混合无线网络中无线资源管理关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电信产业与因特网的迅速发展,出现了种类繁多的无线通信网络系统如蜂窝通信系统、无线局域网、卫星通信系统、数字多媒体广播系统等,由其构成的混合网络共同为用户提供了泛在的无线环境,使用户可在任何时间、地点与任何个人进行通信。另一方面无线技术的多样性及其不断向前演进,造成了混合网络在结构和部署方式上具有复杂性与多样性的特点,如同代技术不同制式间(UMTS/WiMAX)、不同代技术间(2G/3G)、不同技术不同制式间(UMTS/WLAN)及同代技术不同规模间(Macro/Femtocell)等方式。如何充分利用各种无线通信网络间的互补特性,保证用户间通信的服务质量,实现真正意义上的混合网络自组织、自适应和无线资源管理技术的有机融合,是研究混合无线网络的关键所在。基于混合网络的复杂性,本文将混合网络分为异构网络与分层网络,采用博弈论、最优化理论等多种研究方法和手段,围绕混合无线网络资源管理中的接入控制、移动性管理、频谱分配及功率控制等问题进行深入的分析和研究,以达到提升混合网络资源效率、系统容量等系统性能的目的。
     首先对异构网络选择接入控制问题进行了研究,论文分析了现有异构网络选择算法和模型的优点与不足,提出了两种基于博弈论的新网络选择接入模型。区别于已有异构网络选择机制很少兼顾用户与网络双方,两种模型均综合考虑了用户与网络双方的状态及不同的需求目标,通过博弈进行相互选择并分别得到了博弈的均衡解。算法性能与数值分析结果表明两种模型在不牺牲用户与网络任何一方利益的条件下,分别在收益和满意度上取得了较高的系统性能增益,即在某种程度上使双方达到了一种双赢。
     随后研究了宏蜂窝/毫微微蜂窝分层网络中的切换判决问题,在分析了已有切换算法在分层网络中由于毫微微蜂窝极低发射功率的特性而不能进行有效地判决之后,提出了两种适用于分层网络的新切换算法。在联合信号强度与功率损耗的切换算法中,采用接收信号强度与功率损耗进行联合切换判决,可以有效地提高毫微微蜂窝的利用率和解决宏蜂窝与毫微微蜂窝基站功率的差异问题,同时对用户起到一定的节能作用,性能与数值分析结果表明该算法对比于传统算法增加了切换次数,对比于其他分层切换算法减少了一些不必要的切换次数。在基于信干噪比和用户状态的切换算法中,通过信干噪比避免基站间的功率不对称性,采用用户状态包括移动速度、业务服务质量需求来避免仅依据信干噪比判决引起的频繁切换,仿真分析结果表明该算法提高了毫微微蜂窝的利用率,降低了造成频繁切换的可能性,从而提升了系统性能。
     接着研究了毫微微蜂窝部署于宏蜂窝中时具有同样授权频段的基站间该如何分配频谱的问题,在分析了传统宏蜂窝采用的集中式频谱规划/分配机制在分层网络中由于毫微微蜂窝有线回程的特点不再适用后,提出了分层网络中基于博弈论的两种自适应频谱分配机制。两种机制分别结合静态矩阵博弈理论与动态斯坦伯格博弈理论,将宏蜂窝和毫微微蜂窝基站分别作为博弈双方,共同的频谱资源作为基站间博弈竞争的对象,通过求解博弈均衡以最小化跨层、同层干扰,同时给出了基于矩阵博弈的分配机制中当均衡不存在时的次优解和基于斯坦伯格博弈的分配机制中均衡的定义及存在性证明。分析结果表明两种自适应频谱分配机制均实现了频谱的混合分配方式,即在频谱资源充足时进行正交分配,在资源匮乏时进行复用/共道分配,以最大程度地提高频谱利用率。性能与数值分析结果表明两种自适应机制在吞吐率、阻塞率与频谱效率上都取得了比较明显的性能改善。
     最后对分层网络中的毫微微蜂窝自配置的相关问题进行了研究,基于毫微微蜂窝最终将由用户进行自主安装和配置且大多数用户并不具有相关专业技术背景的特点,结合最优化理论提出了一种毫微微蜂窝基站功率的自配置机制。该机制在分析部署新毫微微蜂窝基站时可能受到的各种类型的干扰和可能引起对已有用户和网络的干扰类型的基础上,根据分析得到的干扰限定条件设计了一个自配置功率的最优化问题,即在保证已有用户正常通信的条件下如何最大化系统容量。分析结果表明,通过最优化理论中的拉格朗日乘数法可以求出该机制中发射功率设置的最优解。仿真比较结果表明自配置机制实现了毫微微蜂窝基站依据周围无线环境对发射功率的自适应调整,有效地降低了毫微微蜂窝的发射功率,减少了添加毫微微蜂窝可能引起的各种干扰,从而提升了系统性能。
With the rapid development of telecom industry and Internet, various kinds of wireless communication networks have appeared such as radio cell communication systems, wireless local networks, satellite communication system, and digital multimedia broadcasting systems, etc. Hybrid network composed of these systems provides ubiquitous radio environment for users, which makes people commnunicate with anyone at any time and any place. On the other hand the diversity and constant evolution of wireless technology led to the complexity and multiplicity of hybrid network on construction and deployment, for example, different generation technologies (2G/3G), same generation with different standards (UMTS/WiMAX), different technology and different standard (UMTS/WLAN), and same generation with different scale (Macro/Femtocell). The key for reasearching hybrid network includes that how to sufficiently utilize the complementary property of various wirless networks for guaranteeing users'QoS, how to truly implement the self-organization and adaptation of hybrid network, and how to integrate radio resource management of different networks. The hybrid network is divided into heterogenous and hierarchical networks due to its complexity, research issues of hybrid wireless network resource management such as admission control, mobility management, spectrum allocation and power control are analyzed and investigated thoroughly by using game theory and optimization theory in this dissertation, in order to improve the system performance like resource efficiency, capacity and so on.
     Firstly, the issue on heterogenous network selection is investegated. The advantages and disadvantages of existing related models and algorithms are analyzed, and then two new models based on game theory are proposed. Different from existing schemes which hardly give attention to both users and networks, the status and different requirements of both users and networks are taken into consideration in the two new models, and the equilibrium points of two games can be achieved through mutual selection. Simulation results show the two models can separately achieve higher gain of system performance on revenue and satisfaction degree under the condition of without sacrificing users or networks profits. That is to say, users and networks attain a win-win situation.
     Secondly the issue on handoff decision in Macro/Femtocell hierarchical networks is researched. Based on the lack of existing handoff algorithms, due to the property of femtocells which has very low transmit power, two new handoff algorithms in hierarchical network are proposed. The handoff decision is made by adopting received signal strength (RSS) combined with power loss in the first algorithm, which can improve the utilization of femtocells and solve the discrepancy on transmit power of macro and femtocell base stations, and make some power-saving. Simulation results show the algorithm increases the number of handoff compared to conventional algorithms, and ruduces the number of unnecessary handoff compared to other hierarchical handoff algorithm. In the signal to interference plus noise ratio (SINR) based algorithm, the SINR used to avoid power asymmetry of base staions and users'state including velocity, and the QoS used for decreasing frequent handoff are combined. Simulation results show the second algorithm promotes the utilization ratio of femtocells, diminishes the possibility of over handoff, therefoer improves the system performance.
     Thirdly the dissertation researches the issue how to allocate spectrum among base stations in hierarchical network when femtocells are deployed in macrocells and they share the same licensed frequency band. The centralized spectrum planning and allocation schemes do not work efficiently in hierarchical network owing to the wired backhaul characteristic of femtocells, thus two game theory based adaptive schemes of spectrum allocation are proposed. Two schemes integrate the theory of matrix game and Stackelberg game, respectively, both of which make the base stations of macrocell and femtocell as the two sides of players, and make the same spectrum as the game object, to minimize the co-layer and cross-layer interferences by solving the equilibrium of the game. In addition, the suboptimal solution is given when the equilibrium of matrix game does not exist. The definition and existence proof of Stackelberg game equilibrium are also given. Analysis results represent both of the proposed schemes allocate spectrum in a hybrid way, namely allocating orthogonally when resource is enough and in a reuse or co-channel manner when resource is scarce. Simulation results show the two adaptive schemes attaine the obvious performance improvement in throughput, blocking probability, and spectrum efficiency.
     At last the attention is paid to the issue on self-configuration of femtocells. As the femtocells are finally deployed independently by users without related professional and technical background, a femtocell self-configruation scheme base on optimization theory is proposed. Based on analyzing all kinds of received interference and types of introduced interference on existing users and networks, an optimal problem of power self-configuration is designed according to interference qualification, which refers to maximize system capacity on the condition eusuring normal communication of existing users. Analysis results present the transmit power optimal solutioan can be obtained with Lagrange multiplier of optimization theory. Simulation results demonstrate the scheme realizes transmit power adaptation of femtocells in accordance with radio environment, effectively cuts down transmit power, reduces various introduced interference, and enhances system performance.
引文
[1]蔡跃明,吴启辉,田华等.现代移动通信.机械工业出版社,2007,pp:1-10.
    [2]Qi Bi, G.L.Zysman, H.Menkes. Wireless Mobile Communications at the start of the 21st century. IEEE Communication Magazine, June 2001,39:110-116.
    [3]S.T. Andrew著,熊桂喜,王小虎译.计算机网络.清华大学出版社,2000.
    [4]William C.Y.Lee著,陈威兵,黄晋军,张聪译.无线与蜂窝通信.清华大学出版社,2008.
    [5]孙儒石,丁怀元等编著.GSM数字移动通信工程.人民邮电出版社,2002.
    [6]R.Kalden, I.Meirick, M.Meyer.Wireless Internet access based on GPRS.IEEE Personal Communications, Apr.2000,7(2):8-18.
    [7]ETSI. Digital cellular telecommunications system (Phase 2+); AT command set for GSM Mobile Equipment.ETSI TS 100 916.
    [8]O.Tero, P.Ramjee.Wide Band CDMA for Third Generation Mobile Communications. Artech House Publisher,2001.
    [9]张智江,刘申建等.CDMA2000 1×EV-DO网络技术.机械工业出版社,2005.
    [10]彭木根,王文博.TD-SCDMA移动通信系统.机械工业出版社,2005.
    [11]IEEE Standard for Local and Metropolitan Area Networks Part16:Air Interface for Fixed Broadband Wireless Access Systems,2004:1-857
    [12]Hsiao-Hwa Chen, Guizani M. Multiple access technologies for B3G wireless communications. IEEE Communications Magazine, Feb.2005,43(2):65-67.
    [13]Cui Tao, Lu Feng, Sethuraman Vignesh, et al. Throughput Optimization in High Speed Downlink Packet Access (HSDPA). IEEE Transaction on Wireless Communications, February 2011,10(2):474-483.
    [14]Al khairy M., El-saidny M.A. Uplink quality measurement reporting mechanism for HSUPA. IEEE Communications Magazine, June 2008,46(6):68-75.
    [15]Bader Al-Manthari, Hossam Hassanein, Nidal Nasser. Packet scheduling in 3.5G high-speed downlink packet access networks:breadth and depth. IEEE Network Jan.-Feb.2007,21(1):41-46
    [16]Parry R. CDMA2000 1×EV-DO [for 3G communications]. IEEE Potentials, Oct/Nov 2002,21(4):10-13.
    [17]3GPP. UTRA-UTRAN Long Term Evolution (LTE) and 3GPP Architecture Evolution (SAE). Ftp://ftp.3gpp.org/Inbox/2008_web_files/LTA_Paper.pdf.
    [18]Hanzo Lajos, Hanzo Lajow. MIMO-aided OFDM for LTE, WiMAX, WiFi and other Next-generation Multi-carrier Wireless System Part 1. IEEE Vehicular Technology Conference, March 2010, pp:269-275.
    [19]沈嘉.IMT-Advanced无线空中接口关键技术.2008-02-20.2010-12-29http://www.cctime.com/html/2008-2-20/20082201336345304.htm.
    [20]Parkvall S, Dahlman E, Furuskar A. LTE-Advanced Evolving LET towards IMT-Advance. IEEE VTC-Fall, Sept.2008:21-24.
    [21]IEEE Standard 802.11n. Part 11:Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 5:Enhancements for Higher Throughput.2009:cl-502.
    [22]Doufexi A., Armour S., Butler M., et al. A comparison of the HIPERLAN/2 and IEEE 802.11a wireless LAN standards. IEEE Communications Magazine, May 2002, 40(5):172-180
    [23]IEEE Standard 802.16. Part 16:Air Interface for Broadband Wireless Access Systems. 2009:cl-2004
    [24]Dotlic I., Kohno R. Low Complexity Chirp Pulsed Ultra-Wideband System with Near-Optimum Multipath Performance. IEEE Transactions on Wireless Communications, January 2011,10(1):208-218
    [25]McDermott-Wells P. What is Bluetooth? IEEE Potentials, Dec.2004-Jan.2005,23(5): 33-35
    [26]Jinsoo Han, Haeryong Lee, Kwang-Roh Park. Remote-controllable and energy-saving room architecture based on ZigBee communication. IEEE Transactions on Consumer Electronics, February 2009,55(1):264-268
    [27]Yang Z., Cao Z., Liu H. Link supportability analysis of digital channelised satellite communication system using min-max optimisation and variable neighbourhood search algorithm. IET Communications, December 17,2010,4(18):2145-2154
    [28]Jae Hong Lee, Jong-Soo Lim, Sang Woon Lee, et al. Development of Advanced Terrestrial DMB System. IEEE Transactions on Broadcasting, March 2010, 56(1):28-35
    [29]Femto Forum. Whitepaper:Regulatory Aspects of Femtocells. May 2008. http://www.femtoforum.org/femto/pdfsO 1.php
    [30]邵一敏,申奇.Femtocell技术的由来、优势和市场前景.邮电设计技术,2010:25-27.
    [31]Femto Forum. U.S Consumer Attitudes on In-Home Mobile Services and Femtocells-Parks Associates. Oct.2010. http://www.femtoforum.org/femto/pdfs01.php.
    [32]胡南.无线通信网络接入控制技术研究.北京邮电大学,2008.
    [33]http://www.3gpp.org/SA
    [34]http://www.cordis.lu
    [35]IEEE 1999.4-2009. IEEE Standard for Architectural Building Blocks Enabling Network-Device Distributed Decision Making for Optimized Radio Resource Usage in Heterogeneous Wireless Access Networks.
    [36]谷晨.下一代无线融合网络中移动性管理技术的研究.北京邮电大学博士学位论文,2010.
    [37]You-Chang Ko, Sun-Chun Park, Chong-Youn Chun and etc. An adaptive QoS provisioning distributed call admission control using fuzzy logic control. IEEE International Conference on Communications, June 2001, Vol.2, pp.356-360.
    [38]Chi-Chao Chao, Chen.W. Connection admission control for mobile multiple-class personal communications networks. IEEE Journal on Selected Areas in Communications, Oct.1997, Vol.15, pp.1618-1626
    [39]Cesana Matteo, Malanchini Ilaria, Capone Antonio. Modelling network selection and resource allocation in wireless access networks with non-cooperative games.5th IEEE International Conference on Mobile Ad Hoc and Sensor Systems, Sept.292008-Oct.2, Page(s):404-409.
    [40]Charilas.D, Markaki. O, Tragos. E. A theoretical scheme for applying game theory and network selection mechanisms in access admission control.3rd International Symposium on Wireless Pervasive Computing,7-9 May 2008 Page(s):303-307.
    [41]Q. Song, A. Jamalipour. Network selection in an integrated wireless LAN and UMTS environment using mathematical modeling and computing techniques. IEEE Wireless Comm.,12(3):42-48, June 2005.
    [42]Eric Rasmusen. Games and Information, Fourth Edition:An Introduction to Game Theory.24 March 2005
    [43]Antoniou Josephina, Pitsillides Andreas.4G Converged Environment:Modeling Network Selection as a Game.16th IST Mobile and Wireless Communications Summit, 2007.
    [44]贾会玲.异构无线网络中的接入选择与准入控制研究.浙江大学博士学位论文,2007.
    [45]贺峰.异构无线网络中切换技术研究.华中科技大学博士学位论文,2009.
    [46]邓强.异构无线网络中的接纳控制与垂直切换研究.北京邮电大学博士学位论文,2010.
    [47]S.Periyalwar, et al. Future mobile broadband wireless networks:a radio resource management perspective. Wireless Communications and Mobile Computing, 2003,3(7):803-816
    [48]刘侠.下一代无线通信网络中移动性管理关键技术的研究.上海交通大学博士学位论文,2010.
    [49]时岩.异构网络垂直切换若干关键技术的研究.北京邮电大学博士学位论文,2007.
    [50]Jing Nie, JiangChuan Wen, Qi Dong, et al. A seamless handoff in IEEE 802.16a and IEEE 802.11n hybrid networks. International Conference on Communications, Circuits and Systems(ICCCAS 2005), Vol.1,2005, pp. 383-387
    [51]Fabio M. C, et al. Mobility management in third-generation all-IP networks. IEEE communications Magzine,2006,40(9):124-135.
    [52]Chen Y Y. Micro-mobility for next-generation wirless networks. Doctor degree dissertation, University of Hong Kong,2004.
    [53]H Y Bing, C He, L G Jiang.Performance Analysis of Vertical Handover in an UMTS-WLAN Integrated Network.The 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications,2003:187-191.
    [54]H. Wang, R. Katz, J. Giese. Policy-enabled handoffs across heterogeneous wireless networks. Second IEEE Workshop on Mobile Computing Systems and Applications, (Proceedings WMCSA'99),1999, pp.51-60.
    [55]W. Chen, J. Liu, H. Huango An adaptive scheme for vertical handoff in wireless overlay networks. Proceedings on the 10th International Conference on Parallel and Distributed Systems, (ICPADS 2004),2004, pp. 541-548.
    [56]F. Zhu, J. McNair. Optimizations for vertical handoff decision algorithms. IEEE Wireless Communications and Networking Conference, (WCNC 2004), vol.2,2004, pp.867-872.
    [57]A. Calvagna, G. Di Modica. A user-centric analysis of vertical handovers. Proceedings of the Second ACM International Workshop on Wireless Mobile Applications and Services on WLAN Hotspots,2004, pp.137-146.
    [58]O. Ormond, J. Murphy, G. Muntean. Utility-based intelligent network selection in beyond 3G systems. IEEE International Conference on Communications (ICC), vol.4,2006, pp.1831-1836.
    [59]E. Stevens-Navarro, V. Wong. Comparison between vertical handoff decision algorithms for heterogeneous wireless networks. Proceedings of IEEE Vehicular Technology Conference (VTC-Spring), vol.2,2006, pp. 947-951.
    [60]K. Pahlavan, P. Krishnamurthy, A. Hatami, et al. Handoff in hybrid mobile data networks. IEEE Personal Communications volumn 7 issue 2,2000, pp. 34-47.
    [61]J. Makela, M. Ylianttila, K. Pahlavan. Handoff decision in multiservice networks. The 11th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, (PIMRC 2000), vol.1,2000, pp.655-659.
    [62]P. Chan, Y. Hu, R. Sheriff. Implementation of fuzzy multiple objective decision making algorithm in a heterogeneous mobile environment. IEEE Wireless Communications and Networking Conference, (WCNC), vol.1, 2002, pp.332-336.
    [63]Q. Guo, J. Zhu, X. Xu. An adaptive multi-criteria vertical handoff decision algorithm for radio heterogeneous network. IEEE International Conference on Communications, (ICC), vol.4,2005, pp.2769-2773.
    [64]S. Woon, N. Golmie, Y.A. Sekercioglu. Effective Link Triggers to Improve Handover Performance. IEEE PIMRC06, pp.1-5,2006
    [65]Yoo Sang-Jo, Cypher David, Golmie Nada. LMS Predictive Link Triggering for Seamless Handovers in Heterogeneous Wireless Networks. IEEE Military Communications Conference, MILCOM.29-31 Oct.2007 Page(s):1-7.
    [66]Yoo Sang-Jo, Cypher, David, Golmie Nada. Timely Effective handoff Mechanism in heterogeneous wireless networks. Wireless Personal Communications,2008.11
    [67]Wu Shaohong, Zhang Xin, Zheng Ruiming, Yin Zhiwei, Fang Yinglong, Yang Dacheng. Handover Study Concerning Mobility in the Two-Hierarchy Network. IEEE 69th VTC Spring,26-29 April 2009, Page(s):1-5
    [68]Jung-Min Moon, Dong-Ho Cho. Efficient Handoff Algorithm for Inbound Mobility in Hierarchical Macro/Femto Cell Networks. IEEE Communications Letters, Vol.13, No.10, October 2009 Page(s):755-757.
    [69]N.K Hoven. On the feasibility of cognitive radio. Master of Science, University of California, Berkely,2005.
    [70]F. Capar, T.Weiss, I.Martoyo, et al. Analysis of Coexistence Strategies for Cellular and Wireless Local Area Networks. Vehicular Technology Conference, Oct.2003.
    [71]R.w. Broderson, A.Wolisz, D.Cabric, et al. Whitepaper, CORVUS:A cognitive radio approach for usage of virtual unlicensed spectrum.2004.
    [72]V. Chandrasekhar, J. G. Andrews, and A. Gatherer. Femtocell networks:a survey. IEEE Communications Magazine,2008,46:62-63
    [73]Kuek. S. S. Ordered Dynamic Channel Assignment Scheme with Reassignment in Highway Microcell. IEEE Trans. Vehicular Tech.1992. Volume 4. pp.271-27
    [74]戴美泰,吴志忠,邵世祥等.GSM移动通信网络优化.北京:人民邮电出版社,2003:369-438.
    [75]H. Claussen. Performance of macro-and co-channel femtocells in a hierarchical cell structure. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, September 3-7, Athens, Greece,2007:3-5
    [76]Poongup Lee, Taeyoung Lee, Jangkeun Jeong, et al. Interference management in LTE femtocell systems using Fractional Frequency Reuse. The 12th International Conference on Advanced Communication Technology (ICACT),7-10 Feb, Phoenix Park, Gangwon-Do, Korea,2010(2):1047-1051
    [77]Rong-Terng Juang, Pangan Ting, Hsin-Piao Lin, et al. Interference management of femtocell in macro-cellular networks. Wireless Telecommunications Symposium (WTS),21-23 April, Tampa, Florida, USA,2010:1-4
    [78]Chu Xiaoli, Wu Yuhua, Benmesbah Lamia, et al. Resource Allocation in Hybrid Macro/Femto Networks. IEEE Wireless Communications and Networking Conference Workshops (WCNCW),18-18 April, Sydney, Australia,2010:1-5
    [79]Andrews M., Capdevielle V, Feki A., et al. Autonomous Spectrum Sharing for Mixed LTE Femto and Macrocells Deployments. INFOCOM IEEE Conference on Computer Communications Workshops,15-19 March, San Diego CA, USA,2010:1-5
    [80]Himayat N., Talwar S., Rao A., et al. Interference management for 4G cellular standards. IEEE Communications Magazine, August 2010,48(8):86-92
    [81]鲁智.无线网络功率控制与垂直切换算法研究.哈尔滨工业大学博士学位论文,2008.
    [82]Nettleton R.W., Alavi H. Power control for a spread spectrum cellular mobile radio system. IEEE Vehicular Technology Conference,25-27 May 1983,33:242-246.
    [83]J.F. Chamberland, V.V. Veeravalli. Decentralized Dynamic power control for cellular CDMA system. IEEE Transcations on Wireless Communication, May 2003,2:549-559
    [84]Chen Bor Sen, Lee Bore Kuen, Chen Sheng Kai. Adaptive power control of cellular CDMA systems via the optimal predictive model. IEEE Transcations on Wireless Communications, July 2005,4(4):1914-1927
    [85]Farhad Meshkati, H.Vincent Poor, Stuart C.Schwartz. An energy efficient approach to power control and receiver design in wireless data network. IEEE Transactions on Communications, Nov.2005,53(11):1885-1894.
    [86]Jie Zhang, Guillaume de la Roche. Femtocells:Technologies and Deployment. Singapore:Wiley,2010:225-229.
    [87]S.Carlaw.Femtocells Europ:IPR and the potential effect on femtocell markets. ABI research,2008.
    [88]3GPP. Universal mobile telecommunications system (UMTS); fdd home node b (hnb) rf requirements.2009.
    [89]H. Claussen, L. T. W. Ho, L. G. Samuel. An overview of the femtocell concept. Bell Labs Technical Journal,2008,3(1):221-245.
    [90]Xiangfang Li, Lijun Qian, Deepak Kataria. Downlink Power Control in Co-Channel Macrocell Femtocell Overlay. Conference on Information Sciences and Systems (CISS), Baltimore, USA, Mar.18-20,2009,383-388.
    [91]Morita, M., Matsunaga Y., Hamabe K. Adaptive Power Level Setting of Femtocell Base Stations for Mitigating Interference with Macrocells. Vehicular Technology Conference Fall (VTC 2010-Fall), Ottawa, Canada, Sept.6-9,2010,1-5.
    [92]Madan Ritesh, Borran Jaber, Sampath Ashwin, et al. Cell Association and Interference Coordination in Heterogeneous LTE-A Cellular Networks. IEEE Journal on Selected Areas in Communications,2010,28(9):1479-1489.
    [93]Bouaziz A., Kelif J., Desbat J. Analytical evaluation of LTE femtocells capacity and indoor outdoor coexistence issues. Wireless Technology Conference (EuWIT), Paris, France, Sept.27-28,2010,205-208.
    [94]Juyeop Kim, Dong-Ho Cho. A Joint Power and Subchannel Allocation Scheme Maximizing System Capacity in Indoor Dense Mobile Communication Systems. IEEE Transactions on Vehicular Technology,2010,59(9):.4340-4353.
    [95]Cai Xue jun, Chen Ling, Sofia Rute, Wu Yanqi. Dynamic and User-Centric Network Selection in Heterogeneous Networks. IEEE International Performance, Computing, and Communications Conference, New Orleans, Louisiana, USA,11-13 April,2007. Washington DC:IEEE Computer Society Press,2007:538-544.
    [96]胡浩.异构无线网络中的若干关键技术研究.北京邮电大学博士学位论文,2009.
    [97]J. Noonan, P. Perry and J. Murphy. Client controlled network selection. Proc. fifth IEE International Conference on 3G Mobile Communication Technologies, Savoy Place, London, UK,2004. Luxembourg:IEE Press,2004:543-547.
    [98]Y. Chen, N. Yang, and C. Chang. A Utility Function-based Access Selection Method for Heterogeneous WCDMA and WLAN Networks. IEEE Personal, Indoor and Mobile Radio Communications, Athens, Greece,2007. Los Alamitos:IEEE Press, 2007:1-5.
    [99]H. Jia, Z. Zhang, P. Cheng, H. Hwa Chen and S. Li. Study on network selection for next-generation heterogeneous wireless networks. Proc. IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications, Helsinki, Finland, Sep.2006. Los Alamitos:IEEE Press,2006:1-5
    [100]Antoniou Josephina, Pitsillides Andreas.4G Converged Environment:Modeling Network Selection as a Game.16th 1ST Mobile and Wireless Communications Summit, Budapest, Hungary,2007. Los Alamitos:IEEE Press,2007:1-5.
    [101]Alkhawlani, Mohammed M.; Hussein, Aref A. Intelligent radio network selection for next generation networks. The 7th International Conference on Informatics and Systems (INFOS), Cairo, Egypt,2010. Los Alamitos:IEEE Press,2010:1-7.
    [102]Niyato, D., Hossain, E. Dynamics of Network Selection in Heterogeneous Wireless Networks:An Evolutionary Game Approach. IEEE Transactions on Vehicular Technology,2009,58(4):2008-2017.
    [103]Pervaiz. H., Bigham. J. Game Theoretical Formulation of Network Selection in Competing Wireless Networks:An Analytic Hierarchy Process Model. Third International Conference on Next Generation Mobile Applications, Services and Technologies, Cardiff, UK,2009. Los Alamitos:IEEE Press,2009:292-297.
    [104]Alvin E. Roth, Marilda A. Oliveira Sotomayor. Two-sided matching:a study in game-theoretic modeling and analysis. Cambridge:Cambridge University Press,1992.
    [105]Gabrielle Demange, Myrna Wooders. Group formation in economics:networks, clubs, and coalitions. Matthew O. Jackson. A Survey of Models of Network Formation: Stability and Efficiency. Cambridge:Cambridge University Press,2005:11-49
    [106]董保民,王运通,郭桂霞.合作博弈论.北京:中国市场出版社,2008
    [107]Frederic P Miller, Agnes F Vandome, John McBrewster. Analytic Hierarchy Process. Beau Bassin:VDM Publishing House Ltd,2009.
    [108]Phillips-Wren.G., Jain. L.C., Nakamatsu. K., Howlett R.J. Advances in Intelligent Decision Technologies. Heidelberg:Springer,2010.
    [109]袁尧,张玉成,董雯霞,郑如松,杨育波,石晶林.基于二分图匹配的多业务流网络选择机制.软件学报,2010,21(6):1378-1390.
    [110]G. Meszena, E. Kisdi, U. Dieckmann, S. A. H. Geritz, J. A. J. Metz, Evolutionary Optimisation Models and Matrix Games in the Unified Perspective of Adaptive Dynamics. Selection, Volume 2, Numbers 1-2, April 2002, Page(s):193-220.
    [111]Niyato, D.; Hossain, E. "A game theoretic analysis of service competition and pricing in heterogeneous wireless access networks", IEEE Transactions on Wireless Communications, Volume 7, Issue 12, Part 2, December 2008 Page(s):5150-5155
    [112]Jie Zhang, Guillaume de la Roche. Femtocells:Technologies and Deployment. Wiley, March 2010:179-222.
    [113]Calin D., Claussen H., Uzunalioglu H. On femto deployment architectures and macrocell offloading benefits in joint macro-femto deployments. IEEE Communications Magazine, Vol.48, issue 1, Page(s):26-32,2010
    [114]V. Chandrasekhar, J. G. Andrews, and A. Gatherer. Femtocell networks:a survey. IEEE Communications Magazine, Vol.46, pp.59-61,2008.
    [115]Mahmoud H.A., Guvenc I. A comparative study of different deployment modes for femtocell networks. IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications. Tokyo:IEEE press,2009. Page(s):1-5
    [116]H. Claussen. Performance of macro-and co-channel femtocells in a hierarchical cell structure. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications 2007. Athens:IEEE press,2007. Page(s):1-5.
    [117]Sgora A, Vergados D. Handoff prioritization and decision schemes in wireless cellular networks:a survey. IEEE Communications Surveys & Tutorials,2009,11(4):57-77
    [118]M. Halgamuge et al. Signal-based evaluation of handoff algorithms. IEEE Communications Letters, Vol.9, No.9, pp.790-792, Sept.2005
    [119]L. Hsin-Piao, J. Rong-Terng, and L. Ding-Bing. Validation of an improved location-based handover algorithm using GSM measurement data. IEEE Transactions on Mobile Computing, Vol.4, No.5, pp.530-536,2005.
    [120]M. K. Denko. A mobility management scheme for hybrid wired and wireless networks. 20th International Conference on Advanced Information Networking and Applications. Vienna:IEEE press,2006.Page(s):366-372.
    [121]方旭明,孙淑杰,何蓉.一种802.11s无线Mesh网络快速切换方案.西南交通大学学报,2010,45(5):725-731
    [122]3GPP, TR 25.820, RP-39 V2.0.0.3G Home NodeB Study Item Technical Report (Release 8). Puerto Vallarta:3GPP, Mar.2008
    [123]3GPP, R4-071617. HNB and HNB-Macro Propagation Models. Shanghai:3GPP, Oct 2007.
    [124]Zhang N, Jack M.H. Analysis of Handoff Algorithm Using Both Absolute and Relative Measurements. IEEE Transactions on Vehicular Technology, vol.45 No.1, Page(s):174-179,1996.
    [125]Itoh K.-I, Watanabe, S. Shih, J.-S. Sato, T. Performance of handoff algorithm based on distance and RSSI measurements. IEEE Transactions on Vehicular Technology, vol.51 No.6, Page(s):1460-1468,2002
    [126]Ahmed H.Zahran, Ben Liang and Aladdin Saleh. Signal threshold adaptation for vertical handoff in heterogeneous wireless networks. Springer, Mobile Networks and Applications, vol 11 No.4, Page(s):625-640,2006
    [127]M. Gudmundson. Correlation model for shadow fading in mobile radio systems. Electronic Letter,1991, vol.27, no.23, pp.2145-2146.
    [128]叶其孝,沈永欢.实用数学手册(第二版).北京:科学出版社,2006.
    [129]T.T.Soong. Fundamentals of probability and statistics for engineers. Chichester:John Wiley & Sons,2004.
    [130]Andrei D. Polyanin, Alexander V. Manzhirov. Handbook of Mathematics for Engineers and Scientists. Chapman & Hall/CRC, Boca Raton, US,2007:1031-1079
    [131]Tae-Hwan Kim, Tae-Jin Lee. Throughput Enhancement of Macro and Femto Networks By Frequency Reuse and Pilot Sensing. IEEE Performance, Computing and Communications Conference,7-9 Dec, Austin, Texas, USA,2008:390-394
    [132]Jie Zhang, Guillaume de la Roche. Femtocells:Technologies and Deployment. UK:Wiley, March 2010:145-177
    [133]Habeeb. A.A., Qadeer. M.A. Interference evaluation and MS controlled handoff technique for femtocell. First Asian Himalayas International Conference on Internet, Nov 3-5, Asia Himalayas region, Kathmandu, NEPAL,2009:1-5
    [134]Rahman. M., Yanikomeroglu. H. Enhancing cell-edge performance:a downlink dynamic interference avoidance scheme with inter-cell coordination. IEEE Transactions on Wireless Communications, April 2010,9(4):1414-1425
    [135]L. T. W. Ho, H. Claussen. Effects of user-deployed, cochannel femtocells on the call drop probability in a residential scenario. In Proceedings of the 18th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), September 3-7, Athens, Greece,2007:1-5
    [136]R. Y. Chang, Z. Tao, J. Zhang, et al. A Graph Approach to Dynamic Fractional Frequency Reuse (FFR) in Multi-Cell OFDMA Networks. In Proc. IEEE ICC, June 14-18, Dresden, Germany,2009:1-6
    [137]Jabbari. B., Pickholtz. R., Norton. M. Dynamic spectrum access and management. IEEE Wireless Communications, August 2010,17(4):6-15
    [138]Barbarossa S, Sardellitti S, Carfagna A, et al. Decentralized interference management in femtocells:A game-theoretic approach[C].//Cognitive Radio Oriented Wireless Networks & Communications, Cannes, France,9-11 June 2010:1-5.
    [139]Giupponi L, Ibars C. Distributed interference control in OFDMA-based femtocells[C]. //Personal Indoor and Mobile Radio Communications (PIMRC), Istanbul, Turkey, 26-30 Sept.2010:1201-1206.
    [140]Guruacharya S, Niyato D, Hossain E, et al. Hierarchical Competition in Femtocell-Based Cellular Networks[C].//IEEE Global Telecommunications Conference, MIAMI, FLORIDA, USA,6-10 Dec.2010:1-5.
    [141]Bennis M, Debbah M, Chair A. On spectrum sharing with underlaid femtocell networks[C].//Personal, Indoor and Mobile Radio Communications Workshops, Istanbul, Turkey,26-30 Sept.2010:185-190.
    [142]Simon Saunders, Stuart Carlaw, Andrea Giustina, et al. Femtocells:Opportunities and Challenges for Business and Technology. UK:Wiley, July 2009
    [143]John Nash. Non-Cooperative Games. Annals of Mathematics. September,1951, 54(2):286-295
    [144]Fudenberg, D. and J. Tirole.Game Theory, Cambridge, MA:MIT Press,1991
    [145]Myerson, R. B. Game theory:analysis of conflict, Cambridge, MA:Harvard University Press,1991
    [146]G. Meszena, E. Kisdi, U. Dieckmann, et al. Evolutionary Optimisation Models and Matrix Games in the Unified Perspective of Adaptive Dynamics. Selection, April 2002, 2(1):193-220
    [147]Haipeng Lei, Lei Zhang, Xin Zhang, et al. A Novel Multi-Cell OFDMA System Structure using Fractional Frequency Reuse.IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications,3-7 Sept, Athens, Greece, 2007:1-5
    [148]Salem, M., Adinoyi, A., Rahman, M, Yanikomeroglu, H., Falconer, D., Young-Doo Kim, Eungsun Kim, Yoon-Chae Cheong. An Overview of Radio Resource Management in Relay-Enhanced OFDMA-Based Networks. IEEE Communications Surveys & Tutorials, Third Quarter 2010,12(3):422-438.
    [149]Mokari, N., Javan, M.R., Navaie, K.. Cross-Layer Resource Allocation in OFDMA Systems for Heterogeneous Traffic with Imperfect CSI. IEEE Transactions on Vehicular Technology, Feb.2010,59(2):1011-1017.
    [150]Femto Forum. Interference Management in OFDMA Femtocells, [March 2010]. http://www.femtoforum.org/femto/pdfsO 1.php
    [151]V.H.Stackelberg. Marketform und Gleichgewicht. Oxford, University Press,1934.
    [152]K. W. Shum, K.-K. Leung, C. W. Sung. Convergence of iterative waterfilling algorithm for gaussian interference channels. IEEE J. Sel.Areas Commun., vol.25, no. 6, pp.1091-1100, Aug.2007.
    [153]K. Goebel and W. Kirk, Topics in Metric Fixed Point Theory. Cambridge University Press,1990.
    [154]Next Generation Mobile Networks. NGMN use cases related to self organizing network, overall description. A Deliverable by the NGMN Alliance,2007.
    [155]H. Claussen, L. T. W. Ho, L. G. Samuel. Self-optimization coverage for femtocell deployments. Wireless Telecommunications Symposium, California, USA, Apr.24-26, 2008,278-285.
    [156]Lopez-Perez D., Ladanyi A., Juttner A., et al. OFDMA Femtocells:Intracell Handover for Interference and Handover Mitigation in Two-Tier Networks. Wireless Communications and Networking Conference (WCNC), Sydney, Australia, Apr.18-21, 2010,1-6.
    [157]Simeone O., Erkip E., Shamai Shitz S. Robust Transmission and Interference Management for Femtocells with Unreliable Network Access. IEEE Journal on Selected Areas in Communications,2010,28(9):1469-1478.
    [158]Namgeol O., Sang-wook Han, Hoon Kim. System Capacity and Coverage Analysis of Femtocell Networks. Wireless Communications and Networking Conference (WCNC), Sydney, Australia, Apr.18-21,2010,1-5.
    [159]G6ra J., Pedersen K.I., Szufarska A., et al. Cell-Specific Uplink Power Control for Heterogeneous Networks in LTE. Vehicular Technology Conference Fall (VTC 2010-Fall), Ottawa, Canada, Sept.6-9,2010,1-5.
    [160]3GPP. TS 25.104 V9.5.0, Base Station (BS) radio transmission and reception (FDD). 2010.
    [161]C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal,1948,27:379-423.
    [162]R. T. Rockafellar. LAGRANGE MULTIPLIERS AND OPTIMALITY. SIAM Review, 1993,35(2):183-238.
    [163]Kuhn H. W., Tucker A. W. Nonlinear programming. Proceedings of 2nd Berkeley Symposium. Berkeley, USA, Jul.31-Aug.12,1950,481-492.