基于柔性偏差分析的车身装配顺序优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轿车车身尺寸质量直接关系到整车外观、风噪声、关门效果甚至行驶平稳性,影响轿车车身尺寸质量的主要有零部件设计、装配工艺及制造偏差等因素。随着汽车技术的不断发展,车身制造水平已经接近制造质量控制的极限,车身尺寸质量的进一步提高依赖于装配方案等工艺设计水平的改善。在车身薄板零件的装配过程中,装配顺序、焊接配置和夹具定位策略等装配方案影响着车身产品特征的装配偏差。以装配尺寸质量为目标的装配顺序优化研究方面,多数学者主要采用一维的偏差分析模型,对零件间的对接、搭接等接头形式进行定性分析。但是轿车车身作为具有复杂装配关系的薄板产品,在焊接过程中零件易于变形,传统的刚体偏差分析模型不再适用。
     本文针对柔性薄板零件的装配顺序优化进行了研究:首先提出了基于多属性有向图的装配顺序规划算法,根据装配约束剔除非工程可行的装配顺序;然后建立多工位柔性薄板偏差分析模型,可计算不同装配顺序下的关键特征的装配公差;最后提出了装配顺序的两级优化算法,实现了装配顺序的优选。在此基础上,为了提高装配顺序优化的效率,开发了装配顺序生成和优化的原型软件,并通过车身侧围、尾灯支架等案例对本文提出的方法进行了验证。
     本文的主要内容和创新点为:
     (1)提出基于多属性有向图的工程可行装配顺序规划算法
     针对通常以装配关系为基础的装配顺序规划算法,所生成的装配顺序难于完全保证工程可行,本文提出了基于多属性有向图的装配顺序规划算法。在装配模型中,不仅描述了零件间的装配关系,而且还添加了装配匹配特征信息和工程实际中的装配约束。并且引入环联分总成和对串、并、环联分总成的详细分类,完善了分总成类型。通过所提出的装配顺序自动规划算法可剔除非工程可行的装配顺序,提高了装配顺序生成的效率。
     (2)建立多工位柔性装配偏差分析模型
     传统柔性装配偏差分析模型着重于建立零件偏差和装配偏差间的关系,而在实际柔性薄板零件的装配过程中,夹具偏差起着重要的作用,本文建立了多工位间偏差传递和累积的柔性装配偏差分析模型。在“N-2-1”和“3-2-1”两种夹具定位原则下,夹具偏差、零件偏差和装配偏差在装配过程中有着不同的偏差变化,本文建立了这两种夹具定位规则下的装配前后偏差关系。在多工位装配过程中,按照夹具定位点的释放模式不同,建立了过定位释放和完全释放两种模式下的装配偏差分析模型。该模型可用于分析不同装配顺序下的装配偏差的传递与累积过程,提高了装配偏差计算的精度。
     (3)提出装配顺序的两级优化算法
     针对柔性薄板零件的装配偏差分析需通过大量的有限元计算,本文提出了装配顺序的两级优化算法:首先以刚体模型进行装配顺序的初步优化,得出一条优化的装配顺序;然后优化所得到装配顺序下的夹具定位策略和装配焊点组合,用于减少零件变形和降低装配偏差。在以刚体模型为基础的优化过程中,采用遗传算法优化零件间的装配匹配特征,获得优化的装配顺序。在以柔性装配模型为基础的优化中,提出了启发式正交方法优化夹具定位策略和装配焊点组合。为了进一步减少有限元分析次数,提高优化效率,建立了以径向函数为基础的响应面模型拟合优化变量与评估函数之间的关系。本文所提出的装配顺序的两级优化,克服了以往需要大规模有限元分析的缺点,从而提高了装配顺序优化的效率,增加了柔性薄板零件装配顺序优化的可行性。
     (4)开发装配顺序优化的原型软件
     在本文理论研究的基础上,为提高装配顺序生成与优化的效率,开发了装配顺序优化的原型软件。该软件以ACCESS数据库为基础,采用VC++作为开发工具,并应用OpenGL技术在软件中显示零件的三维数学模型。该软件根据所研究的主要内容分为装配模型、装配顺序生成、装配偏差分析和装配顺序优化等模块,可以自动生成和优化装配顺序。
The dimensional quality of car body directly related to vehicle appearance, wind noise, shut door effection and drive stationarity, is influenced by parts design, assembly techniques and manufacture variations. Further improvement of quality of auto-body product depends on leverage of better design methods rather than merely support from advanced manufacturing tools and technology, of which the capability limit has been reached. During assembly processes of compliant parts, assembly sequence, welding position and fixture configuration influence assembly variation of auto-body product character. Most scholars mainly adopted one dimension variation analysis model, and took qualitative analysis on the butt joint, lap joint of the parts in the research field of assembly sequence optimization which targets was dimension quality. But the sheet metals of auto-body have complex assembly relationship, and they are easy to distort, so the traditional rigid body variation analysis model is on longer fit for flexible sheet medal parts.
     For compliant assemblies, an algorithm of assembly sequence optimization was presented. Assembly sequence planning is proposed based on multi-property directed graph, which can remove unfeasible sequences in engineering according to assembly constraints. Afterwards, the assembly variation analysis modeling is established, which can applied to analyze assembly tolerance of key characteristics in different sequences. The paper proposes assembly sequence optimization with two stages. For improving the efficiency of assembly sequence optimization, a software is developed for assembly sequence generation and optimization. Some cases are used to illustrate the algorithm such as the auto-body side and the rear lamp bracket assemblies. The main researches are as follows:
     (1) Proposing an algorithm of assembly sequence planning based on multi-property directed graph
     The current algorithms of assembly sequence planning generate assembly sequences based on precedence relationships among components, which can not assure they are all used in engineering. The paper proposes an algorithm based on multi-property directed graph. Assembly modeling not only describes the relationships among components, but also appends matching features and assembly constraints. Moreover, the paper completes the subassembly types through importing loop subassemblies and classifying the three types into subgroups. Finally the algorithm removes unfeasible assembly sequences in engineering, which can improve the efficiency of assembly sequence generation.
     (2) Establishing modeling of multi-station compliant assembly variation analysis
     Traditional assembly variation analysis modeling mainly focus on the relationship between part variation and assembly variation; fixture variation is very important to assembly variation during the assembly processes of compliant parts. The paper establishes modeling of multi-station compliant assembly variation analysis. The sensitivity matrices are given according to the process of variation propagation for two locating principles of“N-2-1”and“3-2-1”. Moreover, different assembly models are deduced for adapting each fixture layout and locator release.The modeling can be used to analyze prorogation of assembly variation in different sequences.
     (3) Proposing assembly sequence optimization with two stages
     For reducing the complexity of assembly sequence optimization, two stages are employed to optimize assembly sequences, which include: (1) optimizing assembly sequences based on rigid model; (2) optimizing schemes of fixture and welding points. In the first stage, the genetic algorithm is used to optimize matching features among parts. In the second stage, the paper proposes the response surface modeling based on radial basis function, which can well simulate nonlinear problem of deformable sheet metals. For improving the efficiency of fixture locating design, the paper uses the heuristic algorithm and the orthogonal design to optimize locating layout. The heuristic and orthogonal design algorithms are presented to select optimal assembly operations among components, whose advantages are that the search efficiency can be improved.
     (4) Developing the software of assembly sequence optimization
     Based on the above researches, a software is developed for improving the efficiency of assembly sequence generation and optimization. The software uses the ACCESS database, utilizes the developing tool of VC++ and shows 3D data model of parts through the model of OpenGL. The software includes assembly modeling, assembly sequence planning, assembly variation analysis and assembly sequence optimization, which can automatically generate and optimize assembly sequences.
引文
[1] J. D. Power and Associates, Initial Quality Survey 1997 for Automobiles, J. D. Power and Associated, 1997.
    [2] J. D. Power and Associates,中国汽车市场产品表现和质量趋势, J. D. Power and Associated, 2005.
    [3]张以柱.基于白车身装配信息管理系统的车身制造质量控制方法研究[硕士论文].上海:上海交通大学. 2000.
    [4]沈利冰.轿车白车身装配偏差分离与控制技术研究[博士论文].上海:上海交通大学. 2001.
    [5]金隼.基于功能尺寸的车身检测体系优化设计其应用[博士论文].上海:上海交通大学,2001.
    [6] Dahlstr?m, S., S?derberg, R. Towards a method for early evaluations of sheet metal assemblies. The 7th CIRP International Seminar on Computer Aided Tolerancing, April 24 - 25 2001ENS de Cachan, France.
    [7]苏强.计算机辅助装配顺序规划与DFA方法研究及集成系统开发[博士论文].西安:西安交通大学. 1997.
    [8]牛新文,丁汉,熊有伦.计算机辅助装配顺序规划研究综述.中国机械工程. 2001,12(12):1440-1443.
    [9]朱大群.计算机辅助装配工艺规划与DFA研究综述.江苏机械制造与自动化. 2000(3):7-11.
    [10] Sohlenius, G. Concurrent engineering. Annals of the CIRP. 1992, 41(2): 645-655.
    [11] Ishii, K. Life-cycle engineering design, Journal of Mechanical Design. Transaction of the ASME. 1995, 117(b): 42-47.
    [12] Fuh, J. Y. H. Modeling, analysis and simulation for the design of a robotics assembly system. Computer Integrated Manufacturing System. 1996, 9(1): 19-32.
    [13] Kim, J. Interleaving assembly planning and design. IEEE Transactions on Robotics and Automation. 1996, 12(2): 246-251.
    [14] Bourjault, A., Henrioud J. M. Computer aided mechanical assembly planning. Kluwer Academic Publishers, Boston, 1991.
    [15] Wilson, R. H. On geometric assembly planning[PhD Dissertation]. USA: Stanford Univertsity, 1992.
    [16] Chody, Shinck, Vhohs. Automatic inference on stable robotics assembly sequences based upon the evaluation of base assembly motion instability. Robotics. 1993(11): 351-362.
    [17] Homem de Mello, L. S., Sanderson, A. C. Correct and complete algorithm for the generation of mechanical assembly sequences. IEEE Journal of Robotics andAutomation. 1991, 7(2): 228-240.
    [18] Lee, K., Gossard, D. C. A hierarchical data structure for representing assemblies: part 2. Computer Aided Design. 1985, 17(7): 15-19.
    [19] Dini, G., Santochi, M. Automated sequencing and subassembly detection in assembly planning. Annals of the CIRP. 1992, 41(1): 1-4.
    [20]舒启林,王德俊,郝永平.装配顺序自动规划及其评价的研究.机械设计与研究. 2002,18(3):46-48.
    [21] Zhang, B. Design for the dimensional integrity of automobile body assembles [ PhD Dissertation]. USA: University of Michigan, 2000.
    [22]张以柱,周江奇.车身装配序列生成及分总成的识别.计算机辅助设计与图形学学报. 2002, 15(6):680-684.
    [23]周江奇.面向概念设计的车身结构精度评价和优化方法研究[博士论文].上海:上海交通大学,2005.
    [24] Swaminathan, Barber, K. S. APE: An experience-based assembly sequence planner for mechanical assemblies. IEEE International Conference on Robotics and Automation. 1995, 1278-1283.
    [25] Thurson, D.L. A formal method for subjective design evaluation with multiple attributes. Research in Engineering Design. 1991, 3 (2): 105-122.
    [26] Gadh, R. A hybid approach to intelligent geometric design using features-based design and feature recognition. Proceedings of 19th Annual ASME Design Automation Conference. 1993, 65(2): 273-283.
    [27] Serrano, D., Gossard, D., Ulrich, K., Fitzpatrick, D. Constraint management in conceptual design[PhD Dissertation]. MIT, Boston,1987.
    [28] Yao, Y.X., Xia, P.J., Liu, J.S., Li, J.G. A pragmatic system to support interactive assembly planning and training in an immersive virtual environment. International Journal of Advanced Manufacturing Technology. 2006, 30(9-10): 959-967.
    [29]舒贤林.图论基础及应用.北京:北京邮电学院出版社,1991.
    [30]徐家球,汪劲松,邱述斌,张伯鹏.装配顺序的与或图生成算法研究.机械工程学报. 1994,30(4):36-41.
    [31]李原,余剑峰,邵毅,杨海成.基于设计和装配过程的装配模型研究.西北工业大学学报. 2000, 36(4):28-31.
    [32] Cho, K. K., Sun, J. G., Oh, J. S. An automated welding operation planning system for block assembly in shipbuilding. International Journal of Production Economics. 1999, 60-61: 203-209.
    [33] Zussman, E., Zhou, M. C. Design and implementation of an adaptive process planner for disassembly processes. IEEE Transactions on Robotics and Automation. 2000, 16(2): 171-175.
    [34] Zussman, E., Lenz, E., Shpitalni, M. An approach to the automatic assemblyplanning problem. Annals of the CIRP. 1990, 39(1): 33-36.
    [35] Laperriere, L., Elmaraghy, H. A. Planning of products assembly and disassembly. Annals of the CIRP. 1992, 41(1): 5-9.
    [36] Heemskerk, C. J. M. The use of heuristics in assembly sequence planning. Annals of the CIRP. 1989, 38(1): 37-40.
    [37] Ko, H., Lee, K. Autoamtic assembling procedure generation from mating conditions. Computer Aided Design. 1987, 119(1): 3-10.
    [38]姜华,周济.机械装配设计的关键技术.华中理工大学学报. 1997,25(4):50-52.
    [39]姜华,周济.装配序列规划及其DFA研究.华中理工大学学报. 1996,24(9):50-52.
    [40] Boothroyd, G., Dewhinst, P. Product design for manufacture and assembly. Computer Aided Design. 1994, 26(7): 505-520.
    [41] Laperriere, L., Elmaraght, H. A. Assembly sequences planning for simultaneous engineering applications. Advanced Manufacturing Technology. 1994, 9(4): 231-144.
    [42] Takezawa, N. An improved method for establishing the process wise quality standard. Reports of Statistical and Applied Research, Union of Japanese Scientists and Engineers(JUSE). 1980, 27(3): 63-76.
    [43] Liu, S. C., Hu, S. J. Variation simulation for deformable sheet metal assemblies using finite element methods. Journal of Manufacturing Science and Engineering. 1997, 119(8): 368-374.
    [44] Dahlstom, S., Rikard, S. Analysis of final geometry due to welding process effects in sheet metal assemblies. International Program Committee of TMCE 2002 Symposium, Wuhan. 2002, 351-60.
    [45] Dahlstom, S., Lars, L. Variation simulation of sheet metal assemblies using the method of influence coefficients with contact modeling. Journal of Manufacturing Science and Engineering. 2007, 129 (3): 615-622.
    [46]胡敏.车身点焊装配偏差分析的建模方法研究[博士论文].上海:上海交通大学,2000.
    [47] Hsieh, C. C., Oh, K. P. Simulation and optimization of assembly processes involving flexible parts. Journal of Vehicle Design. 1997, 18(5): 455–465.
    [48] Hsieh, C. C., Oh, K. P. A framework for modeling variation in vehicle assembly processes. Journal of Vehicle Design. 1997, 18(5): 466–473.
    [49] Xie, Hsieh, C. C. Clamping and welding sequence optimization for minimizing cycle time and assembly deformation. Journal of Material Product Technology. 2002, 17 (5/6): 389-400.
    [50] Merkley, K. G., Chase, K. W., Perry, E. An introduction to tolerance analysis of flexible systems. MSC World Users’Conference, MSC Software Corp., Newport Beach, CA 1996.
    [51] Merkley, K. G. Tolerance Analysis of Compliant Assemblies[PhD Dissertation]. USA: Brigham Young University, 1998.
    [52] Stout, J. B. Geometric covariance in compliant assembly tolerance analysis[MS Dissertation]. USA: Brigham Young University , 2000.
    [53] Bihlmaier, B. F, Tolerance analysis of flexible assemblies using finite element and spectral analysis[MS Dissertation]. USA: BringHam Young University, 1999.
    [54] Mantripagada, R., Whitney, R. The datum flow chain: a systematic approach to assembly design and modeling. Research in Engineering Design. 1998, 10(3): 150-165.
    [55] Shiu, B W, Ceglarek, D, Shi, J. Flexible beam-based modeling of sheet metal assembly for dimensional control. Transactions of NAMRI/SME, 1997, XXV: 49-54.
    [56] Jin, J., Shi, J. Automatic feature extraction of waveform signals for in-process diagnostic performance improvement. Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, San Diego. 1998, 4716- 4721.
    [57] Jin, J., Shi, J., State space modeling of sheet metal assembly for dimensional control. Journal of Manufacturing Science and Engineering. 1999, 121(4): 756-762.
    [58] Hu, S. J., Stream of variation theory for automotive body assembly. Annals of the CIRP. 1997, 46(1): 1-6.
    [59] Camelio, J, Hu, S J, Modeling variation propagation of multi-station assembly systems with compliant parts. Proceeding of the Design Engineering Technical conferences, Pittsburgh, PA. 2001.
    [60] Chen, S., Lin, Z., Zhang Y. A parametric study of sheet metal joints for dimensional integrity. International Journal of Advantage Manufacture Technology. 2006, 29(5): 446–452.
    [61] Chen, G., Zhou, J., Cai, W. A Framework for an automotive body assembly process design system, Computer-Aided Design, 2006, 38(5): 531-539.
    [62]周江奇,陈关龙,金隼.遗传算法在车身装配连接方式优化中的应用.计算机辅助设计与图形学报. 2005,17(12): 2751-2755.
    [63]吴家驹译.合理化夹具设计.北京:世界图书出版公司, 1989.
    [64] Chen, Y. On the fixturing of non-prismatic workpieces under frictionless contact models. Proceedings of IEEE/RSJ Conference on Intelligent Robots and Systems, Canada, October 1998.
    [65] Lakshminarayana, K. Mechanics of form closure. ASME Technical. 1978, 78-DET-32.
    [66] Nguyen, V. Constructing force-closure grasps. International Journal of Robotics Research. 1988,7(3): 3-16.
    [67] Asada, H., Kitagawa, M. Kinematical analysis and planning for form closure grasps by robotics hand. Robotics and Computer-integrated Manufacturing. 1989,5(3): 293-325.
    [68] Youcef-Toumi, K., Liu, W., Asada, H. Computer-aided analysis of reconfigurable fixtures and sheet mental parts for robotics drilling. Robotics & Computer-Integrated Manufacturing. 1988, 4(3/4): 387-394.
    [69] Menassa, R. J., Devries, W. R. Optimization methods applied to selecting support positions in fixture design. ASME Journal of Engineering for Industry. 1991, 113(11): 412-418.
    [70] Rearick, M. R., Hu, S. J., Wu, S. M. Optimal fixture design for deformable sheet metal workpiece. Transactions of NAMRI/SME , 1993, 407-412.
    [71] Cai, W., Hu, S. J., Yuan, J. X. Deformable sheet metal fixturing principles, algorithms, and simulations. ASME Journal of manufacturing Science and Engineering. 1996, 118(3): 318-324.
    [72] Camelio, J., Hu, S. J., Ceglarek, D. Impact of fixture design on sheet metal assembly variation. Journal of Manufacturing Systems. 2004, 23(3): 182-193.
    [73]罗来军.基于焊装特征和偏差控制的车身柔性件焊装夹具设计方法研究[博士论文].上海:上海交通大学,2002.
    [74]王剑.复杂曲面柔性件测量夹具设计方法研究[博士论文].上海:上海交通大学,2002.
    [75] Dahlstr?m, S., Camelio, J. Fixture design methodology for sheet metal assembly using computer simulations. ASME International Mechanical Engineering Congress and Expositions, Washington, D.C., 2003.
    [76] Stone, R., McAdams, D., Kayyalethekkel, V. J. A product architecture-based conceptual DFA technique. Design Studies, 2004, 25 (3): 301-325.
    [77] Coma, O., Mascle, C., Veron, P. Geometric and form feature recognition tools applied to a design for assembly methodology. Computer-Aided Design. 2003, 35(13): 1193-1210.
    [78] Cai, W., Hu, S., Yuan J. A variational method of robust fixture configuration design for 3-D workpieces. ASME Journal of Manufacturing Science and Engineering. 1997, 19(4): 593-602.
    [79] Ford, R.,Fulkerson, D. Flows in networks. Princeton: Princeton University, 1962.
    [80] Bonneville, F., Henroud, J. M., Bourjault, A. Generation of assembly sequences with ternary operations. Proceedings of the IEEE International Symposium on Assembly and Task Planning. 1995: 245-249.
    [81] De Fazio, T. L., Abell, T. L. Computer-aided assembly sequence editing and choice: editing criteria, bases, rules, and technique. Systems Engineering, IEEE International Conference on 9-11 Aug. 1990, 416– 422.
    [82] Hu, S. J., Webbink, R., Lee, J., Long, Y. Robustness evaluation for compliant assembly systems. Journal of Mechanical Design. 2003,125(2): 262–267.
    [83] Ceglarek, D., Shi, J. Dimensional variation reduction for automotive bodyassembly. Manufactrue Review. 1995, 8(2): 139-154.
    [84] Ceglarek, D., Shi J. Fixture failure diagnosis for the auto-body assembly using pattern recognition. Journal of Enginnering for Industry. 1996, 118(1): 55-66.
    [85] Ceglarek, D., Shi J. Design evaluation of sheet metal joints for dimensional integrity. Journal of Manufactrue Science and Engineering. 1998, 120(2): 452-460.
    [86] Cho, K.K., Ahn, B.H. A hybrid genetic algorithm for group scheduling with sequence dependent group setup time. International Journal of Industrial Engineering: Theory Applications and Practice. 2003, 10 (4): 442-448.
    [87] Leaney, P. G., Marshall, R. The manufacturing challenge for automotive designers. In: J. Happian-Smith, ed. Fundamentals of Modern Vehicle Design. London: Edward Arnold, TBP circa 2000.
    [88] Lee, H.W. Variability characterization and tolerancing for automotive body assembly[PhD Dissertation]. USA: University of Michigan, 1998.
    [89] Holland, John, H. Genetic Algorithms. Scientific American, 1992, 267(1): 66-76.
    [90]周明,孙树栋编著.遗传算法原理及应用.北京:国防工业出版社,1999
    [91] Rudolph, G. Convergence analysis of canonical genetic algorithms. IEEE Trans on Neural Networks. 1994, 5(1) : 96-101
    [92] Renner, G., Ekart, A. Genetic algorithms in computer aided design. Computer-Aided Design. 2003, 35(8): 709-726.
    [93]续爱民,金烨.基于改进免疫遗传算法的船台吊装网络优化.计算机集成制造系统. 2006, 12(5): 715-720.
    [94] Dasgupta, D. Artificial immune system and their applications. Springer, 1999.
    [95] De Castro, L. N., Von Zuben, F. J. Artificial immune systems: part I basic theory and applications. Technical Report RT- DCA 01/99,1999.
    [96] Srinivas, M., Patnaik, L. M. Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics. 1994, 24(4): 655-665.
    [97] Kennedy, J., Eberhart, R. C. A discrete binary version of the particle swarm algorithm. Proceedings of the World Multi-conference on Systemic, Cybernetics and Informatics. Piscataway , NJ : IEEE Service Center , 1997. 4104-4109.
    [98] Kennedy, J. Small worlds and mega - minds: effects of neighborhood topology on particle swarm performance. Proceedings of IEEE Congress on Evolutionary Computation. Piscataway , NJ : IEEE Service Center , 1999. 1931-1938.
    [99] Kennedy, J. Stereotyping: Improving particle swarm performance with cluster analysis. Proceedings of the Congress on Evolutionary Computing Piscataway , NJ : IEEE Service Center , 2000. 1507-1512.
    [100] Clerc, M., Kennedy, J. The particle swarm explosion, stability, and convergence in a multi-dimensional complex space. IEEE Transactions on Evolutionary Computation. 2002, 6 (1) : 58-73.
    [101] Dorigo, M.,Gambardella, L. M. Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation. 1997,l(1): 53-66.
    [102] Dorigo, M.,Maniezzo, C. A. The ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems,Man,and Cybernetics. 1996,26(1): 1-13.
    [103] Hardy, R. L. Multi-quadric equations of topography and other irregular surface. Journal of Geophys Research. 1971.
    [104] Radial Basis function, M. D. Buhmann/ Mathematical institure .Justus Liebig University 35392 Giessen, Germany.
    [105]方开泰.均匀设计-数论方法在试验设计中的应用.应用数学学报. 1980(3): 363-372.
    [106]方开泰.均匀设计与均匀设计表.北京:科学出版社, 1994.
    [107]北京大学数学力学系数学专业慨率统计组.正交设计.北京:人民教育出版社. 1977.