GA钢板锌镀层粉化机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GA汽车镀锌钢板具有优异的抗腐蚀性能、好的喷涂性和可焊接性,已广泛应用于汽车外壳覆盖件生产,但在冲压成形时GA钢板锌镀层容易产生粉化缺陷。本研究课题从影响GA钢板锌镀层粉化的因素(镀层组织、残余应力、界面结合强度、冲压成形时镀层所处应力状态)入手,研究了GA钢板合金化锌镀层粉化的机理。对上海宝钢提供的H220BD型GI镀锌钢板在不同合金化退火工艺参数下进行了退火处理、测量分析了各种合金化组织的残余应力、与基底的界面结合强度,利用这些测量参数对GA钢板冲压成形过程中的应力状态进行了有限元模拟计算;结合粉化检测实验结果,对比各种合金化工艺参数所得组织的性能,确定了GA钢板最佳合金化工艺参数。
     首先将H220BD型GI钢板在盐浴炉中、按温度分别为450℃、500℃、550℃,每个温度下的退火时间为5秒、10秒、30秒、120秒进行合金化退火获得GA钢板,各种GA钢板锌镀层中主要组织均为δ相;随着退火时间的延长,δ相的厚度增加。当退火时间足够长时,镀层表面也会出现较多的δ相。通过粉化检测发现:500°C下的合金化退火所得锌镀层在相同变形条件下的粉化量比450°C下和550°C下合金化退火所得组织的都要小。在相同合金化退火温度下,GA钢板锌镀层的粉化量首先随合金化退火保温时间的延长而增加,随后又随退火时间的增加而略有减少;在较长退火时间(>30s)下、温度越高,粉化越严重。
     用纳米压痕方法测量分析了不同合金化工艺参数下所获得的GA钢板锌镀层中的残余应力。当扩散退火时间大于5s时,镀层中存在110MPa-240MPa之间的残余拉应力;GA钢板锌镀层中的残余拉应力首先随退火时间的延长而迅速增大,后来又随时间的增加而减少,而残余拉应力一般随温度的升高而减小。其中500℃和550℃下保温退火10s和120s所得组织的残余应力较小,它们的粉化量都较小;而450℃和550℃下保温退火30s所得组织的残余应力都较大,它们的粉化量都较大。
     新开发了一种普适的镀层/基底界面强度测试方法,并用这种新型鼓泡法测量得到GA钢板锌镀层与钢基底的界面强度在3.8995J/m2-174.888J/m2之间,发现界面强度首先随退火时间的延长而迅速降低;退火到一定时间后,又随时间的延长而稍有增加,但基本趋于稳定。当退火时间较短时,界面结合强度随退火温度的升高而降低,当退火时间延长到一定时间后,温度对界面结合强度的影响很小。其中450℃和550℃下保温退火30s所得合金化锌镀层与基底的界面强度都较低,它们的粉化量都较大;在500℃下退火所得试样的界面强度都较大(>9J/m2),它们的粉化量都较小。
     通过粉化检测实验,对比各种镀层的界面结合强度和残余应力得到:δ相太薄或太厚粉化都较严重;残余应力越大、界面强度越低,粉化量越大。GA钢板最佳合金化工艺参数为500°C下保温120秒左右。
     通过以上研究工作为解决GA钢板锌镀层在冲压成形时出现的粉化问题提供理论依据,对提高我国GA钢板质量,促进连续镀锌工业的发展有所贡献。
For its high corrosion resistance, excellent formability, weldability and paintabilityperformance, the galvannealed (GA) steel sheet produced by continuous hot-dip zinccoating on steel sheet is widely used in automotive industry. However, the powderingdefect of zinc coating on galvannealed (GA) sheet steel usually occurs during stampingforming. From the influence factors, such as microstructure, residual stress, interfacestrength and the stress state of coating, the powdering mechanisms of the zinc coatingsystem on galvannealed (GA) sheet steel has been studied. First, the H220BD galvanized(GI) sheet steel provided by Shanghai Bao Steel Co. Ltd. were galvannealed usingdifferent parameters. Then the residual stress of the galvannealed zinc coating and theinterface strength between zinc coating and substrate steel were measured choosingappropriate methods, and the stress states of zinc coating during the stamping forming ofGA sheet steel were calculated and simulated by FEM using these measured results.Finally, the optimal galvannealing parameters were confirmed by checking the powderingmass lose and comparing the properties of the galvannealed zinc coatings.
     First, the H220BD galvanized sheet steels were galvannealed in a salt bath furnaceunder450℃,500℃,550℃and holding5s,10s,30s,120s for each temperature to obtain12kinds of zinc-coated GA steel sheets. It is found that the main component of the zinccoatings on all GA steel sheets is the δ phase, and the thickness of δ phase increases withgalvannealing time, and large amount of δ phase may appear on the surface of coating aftergalvannealing an enough long time. It is also found that the powdering mass lose of thezinc coating galvannealed under500℃is less then those obtained under450℃or550℃.The powdering mass lose of the galvannealed zinc coating first increases then slightlyreduces with the prolongation of the galvannealing time, and the powdering defectbecomes more serious under a higher galvannealing temperature holding for a samerelatively long time (>30s).
     The residual stress of the zinc coating on galvannealed (GA) steel sheets, obtainedusing different galvannealing parameters, was measured by nano-indentation. It is foundthat a110Mpa-240Mpa tensile residual stress exists in the zinc coating galvannealed for arelatively long time (>5s), and the residual stress first increases then decreases with theprolongation of galvannealing time, but generally reduces as the galvannealingtemperature increases. The residual stress and the powdering mass lose of the zinc coatings galvannealed under500℃and550℃both holding10s and120s are small. On thecontrary, the residual stress and the powdering mass lose of those coatings galvannealedunder450℃and550℃both holding30s are larger.
     A novel universal blister test method was developed to measure the interface strengthof coating/substrate material system, and the interface strength between galvannealed zinccoating and steel substrate obtained using this new method is3.8995J/m2-174.888J/m2. Itis found that the interface strength decreases rapidly first with the prolongation ofgalvannealing time, after a certain time, then slightly increases with galvannealing time butkeeps stabilized finally. During a short galvannealing time, the interface strength decreaseswith the increase of temperature, after galvannealing a certain long time, the effect oftemperature on the interface strength bacomes little. Moreover, the interface strength of thezinc coatings galvannealed under450℃and550℃both holding30s is small but theirpowdering mass lose is large. On the contrary, the interface strength of those coatingsgalvannealed under500℃is larger (>9J/m2) and their powdering is slighter.
     After checking the powdering mass lose and comparing the interface strength andresidual stress, the conclusions can be obtained as: Either the δ phase is too thin or toothick, the powdering of the galvannealed zinc coating is serious. The larger the residualstress or the lower the interface strength, the powdering mass lose is greater. The optimalparameters are galvannealing under500°C holding about120s.
     The above research work can provide theoretical basis to solve the powderingproblem of the zinc coating on GA steel sheet, and contributes to improve the quality ofour GA steel plate and to promote the development of the continuous galvanizing industry.
引文
[1]李金桂,吴再思.防腐蚀表面工程技术[M].北京:化学工业出版社,2003:176-251.
    [2]中国腐蚀与防护学会《金属防腐蚀手册》编写组.金属防腐蚀手册[M].上海:上海科技出版社,1989:78.
    [3]尹付成.热浸镀锌合金体系的热力学分析及应用[D].湘潭:湘潭大学博士学位论文,2004.
    [4]廖凯. Ti对Fe-Zn合金层生长动力学的影响及镀锌层抗粉化性能的有限元模拟[D].湘潭:湘潭大学硕士学位论文,2009.
    [5] Hoare, W.E. et al. The Technology of Tinplate, Edward Arnold Ltd.,(1965)
    [6]日本东洋钢铁株式会社.“ぶリぎとディソフリー.スチール”アグネ,1959.
    [7] Bablik, H.热镀锌理论与工艺.北京:冶金工业出版社,1959.
    [8]方锡恩.热浸镀锌技术发展简史(上)[J].河北冶金,77(5)(1993):51-54.
    [9]方锡恩.热浸镀锌技术发展简史(下)[J].河北冶金,78(6)(1993):44-47.
    [10]原富启.亚铅铁板,2(1986):30.
    [11]张启富等.热镀锌技术的最新进展[J].钢铁研究学报,14(4)(2002):65-72.
    [12]朱立.钢材热镀锌[M].北京:化学工业出版社,2006:3-5.
    [13]王利,程国平,袁明生.中国冶金,86(1)(2005):17-20.
    [14] A. R. Marder. The metal lurgy of zinc-coated steel [J]. Progress in MaterialsScience,45(3)(2000):191-271.
    [15] General Galvanizing Practice. London: Hot Dip Galvanizers Association.1965.
    [16] Oleford I., Leijon W., Jelvestam U. Selective surface oxidation during annealing ofsteel sheets in H2/N2. Appl. Sur. Sci.,6(1980):241.
    [17] Schramm J. Z Metallkde,30(1938):122.
    [18] Hansen M, Anderko K. Constitution of Binary Alloys.2nd ed., New York: McGrawHill,1958:738.
    [19] Ghoniem MA, Lohberg K. Metallurgy,10(1972):1026.
    [20] Bastin GF, van Loo FJJ, Rieck GD. A New Compound in the Iron Zinc System. ZMetallkde,68(1977):359.
    [21] Gellings PJ. Z Metallkde,71(1980):70.
    [22] Kubaschewski O. Massalski T, editors. Binary alloy phase diagrams. Metals Park, OH:ASM,1986:1128.
    [23] Xuping Su, Nai-Yong Tang, J.M. Toguri, Thermodynamic evaluation of the Fe-Znsystem [J]. Journal of Alloys and Compounds,325(1-2)(2001):129-136.
    [24] Brown PJ. The structure of transition metal—zinc alloy systems. Acta Crystall,15(1962):608.
    [25] Mackowiak J, Short NR. Metallurgy of galvanized coatings. Int Met Reviews1979:1.
    [26] Gellings PJ, de Bree EW, Gierman G. Synthesis and charactertization ofhomogeneous interme-tallic Fe–Zn compounds. Z Metallkde,70(1979):312.
    [27] Jordan CE, Marder A. R. Fe–Zn phase formation in interstitial-free steels hot-dipgalvanized at4508C, Part I0.00wt%Al–Zn baths. J Mater Sci,32(1997):5593.
    [28] Gellings PJ, Gierman G, Koster D, Kuit J. Synthesis and charactertization ofhomogeneous intermetallic Fe–Zn compounds. Z Metallkde,71(1980):70.
    [29] Jordan CE, Marder A. R. Morphology development in hot-dip galvanneal coatings.Met Mater Trans,25a(1994):937.
    [30] van der Heiden A, Burghardt AJC, van Koesveld W, van Perlstein EB, Spanjers MGJ.Galvanneal microstructure and anti-powdering process windows. In: Marder AR,editor. The physical metallurgy of zinc coated steel. Warrendale, PA: TMS,1994:251.
    [31] Jordan CE, Marder A. R. A model for galvanneal morphology development. In:Marder A. R., editor. The physical metallurgy of zinc coated steel. Warrendale,PA: TMS,1994:197.
    [32] Coffin C, etc.1994. Galvannealing of in t erstitial-free sheet steels strengthened bymanganese, silicon, or phophorous: an initial study. In: Marder A. R., editor. Thephysical metal-lurgy of zinc coated steel. Warrendale, PA: TMS,1994:181.
    [33] Hisamatsu Y. Science and technology of zinc and zinc alloy coated sheet steel.GALVATECH’89. Tokyo: The Iron and Steel Institute of Japan.1989:3.
    [34] Guttmann M, Lepretre Y, Aubry A, Roche M-J, Moreau T, Drillet P, Mataigne JM,Baudin H. Mechanism of the galvanizing reaction. Influence of Ti and P contents insteel and of its surface microstructure after annealing. In: GALVATECH’95. Chicago,IL: Iron and Steel Society,1995:295.
    [35] Jordan CE, Marder AR. The effect of iron oxide as an inhibition layer on iron–zincreactions during hot-dip galvanizing. Met Mater Trans,29B(1998):479.
    [36] Opbroek JB, Granzow WG. A deep drawing, hot-dipped galvanized steel for differentforming applications, SAE Paper No.850275. Warrendale, PA: SAE,1985.
    [37] Deits SH, etc. Formability of coated sheet steels: an analysis of surface damagemech-anisms. In: Krauss G, Matlock DK, editors. Zinc-based steel coating systems:metallurgy and performance. Warrendale, PA: TMS,1990:297.
    [38] Arimura M, Urai M, Iwaya J, Iwai M. Effects of press forming factors and flashplating on coating exfoliation of galvannealed steel sheets. GALVATECH’95.Chicago, IL: Iron and Steel Society,1995:733.
    [39] Shah SRH, Dilewijns JA, Jones RD. The structure and deformation behavior ofzinc-rich coatings on steel sheet. GALVATECH’92. Amsterdam: Stahl and Eisen,1992:105.
    [40] Gallo E, etc. The importance of microstructure on the formability of gal vannealedI.F.sheet steel. GALVATECH’95. Chicago, IL: Iron and Steel Society,1995:739.
    [41] Panel Member, G.C. Williams, Theodore von Kármán, Béla Karlovitz, Frank E.Marble, W.J. Wohlenberg. Symposium (International) on Combustion,4(1)(1953):923-926
    [42] C. Maeda, J. Shimomura, H. Fujisawa and M. Konishi. Scripta Materialia,3(35)(1996):333.
    [43] Tang N-Y. Comments on Fe–Al–Zn diagram. J Phase Equilibria,15(1994):237.
    [44] Claus G, Dilewijns J, De Cooman BC, Meers U. Determination of the process windowfor optimal galvannealing of Ti–IF steel. GALVATECH’95. Chicago, IL: Iron andSteel Society,1995:107.
    [45] Stadlbauer A, Rubenzucker F, Zeman K, Fuhrmann E, Faderl J, Schonberger L. Anew galvannealling process controller. GALVATECH’95. Chicago, IL: Iron andSteel Society,1995:81.
    [46] Bae DC, Choi YM, Chang S, Shin JC. Improved powdering resistance of hot-dipgalvannealed steel sheets. GALVATECH’92. Amsterdam: Stahl and Eisen,1992:132.
    [47] Jagannathan V. The influence of coating characteristics on the powdering andcorrosion resistance of galvanneal coated steel sheet. GALVATECH’92. Amsterdam:Stahl and Eisen,1992:127.
    [48] Townsend HE, Zoccola JC. Mater Perform,10(1979):13.
    [49] Martin P, Handford MA, Packwood R, Dignard L, Moore V. Mechanical andstructural study of Zn–Fe coatings. GALVATECH’92. Amsterdam: Stahl and Eisen,1992:112.
    [50] Saka H, Kato T, Hong MH, Sasaki K, Kuroda K, Kamino T. Cross-sectional TEMobservation of interfaces in a galvannealed steel. GALVATECH’95. Chicago, IL:Iron and Steel Society,1995:809.
    [51] Lucas PL, Quantin D, Brun CG. Effects of alloying parameters on formability ofgalvannealed sheets. GALVATECH’89. Tokyo: The Iron and Steel Institute of Japan,1989:138.
    [52] Shi MF, Smith GM, Moore M, Meuleman DJ. Galvannealed coating optimized forcoating adhesion through dies. In: Krauss G, etc editors. Zinc-based steel coatingsystems: metallurgy and performance[M]. Warrendale, PA: TMS,1990:387.
    [53]张启富,刘邦津.钢铁,37(12)(2002):65-68.
    [54] A. T. Alpas and J. Inagaki. ISIJ International,40(2000):172-181.
    [55] A. T. Alpas. ISIJ International,40(2000):172-181.
    [56] Jordan CE, Goggins KM, Marder AR. Interfacial layer development in hot-dipgalvanneal coatings on interstitial free (IF) steel. Met Mater Trans25a (1994):2101.
    [57] Cheng C, Rangarajan V, Franks L, L’Ecuyer J. The effect of steel substrate on themicrostructure and powdering of galvanneal coatings. GALVATECH’92.Amsterdam: Stahl and Eisen,1992:122.
    [58] Moon-Hi Hong. ISIJ International,45(2005):896.
    [59] J. Inagaki, Y. Sakurai, etc. Tetsu to Hagane,79(1993):1273.
    [60] Hisamatsu Y. Science and technology of zinc and zinc alloy coated steel sheet[J]. In:GALVATECH’89, Tokyo: ISIJ.1989:3.
    [61] Kato C, Koumura H, Uesugi Y, Mochizuki K. Influence of phase composition onformability of galvannealed steel sheet. In: Marder AR, editor. The physicalmetallurgy of zinc coated steel.Warrendale, PA: TMS,1994:241.
    [62] Y. Adachi, M. Arai. Materials Science and Engineering A,254(1998):305.
    [63]钱苗根.材料表面技术及其应用手册[M].北京:机械工业出版社,1998:433-437.
    [64] Evangelos Tzimas, etc. Cracking mechanisms in high temperature hot-dipGal vanized coatings. Surface and Coatings Technology,145(2001):176-185.
    [65] J.W.Hutchinson and A.G..Evans. Acta Mater.,48(1)(2000):125-135.
    [66] A.G..Evans and J.W.Hutchinson. Acta Matall. Mater.,43(7)(1995):2507-2530.
    [67] F.Spaepen. Acta Mater.,48(1)(2000):31-42.
    [68] J.W.Hutchinson, Z.Suo. Advances in Appl. Mech.,29(1992):63-191.
    [69]郝红肖.鼓包法表征弹塑性膜/基体系界面结合性能的理论模型[D].湘潭:湘潭大学硕士学位论文,2010.
    [70]马峰等.膜基界面结合强度表征和评价[J].表面技术,30(005)(2001):15-19.
    [71]杨班权等.涂层/基体材料界面结合强度测量方法的现状与进展[J].力学进展,37(1)(2007):67-79.
    [72] Shiao M H, etc. Interfacial mechanical properties and frac t ure morphology of aTiN-coated steel wire upon tensile loading [J]. Thin Solid Films,358(1-2)(2000):159-165.
    [73] Shieu F S, etc. Measurement of the interfacial mechanical properties of a thin ceramiccoating on duc t ile substrates [J]. Thin Solid Films,306(1)(1997):124-129.
    [74] Shieu F S, etc. Control of the mechanical properties of metal-ceramic interfacesth r ough interfacial reactions [J]. Acta. Metallurgica et Materialia,38(11)(1990):2215-2224.
    [75] Agrawal D C, etc. Measurement of the ultima t e shear strength of a metal-ceramicinterface [J]. Acta. Metallurgica,37(4)(1989):1265-1270.
    [76]何贤昶等.用垂直拉伸法测定金刚石薄膜的附着强度[J].机械工程材料,22(5)(1998):7-9.
    [77] Edward E. Jones, Matthew R. Begley, Kevin D. Murphy. Journal of the Mechanicsand Physics of Solids,51(2003):1601–1622.
    [78] Y. C. Zhou, T. Tonomori, A. Yoshida, L. Liu, G. Bignall, T. Hashida. Surface andCoating Technology,157(2002):118-127.
    [79] A. A. Volinsky, N. R. Moody, W. W. Gerbrich. Acta Materialia,50(2002):441-466.
    [80] Z. Suo, J. W. Hutchinson. Int. J. Fracture,43(1990):1-18.
    [81] Yueguang Wei. Solids and Structures,41(2004):5087-5104.
    [82] Q. D. Yang, M. D. Thouless, etc. Journal of the Mechanics and Physics of Solids,47(1999):1337-1353.
    [83] Edith Breslauer, Tom Troczynaski. Materials Science and Engineering A,302(2001):168-180.
    [84] Yueguang Wei, and John W. Hutchinson. Journal of the Mechanics and Physics ofSolids,45(1997):1137-1159.
    [85] X. J. Zheng, Y. C. Zhou, J. Y. Li. Acta Materialia,51(2003):3985-3997.
    [86] X. J. Zheng, Y. C. Zhou, J. M. Liu, A. D. Li. Physics Letter A,304(2002):110-113.
    [87] J. M. Sanchez, S. El-Mansy, B. Sun, T. Scherban, N. Fang, D. Pantuso, W. Ford, M.R. Elizalde, J. M. Martinez-Esnaola, A. Martin–Meizoso. Acta Materialia,47(1999):4405-4413.
    [88] X. J. Zheng, Y. C. Zhou. Composites Science and Technology,65(2005):1382-1930.
    [89] M. D. Kriese, D. A. Boismier, N. R. Moody, W. W. Gerberich. Engineering FractureMechanics,61(1998):1-20.
    [90] X. J. Zheng, Y. C. Zhou, J. M. Liu, A. D. Li. Surface and Coating Technology,176(2003):67-74.
    [91] M. D. Thouless. Engineering Fracture Mechanics,61(1998):75-81.
    [92] Y. C. Zhou, etc. Journal of Engineering Materials and Technology,125(2003):176-182.
    [93] M. B. Khan. Composites,26(1995):223-227.
    [94] Shu Guo, Kai-Tak Wan, David A. Dillard. International Journal of Solids andStructures,42(2005):2771–2784.
    [95] K. Hbaieb, Y. W. Zhang. Materials Science and Engineering A,390(2005):385–392.
    [96] J. J. Vlassak, W. D. Nix. Journal of Materials Research,7(1992):3242-3249.
    [97] Martha K. Small, W.D. Nix. Journal of Materials Research,7(1992):1553-1563.
    [98] Wei Y, etc. International Journal of Fracture,93(1-4)(1998):315-333.
    [99] Chen H, etc. Bon d ing strengths of PCVD films under cyclic loading [J]. Surfaceand Coatings Technology,74(1-3)(1995):253-258.
    [100] Chalker P R, Bull S J, etc. Materials Science and Engineering: A,140(7)(1991):583-592.
    [101] Drory M D, etc. Proceedings: Mathematical, Physical and Engineering Sciences,452(1953)(1996):2319-2341.
    [102] Drory M D, etc. Diamond c oating of titanium alloys [J]. Science,263(5154)(1994):1753-1755.
    [103] Li X F. Surface and Coatings Technology,200(16-17)(2006):5003-5008.
    [104] Zheng X J, etc. Investigation of an anisotropic plate model to evaluate the interfaceadhesion of thin film with cross-s ectional nano indentation method [J]. CompositesScience and Technology,65(9)(2005):1382-1390.
    [105] Williams J A, etc. The influence of peel an gle on the mechanics of peeling flexibleadhesion with arbitrary load-extension characteristics [J]. Tri bology International,38(11-12)(2005):951-958.
    [106] Kinloch A J, etc. International Journal of Fracture,66(1)(1994):45-70.
    [107] Kim K S, etc. Elasto plastic analysis of the peel test [J]. International Journal ofSolids and Structures,24(4)(1988):417-435.
    [108] Williams J G. International Journal of Fracture,87(3)(1997):265-288.
    [109] Evans A G, Hutchinson J W, etc. Interface adhesion: effects of plasticity andsegregation [J]. Acta. Materialia,47(15-16)(1999):4093-4113.
    [110] Jiang L M, etc. A pres s urized blister test model for the interface adhesion ofdissimilar elastic-plastic materials [J]. Materials Science and Engineering A,487(1-2)(2008):228-234.
    [111] Gent A N, etc. Blow-off pressures for adhering layers [J]. Journal of Ap pliedPolymer Science,33(5)(1987):1567-1577.
    [112] L.H.Xiao, Xu Ping.Su, etc. Materials Science and Engineering A,501(2009):235-241.
    [113]蒋丽梅.鼓泡法表征韧性膜/韧性基底界面结合能的理论模型[D].湘潭:湘潭大学,2008.
    [114] Dannenberg H. Measurement of adhesion by a blister method [J]. Journal ofAp plied Polymer Science,5(14)(1961):125-134.
    [115] Jensen H M. Engineering Fracture Mechanics,40(3)(1991):475-486.
    [116]俞汉清主编.金属塑性成形原理.北京:机械工业出版社,2003.
    [117]潘金生主编.材料科学基础.北京:清华大学出版社,1998.
    [118] R.Bigot, A.Iost. Residual Stress in Galvanizing, Materials and ManufacturingProcesses,3(14)(1999):413-426.
    [119]章莎.用纳米压痕法表征电沉积镍镀层薄膜的残余应力[D].湘潭:湘潭大学硕士学位论文,2006.
    [120] A. Lodini. The recent development of neutronic techniques for determination ofresidual stress [J]. Radiation Physics and Chemistry,61(2001):227-233.
    [121] J. Matejicek, S. Sampath, J. Dubsky. X-ray residual stress measurement in metallicand ceramic plasma sprayed coatings [J]. J. Thermal Spray Tech.,7(4)(1998):489-496.
    [122] C. A. Taylor, M. F. Wayne. Residual stress measurement in thin carbon films byRaman spectroscopy and nanoindentation [J]. Thin Solid Films,429(2003):190-200.
    [123]周玉,武高辉.材料分析测试技术-材料X射线衍射与电子显微分析[M].哈尔滨:哈尔滨工业大学出版社,1997:96-107.
    [124]滕凤思,王煜明,姜小龙. X射线结构分析与材料性能表征[M].北京:科学出版社,1997:156-235.
    [125] X. J. Zheng, J. Y. Li, etc. X-ray diffraction measurement of residual stress in PZTthin films prepared by pulsed laser deposition [J]. Acta. Mater.,2(2004):3313-3322.
    [126] G. G. Stoney. The tension of metallic films deposited by electrolysis [M]. London:Proc. R. Soc.,1909:172-175.
    [127]任凤章,周根树.悬臂梁法测量不锈钢基体上铜膜和银膜残余应力[J].稀有金属材料与工程,32(6)(2003):478-480.
    [128]安兵,张同俊.用基片曲率法测量薄膜应力[J].材料保护,36(7)(2003):13-15.
    [129] T. Y. Tsui, etc. Influences of stress on the measurement of mechanical propertiesusing nanoindentation: Part I Experimental studies in an aluminum alloy [J]. J.Mater. Res.,11(3)(1996):752-759.
    [130] A. Bolshakov, etc. Influences of stress on the measurement of mechanical propertiesusing nanoindentation: Part II Finite element simulations [J]. J. Mater. Res.,11(3)(1996):760-768.
    [131] S. Carlsson, P. L. Larsson. On the determination of residual stress and strain fieldsby sharp indentation testing. Part Ⅰ Theoretical and numerical analysis [J]. ActaMater.,49(2001):2179-2191.
    [132] S. Carlsson, P. L. Larsson. On the determination of residual stress and strain fieldsby sharp indentation testing. Part II Experimental investigation [J]. Acta Mater.,49(2001):2193-2203.
    [133] S. Suresh, etc. A new method for estimating residual stresses by instrumented sharpindentation [J]. Acta Mater.,46(16)(1998):5755-5767.
    [134] Y. Hee, D. Kwon. Residual stress in DLC/Si and Au/Si systems: Application of astress-relaxation model to the nanoindentation technique [J]. J. Mater. Res.,17(4)(2002):901-906.
    [135] Y. Hee, D. Kwon. Measurement of residual-stress effect by nanoindentation onelastically strained (100)W [J]. Scr. Mater.,49(2003):459-465.
    [136] Y. Hee, D. Kwon. Estimation of biaxial surface stress by instrumented indentationwith sharp indenters [J]. Acta Mater.,52(2004):1555-1563.
    [137] G. Knuyt, W. Lauwerens, L. M. Stals. A unified theoretical model for tensile andcompressive residual film stress [J]. Thin Solid Films,370(2000):232-237.
    [138] D. J. Smith, R. Gadoew, J. Tabellion. Experimental measurement and finite elementsimulation of the interaction between residual stresses and mechanical loading [J].International Journal of Fatigue,23(2001):293-302.
    [139] J. Michler, M. Mermoux. Residual stress in diamond films: origins and modeling [J].Thin Solid Films,357(1999):189-201.
    [140] C. M. Lepienski, G. M. Pharr. Factors limiting the measurement of residual stressesin thin films by nanoindentation [J]. Thin Solid Films,447-448(2004):251-257.
    [141] X. J. Zheng, etc. Residual stresses in Pb(Zr0.52Ti0.48)O3thin films deposited bymetal organic decomposition [J]. Scr. Mater.,49(2003):71-76.
    [142] Y. Zhou, C. S. Yang. Measurement of Young’s modulus and residual stress ofcopper film electroplated on silicon wafer [J]. Thin Solid Films,460(2004):175-180.
    [143] J. G. Swadener, etc. Measurement of residual stress by load and depth sensingindentation with spherical indenters [J]. J. Mater. Res.,16(7)(2001):2091-2102.
    [144] Takuda. H, etc. Prediction of forming limit in deep draw ing of Fe/Al laminatedcomposite sheets using ductile fracture criterion [J]. Journal of Material ProcessingTechnology,60(1-4)(1996):291-296.
    [145]刘习文等.层合板柱面弯曲成型模压分布与回弹问题[J].北京航空航天大学学报,22(3)(1996):270-273.
    [146] Yuen, etc. A generalised solution for the prediction of spring back in laminateds trip[J]. Journal of Material Processing Technology,61(3)(1996):254-264.
    [147] Hauw. B, etc. Improvement of stamping computations by means of the identificationof the bulk behaviors of coatings application to gal vanized sheets[J]. Journal ofMaterials Processing Technology,94(1)(1999):23-29.
    [148]王立冬等.双金属板拉延成形的有限元分析[J].计算力学学报,15(4)(1998):503-507.
    [149]彭俊等.复合材料层合板低速冲击下的响应和损伤过程模拟[D].西安:西北工业大学硕士学位论文,2000.
    [150] Parisot. R, etc. Modeling the mechanical behavior of a multicry s talline zinc coatingon a hot-dip gal vanized steel sheet[J]. Computational Materials Science,19(1-4)(2000):189-204.
    [151] Kim. K. J, etc, Formability of AA5182/polypropylene/AA5182sandwichsheets[J]. Journal of Material Processing Technology,139(1-3)(2003):1-7
    [152]周里群.电沉积镍涂层的冲击性能与冲压成形过程分析[D].湘潭:湘潭大学博士学位论文,2004.
    [153]李少平.镀锌板成形性能的数值模拟与物理模拟研究及主要缺陷分析[D].上海:上海交通大学硕士学位论文,2003.
    [154] V. Jagannathan. GALVATECH '92. Amsterdam: Stahl and Eisen,1992.
    [155] S. Guttman, etc. Third International Coference on Zinc Coated Sheet, Intergalva91,Baracelona, Spain, June1991, EGGA, S4D/1.
    [156] N.-Y. Tang, Proc. Galvatch’98, Chiba, Japan,(1998):654.
    [157] Wei Chen, Qingfeng Liu, Qian Liu, Lihui Zhu, Li Wang. Journal of Alloys andCompounds,459(2008):261–266.
    [158] S. Yamaguchi, N. Fukatsu, H. Kimura, etc. in Galvatech95Conference Proc.,ISS-AIME., Warrendale, PA.,(1995):647.
    [159] P. Perrot, J-C Tissier, etc. Z Metallkde,83(1992):786.
    [160] Z. W. Cheng, R. M. Sharp, etc. Mater. Sci. Technol.,6(12)(1990):1173.
    [161] A. Costa, E. Silva, etc. Z Metallkde,90(1999):38.
    [162] N-Y. Tang, Xuping Su. Metal lurgical and Materials Transactions A,33A (2)(2002):1559.
    [163] S. Feliu Jr., M. L. Perez-Revenga. Acta Materialia,53(2005):2857.
    [164] L. Chen, R. Fourmentin and J.R. Mc Dermid. Metallurgical and MaterialsTransations A,39A(2008):2128.
    [165]苏旭平,李智,尹付成,贺跃辉,潘世文.热浸镀中硅反应性研究[J].金属学报,44(6)(2008):718.
    [166] Zhi Li, Xuping Su and Yuehui He. Journal of Phase Equilibria and Diffusion,29(1)(2008):11.
    [167] X. Tang, F. Yin, X. Wang, J. Wang, X. Su, N.-Y. Tang. Journal of Phase Equilibriaand Diffusion,28(4)(2007):355.
    [168] M. Ai, F. Yin, Y. Liu, X. Wang, M. Zhao, X. Su. International Journal of MaterialsResearch,99(2)(2008):138.
    [169]王先德,王建华,苏旭平,肖良红,王鑫铭,吴自施.锰对ZZnAl4Y锌合金显微组织和力学性能的影响[J].铸造,59(3)(2010):312-314.
    [170] C.Maeda, J.Shimomura, H.Fujisawa and M.Konishi. Scripta Materialia,3(35)(1996):333-338.
    [171] Y. Pauleau. Generation and evolution of residual stress in physical vapour-depositedthin films [J]. Vacuum,61(2001):175-181.
    [172] S. Basrour, P. Delobell. Measurement of residual stress in a plate using bulging testand a dynamic technique: application to electroplated nickel coatings [J]. MaterialsScience and Engineering A,288(2000):160-163.
    [173]刘杨.基于纳米压痕技术和有限元仿真的材料塑性性能分析[D].武汉:武汉理工大学硕士学位论文,2003.
    [174] A. E. Giannakopoulos, etc. Determination of elasto plastic properties byinstrumented sharp indentation [J]. Scr. Mater.,40(10)(1999):1191-1198.
    [175] S. Suresh, etc. Nano-I ndentation of copper thin films on silicon substrates [J]. Scr.Mater.,41(9)(1999):951-957.
    [176] M. Dao, etc. Compu t ational modeling of the forward and reverse problems ininstrumented sharp indentation [J]. Acta. Mater.,49(2001):3899-3918.
    [177] Y. P. Cao, J. Lu. A new method to extract the plastic properties of metal materialsfrom an instrumented spherical indentaion loading curve [J]. Acta Mater.,52(2004):4023-4032.
    [178] A. Gouldstone, etc. Discrete and continuous de formation during nanoindentation ofthin films [J]. Acta. Mater.,48(2000):2277-2295.
    [179]黎明,温诗铸.纳米压痕技术理论基础[J].机械工程学报,39(3)(2003):142-145.
    [180]蔡珣,周平南,杨小豫.薄膜材料微观力学行为的有限元分析[J].应用力学学报,15(2)(1998):62-66.
    [181] W. R. Lafontaine, B. Yost, C. Yu Li. Effect of residual stress and adhension on thehardness of copper films deposited on silicon [J]. J. Mater. Res.,5(4)(1990):776-783.
    [182] J. L. Bucaille, S. Stauss. A new technique to determine the elastoplastic of thinmetallic films using sharp indenters [J]. Thin Solid Films,447-448(2004):239-245.
    [183] M. T. Attaf. Connection between the loading curve models in elastoplasticindentation [J]. Materials Letters,58(2004):3491-3498.
    [184]林志.纳米力学探针的基本原理及其应用实例[J].航空材料学报,21(4)(2001):56-62.
    [185] W. C. Oliver, etc. An improved tec h nique for determining hardness and elasticmodulus using load and displacement sensing indentation experiment [J]. J.Mater. Res.,7(6)(1992):1564-1583.
    [186]许金泉主编.界面力学.北京:科学出版社,2006.
    [187] G. Reumont, J.B.Vogt, etc. Surface and Coating Technology,139(2001):265-271.
    [188]张启富主编.现代钢带连续热镀锌.北京:冶金工业出版社,2007.
    [189] G. M. Song, W. G. Sloof, Y. T. Pei, etc. Interface fracture behavior of zinccoatings on steel: Experiments and finite element calculation[J]. Surface and CoatingTechnollogy, xx (2006): xxx-xxx.
    [190] Z.Suo, Advances in Applied Mechanics, Volume29(1992), pp.63-192.
    [191] Lianghong Xiao, Liang Tang, Zihua Hu, Zheng Kuang,Julong Yuan. DeformationAnalysis for Flank Milling of Thin-Walled Rectangle Plate Based on Flexible ForceModel[J]. Advanced Materials Research,189-193(2011);1555-1561.
    [192]徐春,林忠钦,夏年炯,李俊,钱洪卫.镀层粉化的自动识别与等级评价.中国机械工程,17(6)(2006):625-628.
    [193] A. T. Alpas.合金化镀层微观结构对镀层断裂机理的影响.世界钢铁,3(2001):29-36.