-608.
    [117]Xu, C., Zhang, Y, Wang, L., Xu, L., Bian, X., Ma, H., Ding, Y.2009. Nanotubular Mesoporous PdCu Bimetallic Electrocatalysts toward Oxygen Reduction Reaction [J], Chem. Mater.,21:3110-3116.
    [118]Cui, C. H., Li, H. H., Gao, M. R., Liang, H. W., Yu, S. H.2011. Remarkable enhancement of electrocatalyticactivity by tuning the interface of Pd-Au bimetallic nanoparticle tubes [J], ACS Nano,5:4211-4218.
    [1]Srivastava, R., Mani, P., Hahn, N., Strasser, P.2007.1Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt-Cu-Co nanoparticles [J], Angew. Chem. Int. Ed.,46:8988-8991.
    [2]Greeley, J., Stephens, I. E. L., Bondarenko, A. S., Johansson, T. P., Hansen, H. A., Jaramillo, T. F., Rossmeisl, J., Chorkendorff, I., N(?)rskov, J. K.2009. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts [J], Nat. Chem.,1:552-556.
    [3]Liang, H. W., Cao, X., Zhou, F., Cui, C. H., Zhang, W. J., Yu, S. H.2011. A free-standing Pt-nanowire membrane as a highly stable electrocatalyst for the oxygen reduction reaction [J], Adv. Mater.,23:1467-1471.
    [4]Shui, J.1., Chen, C., Li, J. C. M.2011. Evolution of Nanoporous Pt-Fe Alloy Nanowires by Dealloying and their Catalytic Property for Oxygen Reduction Reaction [J], Adv. Funct. Mater.,21:3357-3362.
    [5]Alia, S. M., Zhang, G., Kisailus, D., Li, D., Gu, S., Jensen, K., Yan, Y.2010. Porous Platinum Nanotubes for Oxygen Reduction and Methanol Oxidation Reactions [J], Adv. Funct. Mater.,20:3742-3746.
    [6]Stamenkovic, V. R., Fowler, B., Mun, B. S., Wang, G., Ross, P. N., Lucas, C. A., Markovic, N. M.2007. Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability [J], Science,315:493-497.
    [7]Wang, C., van der Vliet, D., More, K. L., Zaluzec, N. J., Peng, S., Sun, S., Daimon, H., Wang, G, Greeley, J., Pearson, J., Paulikas, A. P., Karapetrov, G., Strmcnik, D., Markovic, N. M., Stamenkovic, V. R.2010. Multimetallic Au/FePt3 Nanoparticles as Highly Durable Electrocatalyst [J], Nano Lett.,11:919-926.
    [8]Wang, D., Xin, H. L., Yu, Y., Wang, H., Rus, E., Muller, D. A., Abruna, H. D.2010. Pt-Decorated PdCo@Pd/C Core-Shell Nanoparticles with Enhanced Stability and Electrocatalytic Activity for the Oxygen Reduction Reaction [J], J. Am. Chem. Soc.,132: 17664-17666.
    [9]Wang, R., Xu, C., Bi, X., Ding, Y.2012.5Nanoporous surface alloys as highly active and durable oxygen reduction reaction electrocatalysts [J], Energy and Environment Science,5: 5281-5286.
    [10]Keith, J. A., Jacob, T.2010.6Theoretical Studies of Potential-Dependent and Competing Mechanisms of the Electrocatalytic Oxygen Reduction Reaction on Pt(111) [J], Angew. Chem. Int. Ed.9521-9525.
    [11]Sasaki, K., Naohara, H., Cai, Y., Choi, Y M., Liu, P., Vukmirovic, M. B., Wang, J. X., Adzic, R. R.2010. Core-Protected Platinum Monolayer Shell High-Stability Electrocatalysts for Fuel-Cell Cathodes [J], Angew. Chem. Int. Ed.,49:8602-8607.
    [12]Wang, J. X., Zhang, J., Adzic, R. R.2007. Double-Trap Kinetic Equation for the Oxygen Reduction Reaction on Pt(111) in Acidic Media(?) [J], J. Phys. Chem. A 111:12702-12710.
    [13]Yang, H.2011. Platinum-Based Electrocatalysts with Core-Shell Nanostructures [J], Angew. Chem. Int. Ed.,50:2674-2676.
    [14]Wang, C., Chi, M., Wang, G., van der Vliet, D., Li, D., More, K., Wang, H. H., Schlueter, J. A., Markovic, N. M., Stamenkovic, V. R.2011. Correlation Between Surface Chemistry and Electrocatalytic Properties of Monodisperse PtxNi1-x Nanoparticles [J], Adv. Funct. Mater., 21:147-152.
    [15]Yang, J., Zhou, W., Cheng, C. H., Lee, J. Y, Liu, Z.2009. Pt-Decorated PdFe Nanoparticles as Methanol-Tolerant Oxygen Reduction Electrocatalyst [J], ACS Applied Materials and Interfaces,2:119-126.
    [16]Dhavale, V. M., Unni, S. M., Kagalwala, H. N., Pillai, V. K., Kurungot, S.2011. Ex-situ dispersion of core-shell nanoparticles of Cu-Pt on an in situ modified carbon surface and their enhanced electrocatalytic activities [J], Chem. Commun.,47:3951-3953.
    [17]Wu, J., Zhang, J., Peng, Z., Yang, S., Wagner, F. T., Yang, H.2010. Truncated Octahedral Pt3Ni Oxygen Reduction Reaction Electrocatalysts [J], J. Am. Chem. Soc.,132:4984-4985.
    [18]Shao, M., Shoemaker, K., Peles, A., Kaneko, K., Protsailo, L.2010.15 Pt Monolayer on Porous Pd-Cu Alloys as Oxygen Reduction Electrocatalysts(?) [J], J. Am. Chem. Soc.,132: 9253-9255.
    [19]Cui, C. H., Li, H. H., Yu, J. W., Gao, M. R., Yu, S. H.2010. Ternary Heterostructured Nanoparticle Tubes:A Dual Catalyst and Its Synergistic Enhancement Effects for O2/H2O2 Reduction [J], Angew. Chem. Int. Ed.,49:9149-9152.
    [20]Koenigsmann, C., Santulli, A. C., Gong, K., Vukmirovic, M. B., Zhou, W. P., Sutter, E., Wong, S. S., Adzic, R. R.2011. Enhanced Electrocatalytic Performance of Processed, Ultrathin, Supported Pd-Pt Core-Shell Nanowire Catalysts for the Oxygen Reduction Reaction [J], J. Am. Chem. Soc.,133:9783-9795.
    [21]Chen, Z., Waje, M., Li, W., Yan, Y.2007. Supportless Pt and PtPd Nanotubes as Electrocatalysts for Oxygen-Reduction Reactions [J], Angew. Chem. Int. Ed.,46: 4060-4063.
    [22]Cui, C. H., Li, H. H., Yu, S. H.2011. Large scale restructuring of porous Pt-Ni nanoparticle tubes for methanol oxidation:A highly reactive, stable, and restorable fuel cell catalyst [J], Chem. Sci.,2:1611-1614.
    [23]Strasser, P., Koh, S., Greeley, J.2008. Voltammetric surface dealloying of Pt bimetallic nanoparticles:an experimental and DFT computational analysis [J], Phys. Chem. Chem. Phys.,10:3670-3683.
    [24]Oezaslan, M., Heggen, M., Strasser, P.2011. Size-dependent morphology of dealloyed bimetallic catalysts:Linking the nano to the macro scale [J], J. Am. Chem. Soc.,133: 514-524.
    [25]Yang, R., Leisch, J., Strasser, P., Toney, M. F.2010. Structure of Dealloyed PtCu3 Thin Films and Catalytic Activity for Oxygen Reduction [J], Chem. Mater.,22:4712-4720.
    [26]Strasser, P., Koh, S., Anniyev, T., Greeley, J., More, K., Yu, C., Liu, Z., Kaya, S., Nordlund, D., Ogasawara, H., Toney, M. F., Nilsson, A.2010. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts [J], Nat. Chem.,2:454-460.
    [27]Mohl, M., Pusztai, P., Kukovecz, A., Konya, Z., Kukkola, J., Kordas, K., Vajtai, R., Ajayan, P. M.2010. Low-Temperature Large-Scale Synthesis and Electrical Testing of Ultralong Copper Nanowires(?) [J], Langmuir,26:16496-16502.
    [28]Koenigsmann, C., Zhou, W. P., Adzic, R. R., Sutter, E., Wong, S. S.2010. Size-Dependent Enhancement of Electrocatalytic Performance in Relatively Defect-Free, Processed Ultrathin Platinum Nanowires [J], Nano Lett.,10:2806-2811.
    [29]Yin, Y., Rioux, R. M., Erdonmez, C. K., Hughes, S., Somorjai, G. A., Alivisatos, A. P.2004. Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect [J], Science, 304:711-714.
    [30]Wang, J. X., Ma, C., Choi, Y., Su, D., Zhu, Y., Liu, P., Si, R., Vukmirovic, M. B., Zhang, Y., Adzic, R. R.2011. Kirkendall Effect and Lattice Contraction in Nanocatalysts:A New Strategy to Enhance Sustainable Activity [J], J. Am. Chem. Soc.,133:13551-13557.
    [31]Hasche, F., Oezaslan, M., Strasser, P.2012. Activity, Structure and Degradation of Dealloyed PtNi[sub 3] Nanoparticle Electrocatalyst for the Oxygen Reduction Reaction in PEMFC [J], J. Electrochem. Soc.,159:B25-B34.
    [32]Mani, P., Srivastava, R., Strasser, P.2008. Dealloyed Pt-Cu Core-Shell Nanoparticle Electrocatalysts for Use in PEM Fuel Cell Cathodes [J], The Journal of Physical Chemistry C,112:2770-2778.
    [33]Nilekar, A. U., Ruban, A. V., Mavrikakis, M.2009. Surface segregation energies in low-index open surfaces of bimetallic transition metal alloys [J], Surf. Sci.,603:91-96.
    [34]Tao, F., Grass, M. E., Zhang, Y., Butcher, D. R., Renzas, J. R., Liu, Z., Chung, J. Y., Mun, B. S., Salmeron, M., Somorjai, G. A.2008. Reaction-Driven Restructuring of Rh-Pd and Pt-Pd Core-Shell Nanoparticles [J], Science,322:932-934.
    [35]Lim, B., Jiang, M. J., Camargo, P. H. C., Cho, E. C., Tao, J., Lu, X. M., Zhu, Y. M., Xia, Y. N.2009. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction [J], Science, 324:1302-1305.
    [36]Peng, Z., Yang, H.2009. Synthesis and Oxygen Reduction Electrocatalytic Property of Pt-on-Pd Bimetallic Heteronanostructures [J], J. Am. Chem. Soc.,131:7542-7543.
    [37]Shao, M.-H., Sasaki, K., Adzic, R. R.2006. Pd-Fe Nanoparticles as Electrocatalysts for Oxygen Reduction [J], J. Am. Chem. Soc.,128:3526-3527.
    [38]Chen, S., Zhang, H., Wu, L., Zhao, Y, Huang, C., Ge, M., Liu, Z.2012. Controllable synthesis of supported Cu-M (M=Pt, Pd, Ru, Rh) bimetal nanocatalysts and their catalytic performances [J], J. Mater. Chem.,22:9117-9122.
    [39]Wang, D. Y, Chou, H. L., Lin, Y C., Lai, F. J., Chen, C. H., Lee, J. F., Hwang, B. J., Chen, C. C.2012. A simple replacement reaction for the preparation of ternary Fel-xPtRux nanocrystals with superior catalytic activity in methanol oxidation reaction [J], J. Am. Chem. Soc.,134:10011-10020.
    [40]Huang, M., Dong, G., Wang, N., Xu, J., Guan, L.2011. Highly dispersive Pt atoms on the surface of RuNi nanoparticles with remarkably enhanced catalytic performance for ethanol oxidation [J], Energy Environ. Sci.,4:4513-4516.
    [1]Chu, S., Majumdar, A.2012. Opportunities and challenges for a sustainable energy future [J], Nature,488:294-303.
    [2]Debe, M. K.2012. Electrocatalyst approaches and challenges for automotive fuel cells [J], Nature,486:43-51.
    [3]Yu, S. H., Tao, F., Liu, J.2012. Editorial:catalyst synthesis by design for the understanding of catalysis [J], ChemCatChem 4:1445-1447.
    [4]Cui, C. H., Yu, S. H.2013. Engineering Interface and Surface of Noble Metal Nanoparticle Nanotubes toward Enhanced Catalytic Activity for Fuel Cell Applications [J], Acc. Chem. Res.,46:1427-1437.
    [5]Lim, B., Jiang, M. J., Camargo, P. H. C., Cho, E. C., Tao, J., Lu, X. M., Zhu, Y. M., Xia, Y. N.2009. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction [J], Science, 324:1302-1305.
    [6]Zhang, L. G., Li, N., Gao, F. M., Hou, L., Xu, Z. M.2012. Insulin amyloid fibrils:an excellent platform for controlled synthesis of ultrathin superlong platinum nanowires with high electrocatalytic activity [J], J. Am. Chem. Soc.,134:11326-11329.
    [7]Liang, H. W., Liu, J. W., Qian, H. S., Yu, S. H.2013. Multiplex Templating Process in One-Dimensional Nanoscale:Controllable Synthesis, Macroscopic Assemblies, and Applications [J], Acc. Chem. Res.,46:1450-1461.
    [8]Cademartiri, L., Ozin, G. A.2009. Ultrathin nanowires-a materials chemistry perspective [J], Adv. Mater.,21:1013-1020.
    [9]Koenigsmann, C., Wong, S. S.2011. One-dimensional noble metal electrocatalysts:a promising structural paradigm for direct methanol fuel cells [J], Energy Environ. Sci.,4: 1161-1176.
    [10]Guo, S. J., Li, D. G., Zhu, H. Y, Zhang, S., Markovic, N. M., Stamenkovic, V. R., Sun, S. H. 2013. FePt and CoPt Nanowires as Efficient Catalysts for the Oxygen Reduction Reaction [J], Angew. Chem. Int. Ed.,52:3465-3468.
    [11]Li, H. H., Cui, C. H., Yu, S. H.2013. Alloyed Ultrathin Nanowires:A New Choice in Electrocatalysts [J], ChemCatChem 5:1693-1695.
    [12]Koenigsmann, C, Sutter, E., Chiesa, T. A., Adzic, R. R., Wong, S. S.2012. Highly enhanced electrocatalytic oxygen reduction performance observed in bimetallic palladium-based nanowires prepared under ambient, surfactantless conditions [J], Nano Lett.,12:2013-2020.
    [13]Koenigsmann, C, Zhou, W. P., Adzic, R. R., Sutter, E., Wong, S. S.2010. Size-Dependent Enhancement of Electrocatalytic Performance in Relatively Defect-Free, Processed Ultrathin Platinum Nanowires [J], Nano Lett.,10:2806-2811.
    [14]GreeleyJ, Stephens, I. E. L., Bondarenko, A. S., Johansson, T. P., Hansen, H. A., Jaramillo, T. F., RossmeislJ, ChorkendorffI, N(?)rskov, J. K.2009. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts [J], Nat. Chem.,1:552-556.
    [15]Stamenkovic, V. R., Mun, B. S., Arenz, M., Mayrhofer, K. J. J., Lucas, C. A., Wang, G., Ross, P. N., Markovic, N. M.2007. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces [J], Nat. Mater.,6:241-247.
    [16]Cui, C. H., Li, H. H., Gao, M. R., Liang, H. W., Yu, S. H.2011. Remarkable enhancement of electrocatalyticactivity by tuning the interface of Pd-Au bimetallic nanoparticle tubes [J], ACS Nano,5:4211-4218.
    [17]Wang, L., Nemoto, Y., Yamauchi, Y.2011. Direct synthesis of spatially-controlled Pt-on-Pd bimetallic nanodendrites with superior electrocatalytic activity [J], J. Am. Chem. Soc.,133: 9674-9677.
    [18]Xia, B. Y, Wu, H. B., Wang, X., Lou, X. W.2012. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction [J], J. Am. Chem. Soc.,134:13934-13937.
    [19]Tominaka, S., Shigeto, M., Nishizeko, H., Osaka, T.2010. Synthesis of mesoporous PtCu film modified with Ru submonolayer as catalyst for methanol electrooxidation [J], Chem. Commun.,46:8989-8991.
    [20]Kang, Y. J., Pyo, J. B., Ye, X. C., Gordon, T. R., Murray, C. B.2012. Synthesis, shape control, and methanol electro-oxidation properties of Pt-Zn alloy and Pt3Zn intermetallic nanocrystals [J], ACS Nano,6:5642-5647.
    [21]Habas, S. E., Lee, H., Radmilovic, V., Somorjai, G. A., Yang, P.2007. Shaping binary metal nanocrystals through epitaxial seeded growth [J], Nat. Mater.,6:692-697.
    [22]Guo, S. J., Zhang, S., Sun, X. L., Sun, S. H.2011. Synthesis of ultrathin FePtPd nanowires and their use as catalysts for methanol oxidation reaction [J], J. Am. Chem. Soc.,133: 15354-15357.
    [23]Zhang, Y., Janyasupab, M., Liu, C. W., Li, X. X., Xu, J. Q., Liu, C. C.2012. Three dimensional PtRh alloy porous nanostructures:tuning the atomic composition and controlling the morphology for the application of direct methanol fuel cells [J], Adv. Funct. Mater.,11:3570-3575.
    [24]Cui, C. H., Li, H. H., Yu, J. W., Gao, M. R., Yu, S. H.2010. Ternary Heterostructured Nanoparticle Tubes:A Dual Catalyst and Its Synergistic Enhancement Effects for O2/H2O2 Reduction [J], Angew. Chem. Int. Ed.,49:9149-9152.
    [25]Cui, C. H., Li, H. H., Liu, X. J., Gao, M. R., Yu, S. H.2012. Surface Composition and Lattice Ordering Controlled Activity and Durability of CuPt Electrocatalysts for Oxygen Reduction Reaction [J], ACS Catalysis,2:916-924.
    [26]Cui, C. H., Li, H. H., Yu, S. H.2011. Large scale restructuring of porous Pt-Ni nanoparticle tubes for methanol oxidation:A highly reactive, stable, and restorable fuel cell catalyst [J], Chem. Sci.,2:1611-1614.
    [27]Liang, H. W., Cao, X., Zhou, F., Cui, C. H., Zhang, W. J., Yu, S. H.2011. A free-standing Pt-nanowire membrane as a highly stable electrocatalyst for the oxygen reduction reaction [J],Adv. Mater.,23:1467-1471.
    [28]Zhu, C. Z., Guo, S. J., Dong, S. J.2012. PdM (M=Pt, Au) bimetallic alloy nanowires with enhanced electrocatalytic activity for electro-oxidation of small molecules [J], Adv. Mater., 24:2326-2331.
    [29]Zhu, C. Z., Guo, S. J., Dong, S. J.2012. Facile synthesis of trimetallic AuPtPd alloy nanowires and their catalysis for ethanol electrooxidation [J], J. Mater. Chem.,22: 14851-14855.
    [30]Wang, H. J., Ishihara, S., Ariga, K., Yamauchi, Y.2012. All-metal layer-by-layer films: bimetallic alternate layers with accessible mesopores for enhanced electrocatalysis [J], J. Am. Chem. Soc.,134:10819-10821.
    [31]Li, H. H., Cui, C. H., Zhao, S., Yao, H. B., Gao, M. R., Fan, F. J., Yu, S. H.2012. Mixed-PtPd-shell PtPdCu nanoparticle nanotubes templated from copper nanowires as efficient and highly durable electrocatalysts [J], Adv. Energy Mater.,2:1182-1187.
    [32]Oezaslan, M., Heggen, M., Strasser, P.2011. Size-dependent morphology of dealloyed bimetallic catalysts:Linking the nano to the macro scale [J], J. Am. Chem. Soc.,133: 514-524.
    [33]Cui, C. H., Liu, X. J., Li, H. H., Gao, M. R., Liang, H. W., Yao, H. B., Yu, S. H.2012. Ternary PtPdCu Electrocatalyst Formed through Surface-Atomic Redistribution against Leaching [J], ChemCatChem 4:1560-1563.
    [34]Wang, D. Y, Chou, H. L., Lin, Y. C., Lai, F. J., Chen, C. H., Lee, J. F., Hwang, B. J., Chen, C. C.2012. A simple replacement reaction for the preparation of ternary Fel-xPtRux nanocrystals with superior catalytic activity in methanol oxidation reaction [J], J. Am. Chem. Soc.,134:10011-10020.
    [35]Ferrin, P., Mavrikakis, M.2009. Structure sensitivity of methanol electrooxidation on transition metals [J], J. Am. Chem. Soc.,131:14381-14389.
    [36]Liu, Y., Chi, M. F., Mazumder, V., More, K. L., Soled, S., Henao, J. D., Sun, S. H.2011. Composition-controlled synthesis of bimetallic PdPt nanoparticles and their electro-oxidation of methanol [J], Chem. Mater.,23:4199-4203.
    [37]Niu, Z. Q., Wang, D. S., Yu, R., Peng, Q., Li, Y. D.2012. Highly branched Pt-Ni nanocrystals enclosed by stepped surface for methanol oxidation [J], Chem. Sci.,3: 1925-1929.
    [38]Kakade, B. A., Tamaki, T., Ohashi, H., Yamaguchi, T.2012. Highly active bimetallic PdPt and CoPt nanocrystals for methanol electro-oxidation [J], J. Phys. Chem. C 116:7464-7470.
    [1]Siahrostami, S., Verdaguer-Casadevall, A., Karamad, M., Deiana, D., Malacrida, P., Wickman, B., Escudero-Escribano, M., Paoli, E. A., Frydendal, R., Hansen, T. W., Chorkendorff, I., Stephens, I. E. L., Rossmeisl, J.2013. Enabling direct H2O2 production through rational electrocatalyst design [J], Nat. Mater.,12:1137-1143.
    [2]Chiu, C.-Y., Li, Y., Ruan, L., Ye, X., Murray, C. B., Huang, Y.2011. Platinum nanocrystals selectively shaped using facet-specific peptide sequences [J],Nat. Chem.,3:393-399.
    [3]Hsieh, Y.-C., Zhang, Y, Su, D., Volkov, V, Si, R., Wu, L., Zhu, Y, An, W., Liu, P., He, P., Ye, S., Adzic, R. R., Wang, J. X.2013. Ordered bilayer ruthenium-platinum core-shell nanoparticles as carbon monoxide-tolerant fuel cell catalysts [J], Nat. Commun.,4:2466.
    [4]Xia, B. Y, Wu, H. B., Wang, X., Lou, X. W.2013. Highly Concave Platinum Nanoframes with High-Index Facets and Enhanced Electrocatalytic Properties [J], Angew. Chem. Int. Ed.,52:12337-12340.
    [5]Service, R. F.2007. Platinum in Fuel Cells Gets a Helping Hand [J], Science,315:172-172.
    [6]Tian, N., Zhou, Z.-Y., Sun, S.-G, Ding, Y, Wang, Z. L.2007. Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity [J], Science,316:732-735.
    [7]Kang, Y., Li, M., Cai, Y, Cargnello, M., Diaz, R. E., Gordon, T. R., Wieder, N. L., Adzic, R. R., Gorte, R. J., Stach, E. A., Murray, C. B.2013. Heterogeneous Catalysts Need Not Be so "Heterogeneous":Monodisperse Pt Nanocrystals by Combining Shape-Controlled Synthesis and Purification by Colloidal Recrystallization [J], J. Am. Chem. Soc.,135: 2741-2747.
    [8]Tiwari, J. N., Nath, K., Kumar, S., Tiwari, R. N., Kemp, K. C., Le, N. H., Youn, D. H., Lee, J. S., Kim, K. S.2013. Stable platinum nanoclusters on genomic DNA-graphene oxide with a high oxygen reduction reaction activity [J], Nat. Commun.,4:2221.
    [9]Proch, S., Wirth, M., White, H. S., Anderson, S. L.2013. Strong Effects of Cluster Size and Air Exposure on Oxygen Reduction and Carbon Oxidation Electrocatalysis by Size-Selected Ptn (n≤11) on Glassy Carbon Electrodes [J], J. Am. Chem. Soc.,135: 3073-3086.
    [10]Perez-Alonso, F. J., McCarthy, D. N., Nierhoff, A., Hernandez-Fernandez, P., Strebel, C., Stephens, I. E. L., Nielsen, J. H., Chorkendorff, I.2012. The Effect of Size on the Oxygen Electroreduction Activity of Mass-Selected Platinum Nanoparticles [J], Angew. Chem. Int. Ed.,51:4641-4643.
    [11]Xia, Y, Yang, H., Campbell, C. T.2013. Nanoparticles for Catalysis [J], Acc. Chem. Res., 46:1671-1672.
    [12]van der Vliet, D. F., Wang, C., Tripkovic, D., Strmcnik, D., Zhang, X. F., Debe, M. K., Atanasoski, R. T., Markovic, N. M., Stamenkovic, V. R.2012. Mesostructured thin films as electrocatalysts with tunable composition and surface morphology [J], Nat. Mater.,11: 1051-1058.
    [13]Ruan, L., Zhu, E., Chen, Y., Lin, Z., Huang, X., Duan, X., Huang, Y.2013. Biomimetic Synthesis of an Ultrathin Platinum Nanowire Network with a High Twin Density for Enhanced Electrocatalytic Activity and Durability [J], Angew. Chem. Int. Ed.,52: 12577-12581.
    [14]Liang, H. W., Cao, X., Zhou, F., Cui, C. H., Zhang, W. J., Yu, S. H.2011. A free-standing Pt-nanowire membrane as a highly stable electrocatalyst for the oxygen reduction reaction [J], Adv. Mater.,23:1467-1471.
    [15]Li, H.-H., Zhao, S., Gong, M., Cui, C.-H., He, D., Liang, H.-W., Wu, L., Yu, S.-H.2013. Ultrathin PtPdTe Nanowires as Superior Catalysts for Methanol Electrooxidation [J], Angew. Chem. Int. Ed.,52:7472-7476.
    [16]Koenigsmann, C., Wong, S. S.2011. One-dimensional noble metal electrocatalysts:a promising structural paradigm for direct methanol fuel cells [J], Energy Environ. Sci.,4: 1161-1176.
    [17]Guo, S. J., Li, D. G., Zhu, H. Y., Zhang, S., Markovic, N. M., Stamenkovic, V. R., Sun, S. H. 2013. FePt and CoPt Nanowires as Efficient Catalysts for the Oxygen Reduction Reaction [J], Angew. Chem. Int. Ed.,52:3465-3468.
    [18]Li, H.-H., Cui, C.-H., Yu, S.-H.2013. Alloyed Ultrathin Nanowires:A New Choice in Electrocatalysts [J], ChemCatChem 5:1693-1695.
    [19]Xu, Y., Zhang, B.2014. Recent advances in porous Pt-based nanostructures:synthesis and electrochemical applications [J], Chem. Soc. Rev.,43:2439-2450.
    [20]Cui, C. H., Yu, S. H.2013. Engineering Interface and Surface of Noble Metal Nanoparticle Nanotubes toward Enhanced Catalytic Activity for Fuel Cell Applications [J], Ace. Chem. Res.,46:1427-1437.
    [21]Zhang, H., Jin, M. S., Wang, J. G., Li, W. Y., Camargo, P. H. C., Kim, M. J., Yang, D. R., Xie, Z. X., Xia, Y. N.2011. Synthesis of Pd-Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanicreplacement reaction [J], J. Am. Chem. Soc., 133:6078-6089.
    [22]Wang, Y, Choi, S.-I., Zhao, X., Xie, S., Peng, H.-C., Chi, M., Huang, C. Z., Xia, Y.2013. Polyol Synthesis of Ultrathin Pd Nanowires via Attachment-Based Growth and Their Enhanced Activity towards Formic Acid Oxidation [J], Adv. Funct. Mater.,24:131-139.
    [23]Xia, X., Wang, Y., Ruditskiy, A., Xia, Y.2013.25th Anniversary Article:Galvanic Replacement:A Simple and Versatile Route to Hollow Nanostructures with Tunable and Well-Controlled Properties [J], Adv. Mater.,25:6313-6333.
    [24]Liang, H.-W., Liu, J. W., Qian, H. S., Yu, S. H.2013. Multiplex Templating Process in One-Dimensional Nanoscale:Controllable Synthesis, Macroscopic Assemblies, and Applications [J], Acc. Chem. Res.,46:1450-1461.
    [25]Colombi Ciacchi, L., Pompe, W., De Vita, A.2001. Initial Nucleation of Platinum Clusters after Reduction of K2PtC14 in Aqueous Solution:A First Principles Study [J], J. Am. Chem. Soc.,123:7371-7380.
    [26]Yao, T., Liu, S., Sun, Z., Li, Y., He, S., Cheng, H., Xie, Y., Liu, Q., Jiang, Y, Wu, Z., Pan, Z., Yan, W., Wei, S.2012. Probing Nucleation Pathways for Morphological Manipulation of Platinum Nanocrystals [J], J. Am. Chem. Soc.,134:9410-9416.
    [27]Yao, T., Sun, Z., Li, Y., Pan, Z., Wei, H., Xie, Y, Nomura, M., Niwa, Y, Yan, W, Wu, Z., Jiang, Y., Liu, Q., Wei, S.2010. Insights into Initial Kinetic Nucleation of Gold Nanocrystals [J], J. Am. Chem. Soc.,132:7696-7701.
    [28]Li, H. H., Cui, C. H., Zhao, S., Yao, H. B., Gao, M. R., Fan, F. J., Yu, S. H.2012. Mixed-PtPd-shell PtPdCu nanoparticle nanotubes templated from copper nanowires as efficient and highly durable electrocatalysts [J], Adv. Energy Mater.,2:1182-1187.
    [29]Zhang, J., Sasaki, K., Sutter, E., Adzic, R. R.2007. Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters [J], Science,315:220-222.
    [1]Debe, M. K.2012. Electrocatalyst approaches and challenges for automotive fuel cells [J], Nature,486:43-51.
    [2]Chu, S., Majumdar, A.2012. Opportunities and challenges for a sustainable energy future [J], Nature,488:294-303.
    [3]2013. Chemistry:Catalysts on the cheap [J], Nature,504:11-11.
    [4]Adzic, R., Zhang, J., Sasaki, K., Vukmirovic, M., Shao, M., Wang, J., Nilekar, A., Mavrikakis, M., Valerio, J., Uribe, F.2007. Platinum Monolayer Fuel Cell Electrocatalysts [J], Top. Catal.,46:249-262.
    [5]Nilekar, A. U., Mavrikakis, M.2008. Improved oxygen reduction reactivity of platinum monolayers on transition metal surfaces [J], Surf. Sci.,602:L89-L94.
    [6]Sasaki, K., Vukmirovic, M. B., Wang, J. X., Adzic, R. R. In Fuel Cell Science; John Wiley & Sons, Inc.:2010, p 215-236.
    [7]Choi, Y., Kuttiyiel, K., Labis, J., Sasaki, K., Park, G.-G., Yang, T. H., Adzic, R.2013. Enhanced Oxygen Reduction Activity of IrCu Core Platinum Monolayer Shell Nano-electrocatalysts [J], Top. Catal.1-6.
    [8]Shao, M., Peles, A., Shoemaker, K., Gummalla, M., Njoki, P. N., Luo, J., Zhong, C. J.2010. Enhanced Oxygen Reduction Activity of Platinum Monolayer on Gold Nanoparticles [J], J. Phys. Chem. Lett.,2:67-72.
    [9]Sasaki, K., Naohara, H., Choi, Y, Cai, Y, Chen, W.-F., Liu, P., Adzic, R. R.2012. Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction [J], Nat. Commun.,3:1115.
    [10]Zhang, J., Lima, F. H. B., Shao, M. H., Sasaki, K., Wang, J. X., Hanson, J., Adzic, R. R. 2005. Platinum Monolayer on Nonnoble Metal-Noble Metal Core-Shell Nanoparticle Electrocatalysts for O2 Reduction [J], J. Phys. Chem. B 109:22701-22704.
    [11]Gong, K., Su, D., Adzic, R. R.2010. Platinum-Monolayer Shell on AuNiO.5Fe Nanoparticle Core Electrocatalyst with High Activity and Stability for the Oxygen Reduction Reaction [J], J. Am. Chem. Soc.,132:14364-14366.
    [12]Li, M., Liu, P., Adzic, R. R.2012. Platinum Monolayer Electrocatalysts for Anodic Oxidation of Alcohols [J], J. Phys. Chem. Lett.,3:3480-3485.
    [13]Zhang, J., Vukmirovic, M. B., Xu, Y., Mavrikakis, M., Adzic, R. R.2005. Controlling the Catalytic Activity of Platinum-Monolayer Electrocatalysts for Oxygen Reduction with Different Substrates [J], Angew. Chem. Int. Ed.,44:2132-2135.
    [14]Zhang, Y., Ma, C., Zhu, Y., Si, R., Cai, Y, Wang, J. X., Adzic, R. R.2013. Hollow core supported Pt monolayer catalysts for oxygen reduction [J], Catal. Today 202:50-54.
    [15]Kye, J., Shin, M., Lim, B., Jang, J.-W., Oh, I., Hwang, S.2013. Platinum Monolayer Electrocatalyst on Gold Nanostructures on Silicon for Photoelectrochemical Hydrogen Evolution [J], ACS Nano,7:6017-6023.
    [16]Kuttiyiel, K. A., Sasaki, K., Choi, Y., Su, D., Liu, P., Adzic, R. R.2012. Bimetallic IrNi core platinum monolayer shell electrocatalysts for the oxygen reduction reactionCV [J], Energy Environ. Sci.,5:5297-5304.
    [17]Koenigsmann, C., Wong, S. S.2011. One-dimensional noble metal electrocatalysts:a promising structural paradigm for direct methanol fuel cells [J], Energy Environ. Sci.,4: 1161-1176.
    [18]Xia, B. Y., Wu, H. B., Yan, Y, Lou, X. W., Wang, X.2013. Ultrathin and Ultralong Single-crystal Pt Nanowire Assemblies with Highly Stable Electrocatalytic Activity [J], J. Am. Chem. Soc.,135:9480-9485.
    [19]Ruan, L., Zhu, E., Chen, Y, Lin, Z., Huang, X., Duan, X., Huang, Y.2013. Biomimetic Synthesis of an Ultrathin Platinum Nanowire Network with a High Twin Density for Enhanced Electrocatalytic Activity and Durability [J], Angew. Chem. Int. Ed.,52: 12577-12581.
    [20]Wang, J. X., Inada, H., Wu, L., Zhu, Y., Choi, Y., Liu, P., Zhou, W. P., Adzic, R. R.2009. Oxygen Reduction on Well-Defined Core-Shell Nanocatalysts:Particle Size, Facet, and Pt Shell Thickness Effects [J], J. Am. Chem. Soc.,131:17298-17302.
    [21]Li, H. H., Zhao, S., Gong, M., Cui, C. H., He, D., Liang, H. W., Wu, L., Yu, S. H.2013. Ultrathin PtPdTe Nanowires as Superior Catalysts for Methanol Electrooxidation [J], Angew. Chem. Int. Ed.,52:7472-7476.
    [22]Yang, L., Vukmirovic, M. B., Su, D., Sasaki, K., Herron, J. A., Mavrikakis, M., Liao, S., Adzic, R. R.2012. Tuning the Catalytic Activity of Ru@Pt Core-Shell Nanoparticles for the Oxygen Reduction Reaction by Varying the Shell Thickness [J], J. Phys. Chem. C 117: 1748-1753.
    [23]Wen, Y. H., Huang, R., Li, C., Zhu, Z. Z., Sun, S. G.2012. Enhanced thermal stability of Au@Pt nanoparticles by tuning shell thickness:Insights from atomistic simulations [J], J. Mater. Chem.,22:7380-7386.
    [24]Zhang, J., Sasaki, K., Sutter, E., Adzic, R. R.2007. Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters [J], Science,315:220-222.
    [25]Zhang, G., Sun, S., Cai, M., Zhang, Y., Li, R., Sun, X.2013. Porous Dendritic Platinum Nanotubes with Extremely High Activity and Stability for Oxygen Reduction Reaction [J], Sci. Rep.,3:1526.