煤矿深部岩石动态力学特性试验研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭是我国的主体能源,随着需求量增加和开采强度不断加大,浅部资源逐渐减少和枯竭,煤矿进入深部开采将是必然趋势。深部岩体处于“三高”的复杂力学环境,采掘扰动时所表现出的力学响应特征与浅部岩体明显不同。随着煤矿开拓向深部延深,安全隐患随之增加,特别是近年来进入深部开采后的恶性事故屡屡发生,对深部资源的安全高效开采造成了巨大的威胁。因此,要保证我国煤炭后备能源供给,开展煤矿深部开采基础理论研究迫在眉睫。
     本文以两淮矿区深部开采为工程背景,确定煤矿巷道开挖工程中最常见的砂岩为试验研究对象。岩样分别采自祁东煤矿、卧龙湖煤矿和朱集西煤矿的-466m、-527m和-962m不同赋存深度。测试了3种岩样的基本物理性质,并进行电镜扫描(SEM)和X射线衍射(XRD)试验;利用RMT岩石力学试验系统进行静态力学试验,重点是利用直锥变截面分离式Hopkinson压杆(SHPB)试验装置对岩石进行动态力学试验研究。主要研究内容和成果如下:
     (1)设计加工了一种用于短圆柱体岩石试件的打磨夹具,以保证试件端面不平行度和轴向偏差满足试验要求。利用RMT岩石力学实验系统进行了静态条件下岩石的劈裂拉伸试验和单轴压缩试验等,分析了岩石试件的破坏形态和应力-应变曲线特征。
     (2)分析了一维弹性应力波在SHPB试验中传播过程,将传统的矩形波、梯形波和坡形波等加载波形,统一表达为具有不同前沿升时的梯形波,推导出具有任意前沿升时的梯形波入射加载情况下,试件内沿加载方向应力分布的相关计算公式,讨论分析了试件动态应力平衡时间和应力均匀性的影响因素和相关规律。
     (3)研究了煤矿砂岩在冲击载荷作用下单轴压缩力学性能,计算分析了不同种类岩石试件在光滑的试验入射波和其升时相同的理论梯形入射波加载情况下试件应力平衡时间和应力均匀性。发现采用变截面入射杆进行加载,能够实现岩石试件在应力峰值之前达到应力平衡,满足应力均匀性假定要求。
     (4)研究了高应变率下煤矿砂岩的动态拉伸性能,采取调整冲击气压的方法实现不同加载速率,以实施不同加载速率的动态劈裂拉伸试验,分别采用0.3,0.6,0.9,1.2MPa等4种冲击气压对岩石试件沿径向进行加载,测试了岩石试件的动态拉伸应力和应变率。分析了试验实测波形和应变率效应,得出高应变率下煤矿砂岩试件抗拉强度和应变率特性。
     (5)研究了岩石试件SHPB试验过程中的能量构成和耗散特征,尝试从能量角度出发,对岩石试件动态破坏形态、应变率效应和动态拉伸应力进行能耗分析。发现岩石试件的吸收能量绝大部分耗散于损伤演化和变形破坏,可以较好地反映岩石试件在冲击载荷作用下抗拉性能变化。
     (6)进行了岩石碎块筛分试验,筛孔尺寸拟选择0、0.15、0.3、0.6、1.18、2.36、4.75、9.5、13.2、16、19、26.5、31.5、37mm共14个等级。对冲击荷载作用下岩石试件的破碎块度和能量分析,建立岩石破碎块度和试件吸收能量之间的关系。根据岩石破碎的自相似性,运用分形理论对岩石破碎块度的分形特征进行研究。
     (7)结合煤矿不同赋存深度硬岩巷道特性,采用中深孔不同阶微差掏槽爆破和光面爆破试验,优化爆破参数设计。通过现场试验和应用表明,炮眼利用率超过90%,平均单进提高20%以上,爆破效果较好。
Coal is the main energy in China. As coal demand and mining intensity increasing, resources in shallow decrease gradually and will be exhaustion someday, then deep mining will be the inevitable trend in coalmine. For the complex "three highs" mechanical environment deep rock mass in, its mechanical responses for excavation disturbance are obviously different with shallow rock mass. When coalmine tends to deep, potential safety hazards increase which becomes a great threat to safe and efficient mining of deep resource, especially fatal accidents occurred in recent years when first entering deep mining. Thus, in order to ensure supply of reserve coal energy in China, it is extremely urgent to carry out basic theory research of deep mining in coalmine.
     Based on deep mining in Huainan and Huaibei coalmines, sandstone, the most common rock in coalmine roadway, was selected to research. Rock specimens were collected from different covered depths in various coalmines, e.g. Qidong coalmine(-466m), Wolonghu coalmine(-527m) and Zhujixi coalmine(-962m). Basic physical properties were investigated, and scanning electron microscope test (SEM) and X-ray diffraction (XRD) test were also conducted. RMT rock mechanics test system was also adopted to carry out static mechanical tests. The key issue is using variable cross-secion spilt Hopkinson pressure bar (SHPB) apparatus researching dynamic mechanical properitie. Main research contents and results are as follows:
     (1) Design and manufacture a fixture in grinding short cylinder rock specimens to ensure its parallelism and axial alignment tolerance. Splitting tensile test and uniaxial compression test were conducted by RMT rock mechanics test system to analyze failure modes and characteristics of stress-strain curve.
     (2) Propagation of elastic stress wave in split Hopkinson pressure bar (SHPB) test was analyzed. And Rectangular wave, trapezoidal wave, and sloping wave were expressed as trapezoidal wave with different rising times to derivate related calculation formulas for stress distribution along loading direction. Several factors affecting time for stress equilibrium and stress uniformity were studied.
     (3) Uniaxial compressive mechanical performance of coalmine sandstone under impact loads was studied, and time for stress equilibrium and stress uniformity for three kinds of sandstone were also investigated by smoothed test incident wave and theoretical trapezoidal wave with same rising time. Stress equilibrium could achieved before stress peak by variable cross-section incident bar which met conditions in assumption of stress uniformity.
     (4) Different loading rates were implemented by adjusting impact pressure to investigate the dynamic tensile performance of coalmine sandstone under high strain rate. Four impact pressure,0.3,0.6,0.9and1.2MPa, were loaded in radial direction. Both actual measured waves and strain rate effect were analyzed and tensile stress and strain rate of sandstone under high strain rate were obtained.
     (5) Energy composition and energy dissipation characteristics of sandstone in SHPB test were investigated. Failure modes, strain rate effect and dynamic tensile stress were analyzed from energy point. And it is found that energy absorbed by rock specimens almost dissipated in damage evolution and deformation failure, and tensile performance of sandstone under dynamic loads was also reflected.
     (6)14sizes of sieves,0,0.15,0.3,0.6,1.18,2.36,4.75,9.5,13.2,16,19,26.5,31.5and37mm were employed to conduct broken fragments test. Relationship between broken size and absorbed energy was established by broken fragments analyses and energy analyses. According to the self-similarity of broken rock, fractal characteristics of broken fragments were studied by fractal theory.
     (7) Combined with characteristics of hard rock in different depth coalmine roadway, parameters in blasting design were optimized by medium-length hole differential blasting in different orders and smooth blasting test. By filed test and engineering application, utilization rate of perforation was more than90%, and average footage per month is improved over20%. So the blasting effect is good.
引文
[1]国务院.国家中长期科学和技术发展规划纲要(2006-2020年)[EB/OL].国发[2005]44号,2006-02-06.
    [2]国家发展和改革委员会.煤炭工业发展“十二五”规划[EB/OL].发改能源[2012]640号,2012-03-18, [2012-03-18] http://zfxxgk.nea.gov.cn/auto85/201203/t20120322_1456.htm.
    [3]中国煤炭地质总局.中国煤炭资源预测与评价[M].北京:科学出版社,1999.
    [4]何满潮,钱七虎,等.深部岩体力学基础[M].北京:科学出版社,2010.
    [5]袁亮.煤与瓦斯共采:领跑煤炭科学开采[N].科学时报(B1),2011-2-21.
    [6]古德生,李夕兵.有色金属深井采矿研究现状与科学前沿[J].矿业研究与开发,2003,23(2):1-5.
    [7]王军强.金矿岩爆危险程度评估与防治措施——以崟鑫、枪马、鸿鑫金矿为例[J].黄金,2007,28(6):24-28.
    [8]何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2813.
    [9]周宏伟,谢和平,左建平.深部高地应力下岩石力学行为研究进展[J].力学进展,2005,35(1):91-99.
    [10]贺永年,韩立军,邵鹏,等.深部巷道稳定的若干岩石力学问题[J].中国矿业大学学报,2006,35(3):288-295.
    [11]谢和平.深部高应力下的资源开采——现状、基础科学问题与展望[C].香山第175次科学会议,北京:中国环境科学出版社,2002,179-191.
    [12]钱七虎.非线性岩石力学的新进展——深部岩体力学的若干问题[A]//第八次全国岩石力学与工程学术大会论文集[C].北京:科学出版社,2004:10-17.
    [13]钱七虎.中国岩石工程技术的新进展[J].中国工程科学,2010,12(8):37-48.
    [14]王继峰.岩石爆破技术的现状与发展[J].煤矿爆破,2005,(3):25-28.
    [15]戴俊.爆破工程[M].北京:机械工业出版社,2008.
    [16]Sellers E J, Klerck P. Modeling of the effect of discontinuities on the extent of the fracture zone surrounding deep tunnels[J]. Tunneling and Underground Space Technology,2000,15(4): 463-469.
    [17]黄理兴.岩石动力学研究成就与趋势[J].岩土力学,2011,32(10):2889-2900.
    [18]谢和平.深部大型地下工程开采与利用中的几个关键岩石力学问题[M].北京:中国环境 科学出版社,2002.
    [19]宫凤强.动静组合加载下岩石力学特性和动态强度准则的试验研究[D].长沙:中南大学,2010.
    [20]殷志强.高应力储能岩体动力扰动破裂特征研究[D].长沙:中南大学,2012.
    [21]何满潮,钱七虎.深部岩体力学研究进展[A]//第九届全国岩石力学与工程学术大会论文集[C].北京:科学出版社,2006:49-62.
    [22]何满潮.深部的概念体系及工程评价指标[J].岩石力学与工程学报,2005,24(16):2854-2858.
    [23]钱七虎.深部岩体工程响应的特征科学现象及“深部”的界定[J].东华理工学院学报,2004,27(1):1-5.
    [24]陈炎光,陈冀飞.中国煤矿开拓系统[M].徐州:中国矿业大学出版社,1996.
    [25]何满潮,谢和平,彭苏萍,等.深部开采岩体力学及工程灾害控制研究[J].煤矿支护,2007,(3):1-14.
    [26]钱七虎,王明洋.岩土中的冲击爆炸效应[M].北京,国防工业出版社,2010.
    [27]Brown E T, Hoek E. Trends in relationships between measured rock in situ stress and depth[J]. Int J Rock Mech Min Sic Geomech Abstr,1978,15:211-215.
    [28]Paterson M S. Experimental Rock Deformation the Brittle Field[M]. Berlin:Springer,1978.
    [29]Kannan, T vom. Festigkeitsversuche unter allseitigem Druck[J]. Zeitd Ver Dev, tscher Ing, 1911,55:1749-1757.
    [30]Heard H C. Trausition from brittle fracture to ductile flow in Solenhofen limestone as a function of temperature conlining pressure and interstitial fluid pressure[A]//Griggs D, Handln Jeds[C]. Rock Deformation,1960,193-226.
    [31]SINGH B, GOEL R K, MEHROTRA V K, et al. Etfect of intermediate principal stress on strength of anisotropic rock mass[J]. Tunnelling and Underground Space Technology,1998, 13(1):71-79.
    [32]Kwasniewski M. Laws of brittle failure and of B-D transitionin sandstone[A]//Maury V, Fourmaintrax Deds Rock atGreat Depth[C]. Rotterdam:A A, Balkema,1989.45-58.
    [33]Kwasniewski M. Behavior of sandstone at high pressure[A]//Mining Systems Adjested to High Rock Pressure Conditions[C]. Rotterdam:A A, Balkema,1985,317-332.
    [34]Meissner R, Kusznir N J. Crystal viscosity and the reflectivity of the lower crust[J]. Annuals Geophysics,1987,58:365-373.
    [35]Ranalli G, Murphy D C. Rheological stratification of the lithosphere[J]. Tectonophysics,1987, 132:281-295.
    [36]Sibson R H. Power dissipation and stress levels onfaults in the upper crust[J]. J Geophys Res, 1980,85:6239-6247.
    [37]Pusch R. Mechanisms and consequences of creep in crystalline rock[A]//Comprehensive Rock Engineering[C]. Pergamon Press,1993,227-241.
    [38]Malan D F. Simulation of the time-dependent behavior of excavations in hard rock[J]. Rock Mechanics and Rock Engineering,2002,35(4):225-254.
    [39]Jing L. A review of techniques, advances and outstanding issues in numerical modeling for rock mechanics and rock engineering[J]. International Journal of rock mechanics&mining sciences,2003,40:283-353.
    [40]高大钊.岩土工程的回顾与展望[M].北京:人民交通出版社,2001.
    [41]唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1993.
    [42]Marcak H. The structure of seismic events sequences obtained from Polish deep mines[A]// Rockburst and Seismicity in Mines[C]. Rotterdam:A A Balkema,1997,107-109.
    [43]谢和平,高峰.岩石类材料损伤演化的分形特征[J].岩石力学与工程学报,1991,10(1):12-16.
    [44]何满潮,吕晓俭,景海河.深部工程围岩特性及非线性动态力学设计理念[J].岩石力学与工程学报,2002,21(8):1215-1224.
    [45]王明洋,周泽平,钱七虎.深部岩体的构造和变形与破坏问题[J].岩石力学与工程学报,2006,25(3):448-455.
    [46]沈明荣,陈建峰.岩体力学[M].上海:同济大学出版社,2006.
    [47]Grady D E, Kipp M E. Continuum modeling of explosive fracture in oil shale[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1980,17(3): 147-157.
    [48]Cai M, Kaiser P K, Suorineni F, et al. A study on the dynamic behavior of the Meuse/Haute-Marne argillite[J]. Physics and Chemistry of the Earth,2007,32(8-14): 907-916.
    [49]Kolsky H. An investigation of the mechanical properties of materials at very high rates of loading[J]. Proceedings of the Physical Society, Section B,1949,62(11):676-700.
    [50]马芹永.冻土在冲击荷载作用下动态力学行为的研究[D].北京:北京科技大学,2005.
    [51]Hopkinson B. Method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets[J]. Philos Trans Roy Soc,1914,213(31):437-456.
    [52]Davies R M. A critical study of the Hopkinson Pressure Bar[A]//Philosophical Transactions of the Royal Society of London[C]. Series A, Mathematical and Physical Sciences,1948, 240(821):375-157.
    [53]姜锡权,胡时胜.霍普金森杆实验技术发展综述[A]//Hopkinson杆实验技术研讨会会议论文集[C].黄山:2007.
    [54]Ravichandran G, Subhash G. Critical Appraisal of Limiting Strain Rates for Compression Testing of Ceramics in a Split Hopkinson Pressure Bar[J]. Journal of the American Ceramic Society,1994,77(1):263-267.
    [55]李志武,许金余,白二雷,等.高温后混凝土SHPB试验研究[J].振动与冲击,2012,31(8):143-147.
    [56]刘剑飞,胡时胜,王道荣.用于脆性材料的Hopkinson压杆动态实验新方法[J].实验力学,2001,16(3):283-290.
    [57]李夕兵,古德生.岩石冲击动力学[M].长沙:中南工业大学出版社,1994.
    [58]MA Q Y. Experimental analysis of dynamic mechanical properties for artificially frozen clay by the split Hopkinson pressure bar[J]. Journal of Applied Mechanics and Technical Physics, 2010,51(3):448-452.
    [59]Harding J, Wood E D, Campbell J D. Tensile testing of materials at impact rate of strain [J]. Journal of Mechanical Engineering Science,1960,2:88-96.
    [60]Harding J, Welsh L M. A tensile testing technique for fibre-reinforced composites at impact rates of strain[J] Journal of Materials Science,1983,18:1810-1826.
    [61]Baker W E, Yew C H. Strain-rate effects in the propagation of torsional plastic wave[J]. Journal of Applied Mechanics transactions of the ASME,1996,33:917-923.
    [62]Kumar A. The effect of stress rate and temperature on the strength of basalt and granite[J]. Geophysics,1968,33(3):501-510.
    [63]宋顺成,胡时胜.HOPKINSON冲击拉杆的改进与应用[J].爆炸与冲击,1992,12(1):301-306.
    [64]胡时胜,王道荣.冲击载荷作用下混凝土材料动态本构关系[J].爆炸与冲击,2002,22(3):242-246.
    [65]胡时胜.国内Hopkinson压杆实验技术概况(代序)[A]//Hopkinson杆实验技术研讨会会议论文集[C].黄山:2007:1-2.
    [66]赵隆茂;赵永刚;杨桂通.伴随Hopkinson杆实验技术研究二十五年[A]//Hopkinson杆实验技术研讨会会议论文集[C].黄山:2007:11-16.
    [67]李夕兵,宫凤强,ZHAO Jian,等.一维动静组合加载下岩石冲击破坏试验研究[J].岩石力学与工程学报,2010,29(2):251-260.
    [68]满轲,周宏伟.不同赋存深度岩石的动态断裂韧性与拉伸强度研究[J].岩石力学与工程学报,2010,29(8):1657-1663.
    [69]洪亮,李夕兵,马春德,等.岩石动态强度及其应变率灵敏性的尺寸效应研究[J].岩石力学与工程学报,2008,27(3):526-533.
    [70]席道瑛,郑永来,张 涛.大理岩和砂岩动态本构的实验研究[J].振动与冲击,1995,15(3):259-265.
    [71]卢芳云.软材料的SHPB实验设计[J].爆炸与冲击,2002,22(1):15-19.
    [72]王鲁明,赵坚,华安增,等.脆性材料SHPB实验技术的研究[J].岩石力学与工程学报,2006,22(11):1798-1802.
    [73]宋博,宋力,胡时胜.SHPB实验中数据处理的解耦方法[J].爆炸与冲击,1998,18(2):167-171.
    [74]王从约,夏源明.傅立叶弥散分析在冲击拉伸和冲击压缩试验中的应用[J].爆炸与冲击,1998,18(3):214-219.
    [75]郑坚,孙成友.关于材料的应变率敏感效应[J].力学与实践,1996,8(3):27-29.
    [76]李英雷,胡时胜,彭建祥,等.霍普金森压杆试验中的磁场干扰[J].爆炸与冲击,2002,22(3):271-276.
    [77]巫绪涛,胡时胜,张芳荣.两点应变测量法在SHPB测试技术上的运用[J].爆炸与冲击,2003,23(4):309-312.
    [78]刘孝敏,胡时胜.应力脉冲在变截面SHPB锥杆中的传播特性[J].爆炸与冲击,2000,20(2):110-114.
    [79]刘孝敏,胡时胜,陈智.粘弹性Hopkisnon压杆中波的衰减和弥散[J].固体力学学报,2002,23(1):81-86.
    [80]陶俊林.SHPB实验技术若干问题研究[D].绵阳:中国工程物理研究院2005.
    [81]钱七虎,李树忱.深部岩体工程围岩分区破裂化现象研究综述[J].岩石力学与工程学报,2008,27(6):1278-1284.
    [82]李夕兵,古德生.深井坚硬矿岩开采中高应力的灾害控制与碎裂诱变[C].香山第175次科学会议,北京:中国环境科学出版社,2002,101-108.
    [83]古德生,李夕兵.现代金属矿开采科学技术[M].北京:冶金工业出版社,2006.
    [84]陈颐,黄庭芳,刘恩儒.岩石物理学[M].合肥:中国科技大学出版社,2009.
    [85]Fairhurst C E, Hudson J A. Draft ISRM suggested method for the eomplete stress-strain curve for intact rock in uniaxial compression[J]. Intenlational Journal of Roek Meehanies and Mining Seiences,1999,36(3):279-289.
    [86]平 琦,马芹永,袁文华,等.一种用于短圆柱体岩石试件端面打磨的夹具[P].CN201220464424.X.安徽理工大学.2013-03-13.
    [87]中华人民共和国国家标准编写组.GB/T 23561-2010,煤和岩石物理力学性质测定方法[S].北京:中国标准出版社,2010.
    [88]王礼立.应力波基础[M].2版.北京:国防工业出版社,2010.
    [89]胡时胜.Hopkinson压杆实验技术的应用进展[J].实验力学,2005,20(4):589-594.
    [90]代仁平,郭学彬,宫全美,等.隧道围岩爆破损伤防护的霍普金森压杆试验[J].岩土力学,2011,32(1):77-83.
    [91]Davies E D H, Hunter S C. The dynamic compression testing of solids by the method of the split Hopkinson pressure bar[J]. Journal of the Mechanics and Physics of Solids,1963,11(3): 155-179.
    [92]平琦,马芹永,张经双,等.高应变率下砂岩动态拉伸性能SHPB试验与分析[J].岩石力学与工程学报,2012,31(S1):3363-3369.
    [93]苏碧军,王启智.Hopkinson压杆对准脆性材料的动态力学实验研究[J].岩土力学,2003,24(S):580-584.
    [94]朱珏,胡时胜,王礼立.率相关混凝土类材料ΦSHPB试验的若干问题[J].工程力学,2007,24(1):78-87.
    [95]李为民,许金余,沈刘军,等.100mm SHPB应力均匀及恒应变率加载试验技术研究[J].振动与冲击,2008,27(2):129-132.
    [96]徐明利,张若棋,张光莹.SHPB实验中试件内早期应力平衡分析[J].爆炸与冲击,2003,23(3):235-240.
    [97]王宝珍,胡时胜.肌肉类粘弹性超软材料SHPB实验的应力应变均匀性分析[J].实验力学,2011,26(4):377-382.
    [98]朱珏,胡时胜,王礼立.SHPB试验中粘弹性材料的应力均匀性分析[J].爆炸与冲击,2006,26(4):315-322.
    [99]毛勇建,李玉龙.SHPB试验中试件的轴向应力均匀性[J].爆炸与冲击,2008,28(9):448-454.
    [100]宋力,胡时胜.SHPB测试中的均匀性问题及恒应变率[J].爆炸与冲击,2005,25(3):207-216.
    [101]王礼立,王永刚.应力波在用SHPB研究材料动态本构特性中的重要作用[J].爆炸与冲 击,2005,25(1):17-25.
    [102]YANG L M, SHIM V P W. An analysis of stress uniformity in split Hopkinson bar test specimens[J]. International Journal of Impact Engineering,2005,31(2):129-150.
    [103]平琦,马芹永,袁璞.SHPB试验岩石试件应力平衡时间预估分析[J].振动与冲击,2013,32(12):55-60.
    [104]周风华,王礼立,胡时胜.高聚物SHPB试验中试件早期应力不均匀性的影响[J].实验力学,1992,7(1):23-29.
    [105]Frew D J, Forrestal M J, Chen W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar[J]. Experimental Mechanics,2002,42(1):93-106.
    [106]陶俊林,田常津,陈裕泽,等.5HPB系统试件恒应变率加载实验方法研究[J].爆炸与冲击,2004,24(5):413-148.
    [107]周子龙,李夕兵,岩小明.岩石SHPB测试中试样恒应变率变形的加载条件[J].岩石力学与工程学报,2009,28(12):2445-2452.
    [108]于亚伦.高应变率下的岩石动载特性[J].北京科技大学学报,1992,14(2):128-134.
    [109]曹安业,范 军,牟宗龙,等.矿震动载对围岩的冲击破坏效应明.煤炭学报,2010,35(12):2006-2010.
    [110]王明洋,范鹏贤,李文培.岩石的劈裂和卸载破坏机制[J].岩石力学与工程学报,2010,29(2):234-241.
    [111]尹土兵,李夕兵,王斌,等.高温后砂岩动态压缩条件下力学特性研究[J].岩土工程学报,2011,33(5):777-784.
    [112]王斌,李夕兵,尹土兵,等.饱水砂岩动态强度的SHPB试验研究[J].岩石力学与工程学报,2010,29(5):1003-1009.
    [113]刘石,许金余,刘军忠,等.绢云母石英片岩和砂岩动态破坏过程的能量分析[J].地下空间与工程学报,2011,7(6):1181-1185.
    [114]王泽东,许金余,吕晓聪,等.围压作用下岩石冲击破坏与变形特性试验研究[J].地下空间与工程学报,2011,7(2):311-316.
    [115]尹土兵,李夕兵,周子龙,等.粉砂岩高温后动态力学特性研究[J].地下空间与工程学报,2007,3(6):1060-1063.
    [116]王启智,戴峰,贾学明.对“平台圆盘劈裂的理论和试验”一文的回复[J].岩石力学与工程学报,2004,23(1):175-178.
    [117]Samanta S K. Dynamic deformation of aluminium and copper at elevated temperatures[J]. Journal of the Mechanics and Physics of Solids,1971,19(3):117-122.
    [118]Malinowski J Z, Klepaczko J R. A unified analytic and numerical approach to specimen behaviour in the Split Hopkinson pressure bar[J].International Journal of Mechanical Sciences, 1986,28(6):381-391.
    [119]陶俊林.SHPB实验中几个问题的讨论[J].西安科技大学学报,2009,24(3):27-35.
    [120]翟越.岩石类材料的动态性能研究[D].西安:长安大学,2008.
    [121]洪 亮.冲击荷载下岩石强度及破碎能耗特征的尺寸效应研究[D].长沙:中南大学,2008.
    [122]许金余,范建设,吕晓聪.围压条件下岩石的动态力学特性[M].西安:西北工业大学出版社,2012:19-33.
    [123]宫凤强,李夕兵,刘希灵.三轴SHPB加载下砂岩力学特性及破坏模式试验研究[J].振动与冲击,2012,31(8):29-32.
    [124]赵习金,卢芳云,王 悟,等.入射波整形技术的实验和理论研究[J].高压物理学报,2004,18(3):231-236.
    [125]董钢,巫绪涛,杨伯源,等.直锥变截面Hopkinson压杆实验的数值模拟[J].合肥工业大学学报(自然科学版),2005,28(7):795-798.
    [126]薛志刚,胡时胜,等.水泥砂浆在主动围压下的动态力学性能[J].爆炸与冲击,2008,28(6):561-566.
    [127]施绍裘,王礼立.材料在准一维应变下被动围压的SHPB试验方法[J].实验力学,2000,15(4):377-378
    [128]吴家龙.弹性力学[M].北京:高等教育出版社,2001.
    [129]蔡美峰.岩石力学与工程[M].北京:科学出版社,2002.
    [130]翟 越,马国伟,赵均海,等.花岗岩和混凝土在单轴冲击压缩荷载下的动态性能比较[J].岩石力学与工程学报,2007,26(4):762-768.
    [131]刘世奇,李海波,李俊如.轴向拉伸情况下岩石的动态力学特性试验研究[J].岩土工程学报,2007,29(12):1904-1907.
    [132]平琦,马芹永,袁璞.岩石试件SHPB劈裂拉伸试验中能量耗散分析[J].采矿与安全工程学报,2013,30(3):401-407.
    [133]邓华锋,李建林,朱敏,等.圆盘厚径比对岩石劈裂抗拉强度影响的试验研究[J].岩石力学与工程学报,2012,31(4):792-798.
    [134]邹洋.岩石动静组合加载巴西盘劈裂试验研究[D].长沙:中南大学,2011.
    [135]李伟,谢和平,王启智.大理岩动态劈裂拉伸的SHPB实验研究[J].爆炸与冲击,2006,26(1):12-20.
    [136]翟 越,赵均海,门玉明.花岗岩和混凝土动态拉伸性能研究[J].西安建筑科技大学学报(自然科学版),2009,41(3):334-339.
    [137]宋小林,谢和平,王启智.大理岩动态劈裂试样的破坏应变[J].岩石力学与工程学报,2005,24(16):2953-2959.
    [138]宫凤强,李夕兵,ZHAO J.巴西圆盘劈裂试验中拉伸模量的解析算法[J].岩石力学与工程学报,2010,29(5):881-891.
    [139]International Society for Rock Mechanics(ISRM). Suggested methods for determining tensile strength of rock materials[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1978,15(1):99-103.
    [140]中华人民共和国行业标准编写组.MT 47-87煤和岩石单向抗拉强度测定方法[S].北京:煤炭工业出版社,1987.
    [141]中华人民共和国国家标准编写组.GB/T 50266—99工程岩体试验方法标准[S].北京:中国计划出版社,1999.
    [142]Gomeza J T, Shukla A, Sharmab A. Static and dynamic behavior of concrete and granite in tension with damage[J]. Theoretical and Applied Fracture Mechanics,2001,36(1):37-49
    [143]Rodriguez J, Navarre C, Sanchez-Galvez V. An Alternative to Determine the Dynamic Tensile Strength of Ceramic Materials[J]. Journal de physique IV,1994,4(C8):101-180.
    [144]赵忠虎,谢和平.岩石变形破坏过程中的能量传递和耗散研究[J].四川大学学报(工程科学版),2008,40(2):26-31.
    [145]谢和平,彭瑞东,鞠杨.岩石变形破坏过程中的能量耗散分析[J].岩石力学与工程学报,2004,23(21):3565-3570.
    [146]高文学,刘运通.冲击载荷作用下岩石损伤的能量耗散[J].岩石力学与工程学报,2003,22(11):1777-1780.
    [147]平琦.砂岩动静态拉伸力学性能试验与对比分析[J].地下空间与工程学报,2013,8(2):246-252,290.
    [148]谢和平,鞠杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报,2005,24(17):3003-3010.
    [149]黎立云,徐志强,谢和平,等.不同冲击速度下岩石破坏能量规律的实验研究[J].煤炭学报,2011,36(12):2007-2011.
    [150]彭瑞东,谢和平,鞠杨.砂岩拉伸过程中的能量耗散与损伤演化分析[J].岩石力学与工程学报,2007,26(12):2526-2531.
    [151]陈旭光,张强勇.岩石剪切破坏过程的能量耗散和释放研究[J].采矿与安全工程学报, 2012,27(2):179-184.
    [152]巫绪涛,代仁强,陈德兴,等.钢纤维混凝土动态劈裂试验的能量耗散分析[J].应用力学学报,2009,26(1):151-154.
    [153]Zhang Z X, Jiang L G, Lindqvist P A, et al. Effects of loading rate on rock fracture:fracture characteristics and energy partitioning[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(5):745-762.
    [154]XIE Heping. Fractals in rock mechanics[M]. Netherlands:AA Balkema Publishers,1993.
    [155]谢和平,高峰,周宏伟,等.岩石断裂和破碎的分形研究[J].防灾减灾工程学报,2003,3(4):1-9.
    [156]Grady D E, Kipp M E. Geometric statistics and dynamic fragmentation[J]. Journal of Applied Physics,1985,58(3):1210-1222.
    [157]何满潮,杨国兴,苗金丽,等.岩爆实验碎屑分类及其研究方法[J].岩石力学与工程学报,2009,28(8):1521-1529.
    [158]中华人民共和国国家标准编写组.GB/T 14685--2011,建设用卵石、碎石[S].北京:中国标准出版社,2011.
    [159]中华人民共和国国家标准编写组.GB/T 14684-2011,建筑用砂[S].北京:中国标准出版社,2011.
    [160]袁文华.煤矿硬岩巷道不同阶微差掏槽爆破试验与应用研究[D].淮南:安徽理工大学,2010.
    [161]戴俊.岩石动力学特性与爆破理论[M].1版.北京:冶金工业出版社,2002.
    [162]平琦.水库坝区竖井爆破技术与振动测试分析[D].淮南:安徽理工大学,2009.
    [163]高全臣,刘殿书.岩石爆破测试原理与技术[M].北京:煤炭工业出版社,1996.
    [164]宗琦.岩石内爆炸应力波破裂区半径的计算[J].爆破,1994,(2):15-17.
    [165]Livingston C W. Fundamental coneepts of rock failure[J]. Quarterly of the Colorado School of Mines,1956,51(3):1-11.
    [166]郭学彬,张继春.爆破工程[M].北京:人民交通出版社,2007.