不同尺度下紫色土水土流失效应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球范围内,70%的国家和地区都受到水土流失的危害,每年有250亿吨的肥沃表土流失。作为世界上水土流失最严重的国家之一,我国目前关于水土流失的研究远不能满足国家生态建设和经济迅速发展的需求。由于水土流失是具有明显尺度效应的过程,不同尺度下的水土流失既相互联系又相互区别。目前,在室内土槽、径流小区、坡面等单一尺度上对不同地区和不同土壤类型的水土流失进行了深入的研究,但针对径流小区、自然坡面、小流域三个不同尺度缺乏对比研究。同时,水土流失效应随研究区域面积的增加呈现非线性关系,区域甚至全球范围内水土流失机理的揭示必须首先解决不同尺度上影响水土流失因子对其效应的贡献率随研究区域增大的主次顺序易位问题,这些问题的解决最终需要回到小尺度上来解决。因此,阐明典型区域径流小区、自然坡面、小流域三个不同尺度下的水土流失效应和内在机理具有重要的理论和实践意义。
     紫色土是长江及其主要支流泥沙的主要来源。作为我国特有的一种土壤类型,紫色土质地松软,结构松散,易风化,抗蚀性较差,保水保土能力弱,是一种侵蚀型的高生产力岩性土。我国紫色土的侵蚀面积及强度仅次于北方的黄土。在三峡库区,人为活动加剧了土壤侵蚀过程,水土流失日趋严重,已影响到库区的生态安全和三峡水库的可持续利用。因此,本文以紫色土为研究对象,分别选择了重庆市万州区生态环境监测重点站内径流小区、紫色土自然坡面及戴家沟小流域为研究尺度单元,通过对土壤/泥沙颗粒和养分流失的分析研究,探讨径流小区、自然坡面、小流域三个不同尺度下水土流失效应及内在机理,以期揭示水土流失机理以及尺度效应,从而为紫色土水土流失的防治提供理论基础,也为下一步区域水土流失机理研究及预测预报模型构建、应用奠定了基础。
     1、径流小区尺度下紫色土水土流失效应。以万州典型区生态环境监测重点站内径流小区为研究单元,通过人工模拟降雨试验,对一定坡度不同坡位、不同雨强下紫色土径流小区中土壤颗粒变化和养分流失特征及其土壤颗粒—径流—养分耦合关系进行了分析研究。在降雨雨滴击溅和坡面径流的搬运、迁移以及冲刷作用下,径流小区上坡粘粒、粉粒含量降低,砂粒含量增多;中坡粘粒和砂粒含量增多,粉粒含量减少;下坡粘粒含量增多,砂粒和粉粒含量减少。随着雨强的增大,养分流失率在各坡面位置大体呈现增大的趋势。土壤颗粒在降雨前后的差异与土壤养分的流失存在不同程度的正相关关系。对比分析降雨前后坡面土壤团聚体含量变化,<0.25 mm和>2 mm团聚体含量在降雨后显著增加,其它粒径团聚体含量则有所下降。降雨前后土壤团粒分形维数差异越大,养分的流失率也越大。不同雨强下,侵蚀泥沙量都出现从升高到降低的一个过程,侵蚀泥沙峰值量随着雨强的增大而增大且出现时间也不断提前,其侵蚀泥沙养分峰值也有大致相同的趋势。但是由于不同养分对以泥沙为流失载体的吸附性不同,并非所有侵蚀泥沙养分含量都随着降雨强度的增大而增大。随着雨强的增大、产流时间的增加,径流养分累积量也相应增大。在相对较大雨强条件下径流流速与产流历时为幂函数关系,而在小雨强条件下流速与产流历时为二次曲线关系。径流养分与径流量之间的关系表现为,径流强度和径流流速与径流养分中总氮浓度和径流总磷浓度相关关系不明显,但是与相应的总氮、总磷流失量呈现明显的相关关系。
     因此,在径流小区尺度上,降雨对土壤颗粒组成的影响表现为上坡细颗粒的减少,粗颗粒的增多;下坡细颗粒的增多,粗颗粒的减少;对团聚体的影响表现为<0.25 mm和>2 mm团聚体含量增加;土壤养分流失率与土壤颗粒变化、团聚体稳定性变化存在相关关系:侵蚀泥沙量、侵蚀养分均随着雨强的增大、产流时间的增加而增加,但不同养分元素间存在着差异。
     2、自然坡面尺度下紫色土水土流失效应。以紫色土自然坡面为研究单元,利用~(137)Cs示踪技术测定自然坡面不同地貌部位、典型土地利用类型地块的土壤侵蚀模数,分析坡面侵蚀泥沙来源,探讨坡面不同地貌部位、不同土地利用类型的土壤侵蚀强度差异;以坡面径流出口测流堰自然降雨观测资料为基础,研究了坡面土壤颗粒、侵蚀泥沙颗粒变化特征,土壤养分、径流养分、侵蚀泥沙养分变化特征,土壤颗粒变化与侵蚀之间的关系,探讨土地利用类型、坡位等对坡面土壤侵蚀模数、土壤颗粒变化特征及养分流失特征的影响。坡面位置和土地利用对自然坡面土壤颗粒组成的空间分布具有重要影响。不同土地利用类型间土壤粘粒含量从大到小为荒草地>林地(疏林地,桔林地,桃林地)>农耕地;同一土地利用类型不同坡面位置土壤粘粒含量从小到大依次为上坡<中坡<下坡。侵蚀泥沙的变化过程表现为随着降雨产流历时的进行,其侵蚀泥沙中砂粒的变化特征分别呈现出先增大后减小的趋势,而粘粒含量则呈现出先减小后增大的变化特征,并且两种颗粒的变化趋势与产流历时都呈现出回归效果较好的二次曲线关系。自然坡面各土地利用类型下各养分元素在不同坡位上的平均含量都呈现出上坡位<中坡位<下坡位的特征。降雨侵蚀泥沙中的有机质、全氮、有效磷在产流历时中都呈现出先减小后增大的趋势,与产流历时呈较好的二次曲线关系;侵蚀泥沙中全磷和碱解氮随产流历时则呈现出持续减低的趋势,与产流历时都为较好的幂函数关系。土壤侵蚀模数与有机质、全氮以及全磷存在极显著负相关关系;侵蚀泥沙中有机质和有效磷则与泥沙颗粒组成中的粘粒和砂粒分别存在极显著正相关和负相关关系:侵蚀泥沙中全氮含量则和颗粒组成中各组分都存在极显著相关关系,且上述养分与各自对应的颗粒呈现良好的线性回归关系。
     因此,在自然坡面尺度上,土壤粘粒含量在不同土地利用类型间以荒草地最高、农耕地最低,在不同坡面位置间以下坡为高、上坡为低;侵蚀泥沙中砂粒随降雨产流历时的进程先增后减、粘粒则与之相反;侵蚀泥沙中养分与产流历时成二次曲线或幂函数关系,同时也与侵蚀泥沙颗粒组成各组分成不同程度的线性关系。
     3、小流域尺度下紫色土水土流失效应。以重庆市万州区戴家沟小流域为研究单元,以~(137)Cs示踪法为技术手段,结合自然降雨监测数据,研究探讨了土地利用类型、流域空间变异等对土壤侵蚀模数、土壤颗粒变化特征及养分流失特征的影响。不同地貌部位的侵蚀特征筹异显著,小流域上游、中游、下游的土壤侵蚀模数分别为4205.74 t·km~2·a~1、2466.26 t·km~2·a~1、1552.91 t·km~2·a~1;上游马尾松林的土壤侵蚀模数为2839.92 t·km~2·a~1,是中游、下游的1.35倍、10.59倍;上游农耕地土壤侵蚀模数为5343.74 t·km~2·a~1,分别是中游、下游的1.96倍、2.92倍;上游柑桔林土壤侵蚀模数为3837.1 t·km~2·a~1,分别是中游、下游的1.63倍、2.97倍。在降雨雨滴击溅,坡面径流搬运、迁移以及冲刷作用下,从上坡至中坡、下坡,表层土粘粒含量整体上呈增加趋势,粉粒含量随坡位降低而增加,砂粒含量上坡大于中坡及下坡。相同坡位,土壤颗粒随土层深度的变化规律为:从表层到中层、下层粕粒及粉粒含量先增加后减少,整体上呈增加趋势;砂粒含量先减少后增加,整体上呈减少趋势。流域位置对各土地利用类型土壤颗粒组成有显著影响。对荒草地和柑桔林而言,粘粒含量的变化趋势为上游<中游<下游,砂粒含量则呈相反规律;对农耕地而言,粘粒含量的变化规律为下游<上游<中游,砂粒含量为上游>下游>中游。流域下游土壤颗粒的比表面积高于中游和上游。在降雨、土地利用类型等众多因素的作用下,小流域侵蚀泥沙颗粒组成砂粒多沉积于流域局部,细颗粒、粉粒等随径流迁移到达流域出口,因此,呈现出流域侵蚀泥沙<0.05 mm颗粒的比重、粗颗粒的含量低规律,其中<0.05mm的比重高达80%,是砂粒比重的4倍。侵蚀泥沙中有机质、全氮含量与粘粒含量呈极显著正相关(R分别为0.921、0.860),碱解氮含量与粘粒含量呈显著正相关;氮素与砂粒含量呈极显著负相关;有效磷及全磷含量仅与粉粒呈极显著正相关,相关系数分别为0.925、0.968。
     因此,在小流域尺度上,土壤侵蚀模数均在上游有最大值,下游有最小值;下游土壤颗粒的比表面积要高于中、上游的;侵蚀泥沙中以<0.05 mm细颗粒为主,达80%;侵蚀泥沙中各养分与其颗粒组成也存在不同的相关性。
     4、不同尺度下紫色土水土流失效应对比分析。通过对不同尺度研究单元的土壤/泥沙颗粒组成、养分变化以及颗粒—养分耦合特征的比较分析,探讨了不同尺度间水土流失机理的差异以及尺度效应转化的可能性。从土壤颗粒组成来看,在径流小区尺度上,不同坡位间差异不大;在自然坡面尺度上,不同坡位出现了较大的差异;在小流域尺度上,不同坡位和不同流域位置间出现了明显的差异。土壤颗粒组成差异性的增加,可能是水土流失效应的影响因子多元化和复杂化以及各因子协同耦合关系复杂化的原因。在外界降雨条件相似的情况下,侵蚀泥沙中粘粒含量与产流历时的关系从径流小区尺度的不明显关系转变为自然坡面和小流域尺度下的二次曲线关系;砂粒含量与产流历时在径流小区、自然坡面和小流域尺度上的关系分别为幂函数、二次曲线和二次曲线关系;粉粒含量与产流历时在径流小区、自然坡面和小流域尺度上的关系分别为幂函数、无明显和二次曲线关系。从中可以发现,随着尺度的增大,侵蚀泥沙中各颗粒组分与产流历时的关系都有趋于呈现出二次曲线关系特征。从养分变化和产流历时的关系来看,从径流小区尺度到小流域尺度,有机质、全氮和碱解氮与产流历时的关系从幂函数关系转变为二次函数关系,全磷、有效磷与产流历时的关系从幂函数转变为一次函数的关系。从土壤颗粒和侵蚀泥沙的耦合关系来看,在径流小区尺度上,相似雨强下全钾含量与侵蚀泥沙粘粒和砂粒存在显著相关;在自然和小流域尺度上,有机质、全氮、全磷、碱解氮以及有效磷与侵蚀泥沙颗粒组成存在着一定程度的一次曲线关系;通过对比分析发现,随着尺度的增大,与侵蚀泥沙颗粒组成产生耦合关系的侵蚀养分更多,且耦合关系也产生了变化。从侵蚀模数与侵蚀泥沙量的关系来看,在径流小区尺度上,仅侵蚀泥沙中有机质含量与侵蚀泥沙量存在显著相关关系;在自然坡面和小流域尺度上,侵蚀泥沙中有机质、全氮以及碱解氮含量与侵蚀模数之间存在显著关系;土壤养分随着土壤侵蚀模数的增加而增加,且随着尺度的增加,具有这种关系的养分种类有增加趋势。
     在径流小区、自然坡面和小流域尺度上,土壤/泥沙颗粒变化、养分流失情况以及两者间的耦合关系都存在不同程度的差异性。这是由于在不同尺度上影响水土流失效应的因素不同以及主次顺序不同所致。在径流小区尺度上,水土流失效应主要受降雨特性和土壤特性的影响;而在自然坡面尺度上,地形和植被也是影响水土流失效应的主要因素;在小流域尺度上,则还需考虑这些因素的空间变异性。
     综上所述,本文从径流小区、自然坡面和小流域尺度对紫色土区水土流失效应机理以及尺度间的相互转化进行了探讨,获得了各尺度下土壤/泥沙颗粒变化、养分流失情况以及两者间的耦合关系,同时也得出影响因素是造成尺度效应的主要原因,在一定程度上揭示了紫色土区域水土流失机理以及尺度效应。但是,水土流失尺度效应还缺乏深入的理论研究,今后应在水土流失尺度效应理论方面开展更深入的研究,为建立不同空间尺度下水土流失效应定量评价模型和实现水土流失空间尺度效应定量评价与尺度转换提供依据。
Globally,more than 70 percent of the areas are suffering the soil erosion,and the loss amount of surface soil arrives at 25 billion ton per year.As one of the countries which is suffering the most serious erosion,the preexisting study about the soil loss is still inadequate to meet the national development and ecological construction in China.Due to the scale effect,the characteristics of soil loss in the different scales are combined with each other and also different from each other.The previous studies were mostly focused on the soil erosion developing in the single scale(e.g.soil slot, runoff plot,slope etc.),however,the comparisons among these scales are relative lacking.At the same time,the effects of soil loss appear the nonlinear influences along with enlarging study area.In the regional or even worldwide scale,the change of different influence factor's weight is the critical content in order to reveal the mechanism of soil loss in different scale.Most of all,the soil erosion in the small scale is the base.So,it has important theory and practice significances to illustrate the effects of soil erosion in three scales(runoff plot,toposequence and catchment) and the internal mechanism.
     The sediment in the Yangtze River mostly originates from the purple soil in the drainage area. As a special soil type of China,the purple soil is characterized by soft texture and high erodibility. Despite high productivity,the purple soil is very vulnerable to weathering and soil loss.Among all China soil types,the erosion area and erosion intensity of purple soil ranked second behind the Loess. In the Three Gorge region,the human activities also accelerate the soil erosion process.The soil loss problem is getting worse year by year and has become a threat to the ecology safety and sustainable development in this region.So,the study focused on the purple soil area,and aimed at revealing the effects of soil erosion in different scales,establishing the foundation for controlling soil erosion and constructing regional soil loss predicted model.Three scales in the Daijiagou catchment,including catchment,toposequence and runoff plot,were applied in our research.With the aids of monitoring equipment,the sediment and runoff were observed,the nutrient contents were tested.
     1.Within the runoff plot scale,the method of simulated rainfall was applied.Consequently,the changes of soil particle and nutrient loss on the different slope positions and different rainfall intensities were investigated.Moreover,the relationships among the soil particle,runoff and nutrient were analyzed.It is found,under the effects of splashing by the raindrop,detaching/dispersing, transporting and scouring by the flow,the contents of clay and silt decline with the increasing content of the sand in the upper-slope.Different from the upper-slope,the contents of clay in the mid- and lower-slope increase,and the content of sand decreases in the lower-slope.Generally,the losing rates on the different slope positions present the increasing trend with the rainfall intensity enhancing.The difference of soil particle between pre- and post-rainfall is positive correlated with the nutrient's loss in various degrees.When comparing with the changes,the soil aggregate with<0.25mm and>2mm increase significantly after rainfall,and the soil aggregate with else sizes increase.The correlation between fractal dimensions of soil aggregate(D) and nutrient losing demonstrates that,the greater difference in D(pre- and after-rainfall) follows with the more much nutrient's losing rate.All sediment loads under the different rainfall intensities exhibit the processes from rising to declining.The time appearing the maximum concentration of sediment is shorter with more enhancive rainfall intensity,and the similar trend still occurs in the maximum nutrient concentration of the sediment.However,not all the nutrient content of sediment increases along with the rainfall intensity enhancing,due to the different adsorbability of nutrient on soil particle.The cumulative quantity of runoff's nutrient increases correspondingly along with the more enhancing rainfall intensity and longer duration of runoff generation.The velocity of runoff and the duration of runoff generation are related with a power function under the relative larger rainfall intensity,and the relation is transfer into the quadratic curve under the weak rainfall intensity.The relations between the runoff intensity/runoff velocity and the concentration of total nitrogen(TN)/total phosphorus(TP) are unremarkable,however,significant correlations exists when comparing with the corresponding capacity of losing TN and TP.
     In general,fine soil particle decreases and coarse soil particle increases in the upper-slope during the erosive process,and opposite phenomena appears in the lower-slope.The changes of soil aggregates with<0.25mm and>2mm increase after rainfall,and losing nutrient is related with soil texture,stability of soil aggregate;The sediment load,losing nutrient is increasing along with the enhancing rainfall intensity and prolonging duration of runoff generation,but the characteristics are distinguishing for different nutrient elements.
     2.Within the toposequence scale,with the help of ~(137)Cs tracer technique,the soil erosion modulus in different topography positions and different land use were detected.The source of sediment was analyzed,and discussed the difference of the soil erosion modulus in different conditions(topography and land use).At the same time,the changes of particle size and nutrient content in the slope surface,sediment and runoff were analyzed;the relationships among them were investigated,based on the observed data from the outlet of toposequence.It was found,the position and the land use significantly influences the spatial distribution of soil particle.The sequence of soil clay content in the different land is waste-grassland>forest land(open forest land,orange forest land,peach forest land)>cropland.The order of soil clay content in the different position with same land use is upper-slope>mid-slope>lower-slope.The sand content of sediment particle increases firstly and reduces afterward along with the erosion process,and the content of clay presents the reverse phenomena.Both of above mentioned textures show the quadratic curve relation with the runoff duration.In the toposequence,the average content of every nutrient element in different land use present the same characteristics:upper-slope<mid-slope<lower-slope.The organic matter, total nitrogen and available phosphorus in the sediment appear the same trends,which is increasing firstly and reducing afterward along with runoff duration.In addition,their contents exhibit the quadratic curve function with the runoff duration.The total phosphor and the available nitrogen in the sediment present the declining trend along with the runoff duration,and their contents exhibit the power function with the runoff duration.There is a significant negative correlation between the soil erosion modulus and the contents of organic matter,total nitrogen,total phosphorus.The content of organic matter and available phosphor presents significant positive correlation with the content of clay,but the opposite relationship occurs when facing the content of sand.There is a significant correlation between the content of total nitrogen and soil particle.Moreover,the nutrients what aforementioned correlate with the corresponding soil particle by linear function.
     Collectively,in the toposequence scale,the clay content is highest in the waste grassland,and lowest in the cropland.Lower-slope appears the high concentration of clay and the upper-slope appears the low concentration.The sand content of sediment increases firstly and reduces afterward along with the erosion process,and the content of clay presents the reverse phenomena.The nutrient content in the sediment correlated with the runoff duration by the quadratic curve or power functions, and is linear with the soil particle in varying degrees.
     3.Within the catchment scale,with the aids of ~(137)Cs tracer technique and combining the monitoring data of precipitation,the influences of the land use types and the spatial variability effecting on the soil erosion modulus,soil particle and the nutrient loss were discussed.It was found, the average soil erosion modulus are 4205.74 t·km~(-2)·a~(-1),2466.26 t·km~(-2).a~(-1) and 1552.91t·km~(-2)·a~(-1) respectively in the upper,middle and lower reaches of Daijiagou catchment.In the upper reaches, the soil erosion modulus in the masson pine land,cropland and orange forest land are 2839.92t·km~(-2)·a~(-1),5343.74 t·km~(-2)·a~(-1) and 3837.1 t·km~(-2)·a~(-1) respectively.For the masson pine land,the average soil erosion modulus are 2839.92 t·km~(-2)·a~(-1),2103.64 t·km~(-2)·a~(-1) and 268.17 t·km~(-2)·a~(-1) respectively in the upper,middle and lower reaches.For the cropland,the average soil erosion modulus are 5343.74 t·km~(-2)·a~(-1),2726.40 t·km~(-2)·a~(-1) and 1830.05 t·km~(-2)·a~(-1) respectively in the upper, middle and lower reaches;In the orange forest land,the average soil erosion modulus are 3837.10 t·km~(-2)·a~(-1),2354.05 t·km~(-2)·a~(-1) and 1291.95 t·km~(-2)·a~(-1).Due to the effects of splashing by the raindrop, detaching/dispersing,transporting and scouring by the flow,the clay and silt contents on the slope surface increase from the upper- to lower-slope,and the sand content in upper-slope is higher than that in mid- and lower-slope.With the same position(upper-,mid- or lower-slope) of the whole slope,the clay and silt contents increase firstly and decrease afterward from the surface soil to deep soil.The different positions and land use types in the catchment have deeply influenced the soil mechanical composition.In the waste-grassland and the orange forest land,the clay content decreases from the upstream to downstream of catchment;but the reverse trend is presented by the sand content;In the cropland,the clay content is the most in mid-reaches of the catchment,and the clay content is lest in the lower reaches.The soil specific area(SSA) in the lower reaches is larger than that in middle and upper reaches.In the different rainfall conditions and land use types,the coarse sediment be settled down in some areas of catchment and the fine sediment can be transferred into the outlet of catchment following with the runoff.So in the outlet of catchment,the specific gravity of the sediment with<0.05 mm is 80%,equals to 4 times the specific gravity of the sand. According to the correlation analysis,the organic matter and total nitrogen in the sediment have significantly correlated with the clay content(correlation coefficient R is 0.921 and 0.860 respectively).And the available nitrogen in the sediment had positive correlation with the clay content.The nitrogen in the sediment had significant negative correlation with the sand content,and the available phosphorus and total phosphorus in the sediment had highly significant correlation with the silt content,the correlation coefficient is 0.925 and 0.968 respectively.
     Therefore,in the catchment scale,the highest and lowest soil erosion modulus appears in the upper and lower reaches respectively.The soil specific area(SSA) in the lower reaches is larger than that in the middle and upper reaches.The sediment particle is mostly composed by the fine particle with<0.05mm,and there are some different correlations between the sediment nutrients and soil mechanical compositions.
     4.Comparison and analysis of the soil erosion's characteristics in the different scales. According to the changes of soil/sediment particle size and the nutrient loss,the relationship between them in different research scales,the mechanism of soil loss and the scale effect transferring were discussed.It was found,in the runoff plot scale,the variations of soil particle in the different slope positions are unobvious,but remarkable variation appears in the scale of toposequence and catchment.Because of the complex factors that influence the soil erosion and the complicated relationships among different influencing factors,the variability of soil particle becomes more and more obviously along with the scales enlarging.Under the same rainfall condition,in the runoff plot area,the relationship between clay content and runoff generation time is not obvious,but in the scales of toposequence and catchment,the relationship between the clay content in sediment and runoff generation time is regressed by the quadratic curve.In the scales of runoff plot,natural slop and catchment,the relationships between the sand content in sediment and the runoff generation time demonstrate the functions of power,quadratic and quadratic respectively.And the relationships between silt content and runoff generation time in the runoff plot is power function,the relationship is changed into the quadratic function in the catchment.The relationships between all kinds of sediment particles and the runoff generation time tend to appear the quadratic function when the scale is enlarged from the runoff plot to catchment,and the relationship between soil organic matter and runoff generation time is transferred from power function into quadratic function,same variety is appeared in the relationship between total nitrogen,available nitrogen and the runoff generation time.In addition,the relationship between total phosphor and runoff generation time is varied from the power function into linear function,the same changes is occurred between the avail phosphor and the runoff generation time.According to the relationship between soil particles and the sediment, under parallel rainfall conditions,the correlation between the total potassium and clay content,and content in sediment is significant,in the runoff plot.In the scales of toposequence and catchment, the linear relationship between the sediment particle size and the nutrient content(soil organic matter, total nitrogen,total phosphor,available nitrogen,and available phosphor) do exist.According to the comparison and analysis,the number of nutrient element which is related with the soil particle size is enlarged.In the scale of runoff plot,there is a significant correlation between soil organic matter and sediment load,and the soil organic matter,total nitrogen and available nitrogen in the sediment significantly correlates with the soil erosion modulus when facing the scales of natural and catchment.The soil nutrient loss become more seriously along with more serious soil erosion modulus.
     It has degrees of difference between soil/sediment particles composition and nutrient loss,as well as their relationship in the scales of runoff plots,toposequence and small catchment.That is because of differing the impact of soil erosion at different scales,as well as primary and secondary effects of the different factors that result in a different order.In the scale of runoff plot,soil erosion is mainly impacted by the characteristics of rainfall and soil.However,topography and vegetation are the main factors affecting soil erosion in a toposequence scale.Then it needs to consider these factors of spatial variability in the small catchment scale.
     To sum up the above arguments,we studied the soil erosion effect in different scales,and discussed their transformation.Through the monitoring outside and experiment inside,the changes of soil/sediment particle size,nutrient loss and their relationship in different scales were detected, which also is the critical reason causing the scale effects of soil erosion.The research partly revealed the soil loss mechanism and scale effect in the purple soil area.However,it still needs more theory study about the scale effect.We should e develop the research about the scale effect of soil erosion further,which will provide the basis for establishing quantitative soil erosion predicted model,and realizing the quantitative evaluation of soil erosion effects for spatial scale and scale transformation.
引文
[1]郑粉莉,高学田.黄土坡面土壤侵蚀过程与模拟[M].陕西人民出版社.陕西:西安,2000.
    [2]郑粉莉.土壤侵蚀学科发展战略[J].水土保持研究,2004,11(4):1-10.
    [3]张兴昌,刘国彬.不同土壤颗粒组成在水蚀过程中的流失规律[J].西北农业学报,2000,9(3):55-58.
    [4]Burwell R E,TimmonsD R,Holt R F.Nutrient transport in surface runoff as affected by soil cover and seasonal periods[J].SoilSci.Soc.Am.Proc.1975,37:523-538.
    [5]Alberts E E,Wendt R C,Piest R F.Physical and chemical properties of erosion sediment [J].Adv.Agron.1983,15:303-316.
    [6]Gregory F.Nitrogen and phosphorus in eroded sediment from corn and soybean tillage system [J].Enviorn.Qual.1991,20:663-670.
    [7]李裕元.坡地土壤磷素与水分迁移试验研究[J].西北农林科技大学博士学位研究生毕业论文,2002,5.
    [8]Young R A,Onstad G A(王玲译).土壤性质对侵蚀和养分流失的影响[J].中国水土保持,1984,(5):57-59.
    [9]Young R A,Olness A E,Mutchler C K etal.Chemical and physical enrichments of sediment from cropland[J].Erosion and soil Productivity.American Society of Agricultural Engineers,1985,107-116.
    [10]黄丽,张光远.侵蚀紫色土土壤颗粒流失的研究[J].土壤侵蚀与水土保持学报,1999,5(1):35-39.
    [11]Neibling W H,Moldenhauer W C,Holmes B M..Evaluation and comparison of two methods for characterization of sediment sizedistribution[M].Transactions of the ASAE,1983,472-480.
    [12]林正雨,邓良基,高雪松.川中丘陵区土壤颗粒分形特征[J].山地学报,2006,(24):120-125.
    [13]闫峰陵.红壤表土团聚体稳定性特征及其对坡面侵蚀过程的影响[A].华中农业大学博士学位论文,2008,6.
    [14]Young R A.Characteristics of eroded sediment[J].Trans ASAE,1980,23:1139-1146.
    [15]Bryan R B.Soil erodibility and process of water erosion on hill slopes[J].Geomorphology,2000,32:385-415.
    [16]郭伟,史志华.红壤表土团聚体粒径对坡面侵蚀过程的影响[J].生态学报,2007,27(6):2516-2522.
    [17]Reichert J M,Norton L D.Aggregate stability and rain-impacted sheet erosion of air-dried and prewetted clayey surface soils under intense rain[J].Soil Sci,1994,158:159-169.
    [18]Mamedov A I,Shainberg I,Levy G J.Wetting rate and sodicity effects on interrill erosion from semi-arid Israeli soils[J].Soil Till Res,2002,68:121-132.
    [19]Teixeira P C,Misra R K.Erosion and sediment characteristic of cultivated forest soils as afeected by the mechanical stability of aggregates[J].Catena,1997,30:119-134.
    [20]Barthes B,Roose.Aggregate stability as an indicator of soil susceptibility to runoff and erosion;validation at several levels[J].Catena,2002,47:133-149.
    [21]李勇,昊钦孝,朱显漠等.黄土高原植物根系提高土壤抗冲性能的研究Ⅰ:油松人工林根系对土壤抗冲性的增效研究[J].水土保持学报,1990,4(1):1-5.
    [22]杨玉盛,何宗明,林光耀等.不同治理模式对严重退化红壤抗蚀性影响的研究[J].土壤侵蚀与水土保持学报,1996,2(2):32-37.
    [23]Larionov G A,Bushueva O G,Dobmvol,skaya Ng,Kiryukhina Z P,Litvin L F,Maksimova IA[J].Destruction of soil Sci,2007,40(10):1128-1134.
    [24]Abu-Hamdeh N H,Abo-Qudais S A,Othman A M.Effect of soil aggregate size on infiltration and erosion characteristic[J].Eur J Soil Sci,2006,57:609-616.
    [25]Lado M,Paz A,Ben-Hur M.Organic matter and aggregate size interactions in inflitration seal formation and soil loss[J].Soil soc Am J,2004b,68(3):935-942.
    [26]骆东奇,侯春霞,魏朝富等.紫色土团聚体抗蚀特征研究[J].水土保持学报,2003,17(2):20-23.
    [27]廖义善.黄土丘陵沟壑区坡面侵蚀产沙地形因子的临界条件[J].中国水土保持科学,2008,6(2):32-38.
    [28]王占礼,王亚云,黄新会等.黄土裸坡土壤侵蚀过程研究[J].水土保持研究,2004,11(4):84-87.
    [29]王占礼,黄新会.黄土裸坡降雨产流过程试验研究[J].水土保持通报,2005,25(4):1-4.
    [30]周璟,何丙辉.坡度与种植方式对紫色土侵蚀与养分流失的影响研究[J].中国生态农业学报,2009,17(2):239-243.
    [31]孙飞达,王立,龙瑞军等.黄土丘陵区不同降雨强度对农地土壤侵蚀的影响[J].水土保持研究,2007,14(2):16-18.
    [32]王志刚,郑粉莉,李靖.不同近地表水文条件下紫色土坡面土壤侵蚀过程研究[J].水土保持通报,2007,27(6):9-11.
    [33]马琨等.红壤坡面产流产沙与养分流失特征研究[J].宁夏农学院学报,2003,24(2):3-7.
    [34]陈洪松,邵明安,王克林.土壤初始含水率对坡面降雨入渗及土壤水分再分布的影响[J].农业工程学报,2006,22(1):44-47.
    [35]王辉等.前期土壤含水量对坡面产流产沙特性影响的模拟试验[J].农业工程学报,2008, 24(5):65-68.
    [36]刘刚才,高美荣,林三益.紫色土两种耕作制的产流产沙过程与水土流失观测准确性分析[J].水土保持学报,2002,16(4):108-113.
    [37]蔡强国,吴淑安.紫色土陡坡地不同土地利用对水土流失过程的影响[J].水土保持通报,1998,18(2):1-8.
    [38]董煌标,张建军,张波等.晋西黄土区不同地类降雨-坡面径流关系研究[J].干旱区资源与环境,2009,23(1):110-116.
    [39]张科利.黄土坡面侵蚀产沙分配及其与降雨特征关系的研究[J].泥沙研究,1991,(4):9-46.
    [40]郑粉莉,康绍忠.黄土坡面不同侵蚀带侵蚀产沙关系及其机理[J].地理学报,1998,53(5):422-428.
    [41]郑粉莉.坡面降雨侵蚀和径流侵蚀研究[J].水土保持通报,1998,18(6):17-21.
    [42]丁文峰,张平仓,王一峰.紫色土坡面壤中流形成与坡面侵蚀产沙关系试验研究[J].长江科学院院报,2008,25(3):14-17.
    [43]辛伟,朱波,唐家良等.紫色土丘陵区典型坡地产流及产沙模拟试验研究[J].水土保持通报,2008,28(2):31-35.
    [44]唐克丽,张仲子,孔晓玲等.黄土高原水土流失与土壤退化的研究[J].水土保持通报,1987,18(6):12-18.
    [45]白红英,唐克丽,陈文亮等.坡地土壤侵蚀与养分流失过程的研究[J].水土保持通报,1991,11(3):14-19.
    [46]胡宏祥,马友华.水土流失及其对农业非点源污染的影响[J].中国农学通报,2008,124(6):408-412.
    [47]李勇,王超,汤红亮.小流域坡地表土层营养物质输运规律研究进展[J].河海大学学报,2004,32:627-631.
    [48]Lentz.R.D.Sojka.and C.W.Robbins.Reducing phosphorus losses from surface-irrigated fields:Emerging polyacry lamide technology[J].Environ.Qual,1998,Vol.27:305-312.
    [49]蔡崇法,丁树文,张光远等.三峡库区紫色土坡地养分状况及养分流失[J].地理研究,1996,15(3):77-84.
    [50]Sharpley A.N.The enriehment of soil phoephorus in runoff sediments[J].Environ Qual,1983,Vol 9:521-526.
    [51]黄丽,丁树文,董舟等.三峡库区紫色土养分流失的试验研究[J].土壤侵蚀与水土保持学报,1998,4(1):8-13.
    [52]廖晓勇,陈治谏.三峡库区紫色土坡耕地不同利用方式的水土流失特征[J].2005,12(1):159-161.
    [53]康玲玲,朱小勇,王云璋等.不同雨强条件下黄土性土壤养分流失规律研究[J].土壤学报,1999,36(4):536-543.
    [54]晏维金,张申,唐以剑.模拟降雨条件下沉积物对磷的富集机理[J].环境科学学报,2000,20(3):332-337.
    [55]张冠华,刘国彬,王国梁等.黄土丘陵区两种典型灌木群落坡面侵蚀泥沙颗粒组成及养分流失的比较[J].水土保持通报,2009,29(1):1-6.
    [56]Roth C H,Eggert T.Mechanisms of aggregate breakdown involved in surface sealing,runoff generation and sediment concentration on loss soils[J].Soil Tillage Research,1994,32:253-268.
    [57]Le Bissonnais,Y.Aggregate stability and assessment of soil crustability and erodibility:Theory and methodology[J].Eur.Soil Sci,1996,47:425-435.
    [58]Shainberg L.D.Warrington and Frenkel H.Aggregate stability and seal formation as affected by drops' impact engergy and soil amendments[J].Soil Sci,1992,154:113-119.
    [59]Douglas C.L.,Jr K.A.,King J.F.,Zuzel.Nitrogen and Phosphprus in Surface Runoff and Sediment from a Wheat-Pea Rotation in Northeastern Oregon[J].Environ Qual,1998,27:1170-1177.
    [60]Gregorich E.G.,Greef K.J.,Anderson D.W.,Liang B.C..Carbon distribution and losses:erosion and deposition effects[J].Soil&Tillage Research,1998,47:291-302.
    [61]Alberts E.E.,Wender R.C.,Piest R.F.,Physical and chemical properties of erosion sediment[J].Adv,Agrom,1983,VOL.15:303-316.
    [62]王全九,张江辉,丁新利等.黄土区土壤溶质径流迁移过程影响因素浅析[J].西北水资源与水工程,1999,10(1):9-13.
    [63]McDowell R W,Sharp ley A N.The effect of antecedent moisture conditions on sedi ment and phos phorus loss during overland flow:Mahantango Creek catchment,Pennsylvanian[J].USA.Hydr ological Processes,2002,(16):3037-3050.
    [64]孔刚,王全九,樊军等.前期含水量对坡面降雨产流和土壤化学物质流失影响研究[J].土壤通报,2008,39(6):1395-1399.
    [65]王辉,王全九,邵明安.前期土壤含水量对黄土坡面氮磷流失的影响及最优含水量的确定[J].环境科学学报,2008,28(8):1571-1578.
    [66]张长保,王全九.模拟降雨下初始含水量对砂黄土硝态氮迁移特征的影响[J].植物营养与肥料学报,2008,14(5):894-899.
    [67]张玉斌,郑粉莉,曹宁.近地表土壤水分条件对坡面农业非点源污染物运移的影响[J].环境科学,2009,30(2):376-383.
    [68]Gburek W.L.and A.N.Sharpley.Hydrologic controls on phosphorus loss from upland agricultural watersheds[J].Environ.Qual,1998,Vol.27:267-277.
    [69]Snyder,Woolhiser.Effect of infiltration on chemical transport into overland flow[J].Trans of ASAE,1985,28:1457-1470.
    [70]Y.Wan and S.A.EI-Swalfy.Sediment Enrichment Mechanisms of Orgnic Carbon and Phosphorus in a Well-Aggregated Oxisol[J].Environ.Qual.,1998,27:132-138.
    [71]贾洪文.降雨与土壤养分流失关系分析[J].水土保持应用技术,2007,(1):21-23.
    [72]蔡强国,吴淑安.紫色土陡坡地不同土地利用对水土流失过程的影响[J].水土保持通报,1998,18(2):1-8.
    [73]康玲玲,朱小勇,王云璋等.不同雨强条件下黄土性土壤养分流失规律研究[J].土壤学报,1999,36(4):536-543.
    [74]傅涛,倪九派,魏朝富等.不同雨强和坡度条件下紫色土养分流失规律研究[J].植物营养与肥料学报,2003,9(1):71-74.
    [75]Palis R.G.,Okwach C.W.et al.Soil erosion Process and nutrient loss:The interpretation of enrichment ratio and nitrogen loss in runoff sediment Aust[J].Soil Res.1990,28:623-639.
    [76]马琨,王兆骞,陈欣等.不同雨强条件下红壤坡地养分流失特征研究[J].水土保持学报,2002,16(3):16-19.
    [77]徐泰平,朱波,汪涛等.不同降雨侵蚀力条件下紫色土坡耕地的养分流失[J].水土保持研究,2006,13(6):139-141.
    [78]吕甚悟,李君莲.降雨及土壤湿度对水土流失的影响[J].土壤学报,1992,29(1):94-103.
    [79]吕甚悟,陈谦,袁绍良等.紫色土坡耕地水土流失试验分析[J].山地学报,2000,18(6):520-525.
    [80]Flanagan D C,Foster G R,Stom Patter.Eeffct on niortgen and phosphours losses in surface moff[J].Transactions of the ASAE,1989,32(2):535-544.
    [81]Walton R S,Volker R E,Bristow K L,etc.Solute trasport by surface runoff from low-angle slopes thoery and application[J].Hydrological processes,2000,14:1139-1159.
    [82]Walton R S,Volker R E,Bristow K L,etc.Experimental examination of solute transport by surface runoff from low-angle slopes[J].Hydrology,2000,233:19-36.
    [83]刘方,黄昌勇,何腾兵等.不同类型黄壤早地的磷素流失及其影响因素分析[J].水土保持学报,2001,15(2):37-40.
    [84]何丙辉,缪驰远,吴咏等.遂宁组紫色土坡耕地土壤侵蚀规律研究[J].水土保持学报,2004,18(3):9-15.
    [85]王辉,王全九,邵明安.人工降雨条件下黄土坡面养分随径流迁移试验[J].农业工程学报,2006,22(6):39-44.
    [86]王百群,刘国彬.黄土丘陵区地形对坡地土壤养分流失的影响[J].土壤侵蚀与水土保持学报,1999,5(2):18-22.
    [87]彭浩,张兴昌.黄土区土壤钾素径流流失规律研究[J].水土保持学报,2002,16(1):47-49.
    [88]张乃明,余扬,洪波.滇池流域农田土壤径流磷污染负荷影响因素[J].环境科学,2003,24(3):155-157.
    [89]张乃明,张玉娟,陈建军等.滇池流域农田土壤径流氮污染负荷影响因素研究[J].中国农学通报,2004,20(5):148-1550.
    [90]Sims.J.J.R.R.Simard and B.C.Joen.Phosphorus losses in agricultural drainage:Historical perspective and current research[J].Environ.Qual.,1998,27:277-293.
    [91]傅涛,倪九派,魏朝富等.不同雨强和坡度条件下紫色土养分流失规律研究[J].植物营养与肥料学报,2003,9(1):71-74.
    [92]傅涛,倪九派,魏朝富,谢德体.雨强对三峡库区黄色石灰土养分流失的影响[J].水土保持学报,2002,16(2):33-35.
    [93]王百群,刘国彬.黄土丘陵区地形对坡地土壤养分流失的影响[J].土壤侵蚀与水土保持学报,1999,5(2):18-22.
    [94]Ahuja L.R,Sharpley A,N,etc.Effect of soil slope and rainfall characteristics on phosphorus in runoff[J].J.Enviro Qual,1982,11:9-13.
    [95]王瑄,郭月峰等.坡度、坡长变化与水土流失量之相关性分析[J].中国农学通报,2007,23(9):611-614.
    [96]Wander,M.M.etal,Organic and conventional management effects on biologically active soil organic matter pools[J].Soil Sci.Am.J.1994,58:1130-1130.
    [97]Tomblin A.D.etal.Earthworms and their influence on soil structure and infiltration[J].In Earthworm Ecology and biogeography in North American Lewis Pub.Bocaraton,FI.,1995,159-183.
    [98]Seth M.D.Crop impacts on watershed hydrology[J].Soil and water Conservation,1998,53(3):207-213.
    [99]Evans.R.Water erosion in British farmer fields-some cause[J].Input.Prediction.Prog.Phys.Geog.1990,14:199-219.
    [100]Sharpley,A.N.,Smith S.J.,etal,The transport of bioavailable phosphorus in agricultural runoff[J].Journal Environment quality,1992,21:30-35.
    [101]张冠华,刘国彬,王国梁等.黄土丘陵区两种典型灌木群落坡面侵蚀泥沙颗粒组成及养分流失的比较[J].水土保持通报,2009,29(1):1-6.
    [102]黄丽,丁树文,张光远,彭业轩.三峡库区紫色土坡耕地的耕作利用方式与水土流失初探[J].华中农业大学学报,1998,17(1):45-49.
    [103]黄河仙,谢小立,王凯荣等.不同覆被下红壤坡地地表径流及其养分流失特征[J].生态 环境,2008,17(4):1645-1649.
    [104]孟庆华,杨林章.三峡库区不同土地利用方式的养分流失研究[J].生态学报,2000,20(6):1028-1033.
    [105]王晓燕,王静怡,欧洋等.坡面小区土壤-径流-泥沙中磷素流失特征分析[J].水土保持学报,2008,22(2):1-5.
    [106]张亚丽,李怀恩,张兴昌等.牧草覆盖对坡面土壤矿质氮素流失的影响[J].应用生态学报,2006,17(12):2297-2301.
    [107]Romkens M.J.M.,etal.Surface Sealing and inflitration chapter5:Process studies in hill slope hydrology[J].Eds:InM.G.AildersonandT.Pburt,Johnwileyandsons.Ltd.1990,PP:12-172.
    [108]王晓燕,高焕文,李洪文等.保护性耕作对农田地表径流与土壤水蚀影响的试验研究[J].农业工程学报,2000,16(3):66-69.
    [109]Mario Tiscareno-Lopez,Miguel Velasquez-Valle,Jaime Salinas-Garcia,Alma Del.Nitrogen and organic matter losses in no-tilled corn cropping system[J].Journal of the American Water Resources Association,2004,40(2):401-408.
    [110]Gaynor,J.D.,and Findlay,W.L..Soil and phosphorous loss forn conservation and conventional tillage in corn production[J].Journal Environment quality,24:734-741.
    [111]张亚丽,张兴昌,邵明安等.秸秆覆盖对黄土坡面矿质氮素径流流失的影响[J].水土保持学报,2004,18(1):85-88.
    [112]Soileau,J.M.etal.Sediment,nitrogen,and phosphorous runoff with conventional and conservation-tillage cotton in small watershed[J].Soil and water conservation.1994,49(1):82-89.
    [113]王勇强,王玉宽,傅斌等.不同耕作方式对紫色土侵蚀的影响[J].水土保持研究,2007,14(3):333-335.
    [114]林超文,陈一兵,黄晶晶等.不同耕作方式和雨强对紫色土养分流失的影响[J].中国农业科学,2007,40(10):2241-2249.
    [115]肖金强,张志强,武军.坡面尺度林地植被对地表径流与土壤水分的影响初步研究[J].水土保持研究,2006,13(5):227-231.
    [116]赵辉,郭索彦,解明曙等.南方花岗岩红壤区不同土地利用类型坡地产流与侵蚀产沙研究[J].水土保持通报,2008,28(2):6-10.
    [117]李勉,杨剑锋,侯建才等.~(137)Cs示踪法研究黄土丘陵区坡面侵蚀空间变化特征[J].核技术,2009,32(1):50-54.
    [118]李俊波,华珞,马琰.坡地土壤养分流失研究概况[J].土壤通报,2005,36(5):753-759.
    [119]甘华军,王震洪,张丝菊等.不同降雨强度中度石漠化地区氮、磷、钾流失特征[J].贵 州农业科学,2009,37(4):93-95.
    [120]周萍,刘国彬,侯喜禄.黄土丘陵区侵蚀环境不同坡面及坡位土壤理化特征研究[J].水土保持学报,2008,22(1):7-12.
    [121]张丽萍,张锐波,陈兆云等.城郊不同土地利用方式坡地土壤养分空间动态研究[J].水土保持通报,2007,27(1):39-46.
    [122]郑粉莉,唐克丽,白红英.标准小区和大型坡面径流场径流泥沙监测方法分析[J].人民黄河,1994,(7):19-21.
    [123]赵文武,傅伯杰,吕一河等.多尺度土地利用与土壤侵蚀[J].地理科学进展,2006,25(1):24-33.
    [124]刘高焕,刘俊卫,朱会义.基于GIS的小流域地块单元划分与汇流网络计算[J].地理科学进展,2001,21(2):139-145.
    [125]闫云霞,许炯心.黄土高原地区侵蚀产沙的尺度效应研究初探[J].中国科学(D辑),2006.36(8):767-776.
    [126]Ramos M C,Martinez-Casasnovas J A.Erosion rates and nutrient losses affected by composted cattle manure application in vineyard soils of NE Spain[J].Catena,2006,68:177-185.
    [127]傅国斌,李丽娟,刘昌明.遥感水文应用中的尺度问题[J].地球科学进展,2001,16(6):755-760.
    [128]Cocbrane TA,Flanagan D C.Assessing water erosion in small watersheds using WEPP with GIS and digital elevation models[J].Journal of Soil and Water Conservation,1999,51(4):678-685.
    [129]韩建刚,李占斌.紫色土区小流域泥沙输出过程对雨型和空间尺度的响应[J].水利学报,2006,37(1):58-62.
    [130]刘新华,张晓萍,杨勤科等.不同尺度下影响水土流失地形因子指标的分析与选取[J].西北农林科技大学学报(自然科学版),2004,32(6):107-111.
    [131]吴从林,张平仓.三峡库区王家桥小流域土壤侵蚀因子初步研究[J].长江流域资源与环境,2002,11(2):165-170.
    [132]唐政洪,蔡强国,张光远等.黄土丘陵沟壑区小流域侵蚀产沙的地貌分带研究[J].水土保持学报,2000,14(4):34-78.
    [133]Keller A,Abbaspour K C,Schulin R.Assessment of uncertainty and risk in modeling regional heavy-metal accumulation in agricultural soils[J].Journal of Environmental Quality,2002,31(1):175-187.
    [134]Vrieling A,Sterk G,Beaulieu N.Erosion risk mapping:A methodological case study in the Colombian Eastern Plains[J].Journal of Soil and Water Conservation,2002,57(3):158-163.
    [135]YU B.A unified framework for water erosion and deposition equation[J].Soil Science Society of America Journal,2003,67(1):251-257.
    [136]Benik S B,Wilson N,Biesboer D D,et al.Evaluation of erosion control products using natural rainfall events[J].Journal of Soil and Water Conservation,2003,58(2):98-105.
    [137]赵文武,傅伯杰,吕一河等.多尺度土地利用与土壤侵蚀.地理科学进展[J].2006,25(1):24-33.
    [138]Ingram J,Lee J,Valentin C.The GCTE Soil Erosion Network:A multi-participatory research program[J].Journal of Soil and Water Conservation,1996,51(5):377-380.
    [139]高超,朱继业,窦贻俭等.基于非点源污染控制的景观格局优化方法与原则[J].生态学报,2004,24(1):109-116.
    [140]Tapia-Vargas M,Tiscareno-Lopez M,Oropeza-Mota J L.et al.Runoff and sediment yieds simulation under five-soil management[J].Practices.Agrochemical,2000,34(6):663-675.
    [141]Backstorm M.Sediment.Transport in grassed swales during simulated runoff events[J].Water Science Technology,2002,4(7):41-49.
    [142]Pathak P,Wani S P,Singh P,et al.Sediment flow behavior from small agricultural watersheds[J].Agricultural water management,2004,67(2):105-117.
    [143]尹忠东,苟江涛,李永慈.川中丘陵紫色土区农业型小流域土地利用结构与土壤流失关系[J].现代化研究,2009,30(3):360-363,368.
    [144]张俊远,谢征鸣,侯广维等.川中长江防护林紫色土侵蚀产沙研究[J].四川林业科技,1999,17(3):16-22.
    [145]陈浩.黄河中游小流域泥沙来源研究[J].土壤侵蚀学报与水土保持学报,1999,5(1):19-26.
    [146]刘卉芳,魏天兴,朱清科等.晋西黄土区小流域泥沙来源分析水土保持通讯[J].水土保持通讯,2004,24(4):19-22.
    [147]王晓.用粒度分析法计算砒砂岩区小流域泥沙来源的探讨[J].中国水土保持,2001,1:21-25.
    [148]张信宝,贺秀斌,文安邦等.川中丘陵区小流域泥沙米源的137Cs和210Pb双同位索法研究[J].科学通报,2004,49(15):1537-1541.
    [149]赵晓光,石辉.用稀土元素示踪方法研究裸露坡面沿程侵蚀与沉积[J].林业科学,2003,39(2):98-101.
    [150]徐金英,柴文晴,陈晓燕等.基于~(137)Cs法对小流域侵蚀特征的研究[J].西南大学学报(自然科学版),2009,31(5):155-161.
    [151]张奇,杨文元,林超文等.川中丘陵小流域水土流失特征与调控研究[J].土壤侵蚀与水土保持学报,1997,3(3):38-57.
    [152]石辉,田均良,刘普灵等.利用REE示踪法研究小流域泥沙来源[J].中国科学(E辑),1996,26(5):474-480.
    [153]王晓燕,田均良,杨明义.示踪技术在流域泥沙研究中的应用[J].泥沙研究,2003,(1):18-23.
    [154]王晓燕,田均良,杨明义.应用同位素示踪土壤侵蚀研究的进展[J].中国水土保持科学,2003,1(4):72-77.
    [155]刘刚,杨明义,刘普灵等.近十年来核素示踪技术在土壤侵蚀研究中的应用进展[J].核农学报,2007,21(1):101-105.
    [156]STOLTENBERG N L.Selective loss of plant nutrients by erosion[J].Soil Sci.Soc Am J,1953,17:405-410.
    [157]White P J.A review of erosion and agriculture productivity with particular reference to grain crop production[J].Aust Agri Sci,1986,52:12-22.
    [158]胡宏祥,洪天求,刘路.水土流失量和养分流失量的预测[J].环境科学研究,2009,22(3):356-361。
    [159]唐克丽.黄土高原水土流失与退化研究初报[J].环境科学,1984,5(6):5-10.
    [160]王洪杰,李宪文,史学正等.四川紫色土区小流域土壤养分流失初步研究[J].土壤通报,2002,33(4):441-444.
    [161]李宪文,史学正,Coen Ritsema.四川紫色土区土壤养分径流和泥沙流失特征研究[J].资源科学,2002,24(4):22-25.
    [162]张兴昌,邵明安.黄土丘陵区小流域土壤氮素流失规律[J].地理学报,2000,55(5):617-626.
    [163]张兴昌,刘国彬,付会芳.不同植被覆盖度对流域氮素径流流失的影响[J].环境科学,2000,6,16-19.
    [164]蒋锐,朱波,唐家良等.紫色丘陵区小流域典型降雨径流氮磷流失特征[J].农业环境科学学报,2008,27(4):1353-1358.
    [165]D H Pote,T C Daniel,D J Nichols,P A Moore,Jr,D M Miller,D.R.Edwards.Seasonal and Soil-Drying Effects on Runoff Phosphorus Relationships to Soil Phosphorus[J].Soil Sci.Soc.Am.J.,1999,63:1006-1012.
    [166]王洪杰,史学正,李宪文等.小流域尺度土壤养分的空间分布特征及其与土地利用的关系[J].水土保持学报,2004,18(1):15-42.
    [167]韩建刚,李占斌.紫色土壤氮素不同流失形式的比较研究[J].中国农学通报,2005,21(10):209-211.
    [168]韩建刚,李占斌.紫色土小流域种植模式对土壤氮素流失的影响初探[J].中国农学通报,2005.21(9):275-278.
    [169]张兴昌,邵明安.黄土丘陵区小流域土壤氮素流失规律[J].地理学报,2000,55(5):617-626.
    [170]张兴昌,刘国彬,付会芳.不同植被覆盖度对流域氮素径流流失的影响[J].环境科学,2000,6,16-19.
    [171]张兴昌.耕作及轮作对土壤氮素径流流失的影响[J].农业工程学报,2002,18(1):70-74.
    [172]王云强,张兴昌,李顺姬等.小流域土壤矿质氮与地形因子的关系及其空间变异性研究[J].环境科学,2007,28(7):1567-1572.
    [173]林超文,庞良玉,陈一兵等.四川盆地紫色土N、P损失载体及其影响因子[J].水土保持学报,2008.22(2):20-24.
    [174]袁东海,王兆骞,陈欣等.红壤小流域不同利用方式氮磷流失特征研究[J].生态学报,2003,23(1):188-198.
    [175]张亚丽,李怀恩,张兴昌等.坡度对坡面土壤矿质氮素水蚀流失负荷的影响[J].水土保持通报,2007,27(2):14-17.
    [176]Menzel R G.Transport of~(90) Sr in runoft[J].Science,1960,131:499-500.
    [177]文安邦,张信宝,王玉宽等.长江上游紫色土坡耕地土壤侵蚀~(137)Cs示踪法研究[J].山地学报,2001,19:56-59.
    [178]Ritchie J C.,McHenry J R,Gill A C et al.The use of fallout cesium-137 as a tracter of sediment movement and deposition[J].Mississippi Water Resources Conference Proceedings,1970,49-163.
    [179]Ritchie J C,Spraberry J A,McHenry J R..Estimating soil erosion from the redistribution of fallout Cs-137[J].Soil Science Society of America Proceedings,1974,38:137-139.
    [180]Rogowski A S,Tamura T.Environmental mobility of cesium-137[J].Radiation Botany,1970,10:35-45.
    [181]Ritchie J C,McHenry J R,Gill A C.The distribution of Cs-137 in litter and the upper 10centimeters of soil under different vegetation types in northern Mississippi[J].Health Physics,1972,22:197-198.
    [182]McHenry J R,Ritchie J C,Gill A C.Accumulation of fallout cesium-137 in soils and sediments in selected watersheds[J].Water Resources Research,1973,9:676-686.
    [183]McHenry J R,Ritchie J C.Estimating field erosion losses from fallout Cs-137measurements[J].International Association of Hydrological Sciences Publication,1977a,122:26-33.
    [184]McHenry J R,Ritchie J C.Physical and chemical parameters affecting transport of ~(137)Cs in arid watersheds[J].Water Resources Research,1977b,13:923-925.
    [185]de Jong E,Begg C M,Kachanoski R G.Estimates of soil erosion and deposition from some Saskatchewan soils[J].Canadian Journal of Soil Science,1983,63:607-617.
    [186]Brown K B,Cutshall N H and K ling G F.Agricultural erosion indicated by137Cs[J].Sci Soc AmJ,1981,45:1184-119.
    [187]Lowrance R,Mclntyre S.and Lance C.Erosion and depositlion in a field forest system estimated using ~(137)Cs activity[J].Soil andWater Conservation,1988,2:195-198.
    [188]Elliott G L,Campbell B L.,Loughran R J.Correlation of erosion measurements and soil Caesium-137 content[J].App.Radiate S otopes,1990,41(8):713-717.
    [189]Zhang X,Li S,Wang C et al.Use of caesium-137 measurements to investigate erosion and sediment sources within a small basin in the Loess Plateau of China[J].Hydrological Processes,1989,3:317-323.
    [190]Walling D E,He Q.Improvement models for estimating soil erosion rates from Caesium137measurements[J].J EnvironQual,1999,28(2):611-622.
    [191]Walling D E,He Q.Models for concerting ~(137)Cs measurements to estimates of soil redistribution rates on cultivated and uncultivated soils(including software for model implementation)[J].Report to IAEA,2001,Exter:University of Exeter.
    [192]Zhang X,Higgit D L,Walling D E.A preliminary assessment of the potential for using caesium-137 to estimate rates of soil erosion in the Loess Plateau of China[J].Hydrological Science Journal,35:267-276.
    [193]张信宝,DL赫吉特,DE沃林.~(137)Cs法测算黄土高原土壤侵蚀速率的初步研究[J].地球化学,1991,3:212-218.
    [194]张信宝,李少龙,TA Quine等.犁耕作用对~(137)Cs法测算农耕地土壤侵蚀量的影响[J].科学通报,1993,38(22):2072-2076.
    [195]张信宝,汪阳春,李少龙等.蒋家沟流域土壤侵蚀及泥石流细粒物质来源的~(137)Cs法初步研究[J].中国水土保持,1992,2:28-31.
    [196]文安邦,张信宝,王玉宽等.长江上游紫色土坡耕地土壤侵蚀~(137)Cs示踪法研究[J].山地学报,2001,19:56-59.
    [197]张信宝,李少龙,王成华等.~(137)Cs法测算梁峁坡农耕地土壤侵蚀量的初探[J].水土保持通报,1988,8(5):18-22.
    [198]汪阳春,张信宝,李少龙等.三峡高桥河滩地农田泥沙淤积厚度的~(137)Cs法测定[J].地理,1991,4(1):63-64.
    [199]濮励杰,包浩生,彭补拙等.~(137)Cs应用于我国西部风蚀地区土地退化的初步研究以新疆库尔勒地区为例[J].土壤学报,1998,35(4):441-449.
    [200]阎百兴,汤洁.东北黑土中~(137)Cs背景值研究[J].水土保持学报,2004,18(4):33-36.
    [201]曹慧,杨浩,唐翔宇等.~(137)Cs技术对长江三角洲丘陵区小流域土壤侵蚀初步估算[J].水 土保持学报[J],2001,15(1):13-15.
    [202]李青云,张一云,王汉湘.铯-137同位素示踪法测算小流域土壤侵蚀量的研究[J].长江科学院院报,1993,pp04.
    [203]唐翔宇等.示踪技术在土壤侵蚀估算中的应用研究进展[J].地球科学进展,2000,5(15):57-60.
    [204]唐翔宇,杨浩,曹慧.~(137)Cs法估算南方红壤地区土壤侵蚀的初步研究[J].水土保持学报,2001,15(3):4-7.
    [205]杨浩,杜远明.利用~(137)Cs示踪农业耕作土壤侵蚀速率的定量模型[J].土壤学报,2000,3(37):112-117.
    [206]严平,董光荣,张信宝等.青海共和盆地土壤风蚀的~(137)Cs法研究(Ⅰ)-~(137)Cs分布特征[J].中国沙漠,2003,23(3):268-274.
    [207 严平,董光荣,张信宝.青海共和盆地土壤风蚀的137Cs法研究(Ⅱ)-~(137)Cs背景值与风蚀速率测定[J].中国沙漠,2003,23(4):391-397.
    [208]Sutherland R A,Kowalchuk T,de Jong E.Cesium 137 estimates of sediment redistribution by wind[J].Soil Science,1991,151(15):387-396.
    [209]Favis Mortlock D T,and Quinton J N,and Dickins on W T.The GCTE validation of soil erosion models for global change studies[J].Journal of soil and water conservation,1996,51(5):397-403.
    [210]Kirby M J,Mcmahon M L.MEDRUSH and the Catsop basin the lessons learned[J].Catena,1999,37:495-506.
    [211]Kirkby M J,and Cox N J.A climate index for soil erosion potential(CSEP),Including seasonal factors[J].Catena,1995,25:333-352.
    [212]Kirkby MJ,Imeson A C,Berkamp Getal.Scaling up processes and models from the field plot to the watershed and regional areas[J].Journal of Soil and Water Conservation,1996,54(3):391-396.
    [213]Boardman J.and Favis-Mortlock D.T..Modelling soil erosion by water:some conclusions[A].Modelling Soil Erosion by Water,NATOAS1 Series,Springer,1998.
    [214]张光辉,刘宝元,李平康.槽式人工模拟降雨机的工作原理与特征[J].水土保持通报,2007,27(6):56-60.
    [215]苏正安,张建辉,聂小军.紫色土坡耕地土壤物理性质空间变异对土壤侵蚀的响应[J].农业工程学报,2009,25(5):54-60.
    [216]王辉,王全九,邵明安.表层土壤容重对黄土坡面养分随径流迁移的影响[J].水土保持学报,2007,21(1):10-16.
    [217]王辉,王全九,邵明安.人工降雨条件下黄土坡面养分随径流迁移试验[J].农业工程学报,2006,22(6):39-44.
    [218]中国科学院南京土壤研究所土壤物理研究室编.土壤物理性质测定法.科学出版社,1978.
    [219]杨剑虹主编.土壤农化分析与环境监测[M].中国大地出版社,2008.
    [220]Dexter AR.Advances in characterization of soil structure[J].Soil Till Res,1988,11:199-238.
    [221]吴承祯,洪伟.不同经营模式土壤团粒结构的分形特征研究[J].土壤学报,1999,36(2):162-167.
    [222]闫峰陵,史志华,蔡崇法等.红壤表土团聚体稳定性对坡面侵蚀的影响[J].土壤学报,2007,44(4):577-583.
    [223]黄昌勇主编.土壤学[MI.北京:中国农业出版社,1999.
    [224]黄冠华,詹卫华.土壤颗粒的分形特征及其应用[J].土壤学报,2002,39(4):490-497.
    [225]Bartoli F,et al.Structure and self-similarity in silty and sandy soils:the fractal approach[J].Soil Sci,1991,42:167-185.
    [226]Tyler S W,Whestcraft S W.Application of fractal mathematics to soil water retention estimation[J].Soil Sci.Soc.Am.,1989,53.- 987-996.
    [227]Tyler S W,Whestcraft S W.Fractal scaling of soil particale size distributions:analysis and limitations[J].Soil Sci.Soc.Am.,1992,56:362-369.
    [228]杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993,38(20):1896-1899.
    [229]罗专溪,朱波,汪涛等.紫色土坡地泥沙养分与泥沙流失的耦合特征[J].长江流域资源与环境,2008,17(3):379-383.
    [230]王全九,穆天亮,王辉等.土壤溶质随径流迁移基本特征分析[J].水土保持研究,2008,15(6):92-95.
    [231]Palis R G,Okwach G,et al.Soil erosion processes and nutrient loss.1.The interpretation of enrichment ratio and nitrogen loss in runoff sediment[J].Soil Res,1990,28:623-639.
    [232]黄满湘,周成虎,章申等.农田暴雨径流侵蚀泥沙流失及其对氮磷的富集[J].水土保持学报,2002,16(4):13-16.
    [233]Dewald C L,Henry J,Bruckerhoff S.Guidelines forest abolishing warm season grass hedges for erosion control[J].Journal of soil and water conservation,1996,51(1):16-20.
    [234]A P J De Roo.The LISEM Project:An Introduction Hydrological Processes,1996,I0:1021-1026.
    [235]P M Van Dijk,Kwaad F J.Runoff generation and soil erosion in small agricultural catchments switch loess derived soils[J].Hydrological Processes,1996,10:1049-1059.
    [236]杨明义,田均良.坡面侵蚀过程定量研究进展.地球科学进展,2000,15(6):649-653.
    [237]Morgan R P C.Soil Erosion and Conservation.Addison-Wesley Longma,Edinburgh,1995.
    [238]傅涛.三峡库区坡面水土流失机理与预测评价模型[A].2002
    [239]郑永春,王世杰.~(137)Cs的土壤地球化学及其侵蚀示踪意义.水土保持学报,2002,16(2):57-60.
    [240]王玉宽,文安邦,张信宝.长江上游重点水土流失区坡耕地土壤侵蚀的~(137)Cs法研究水土保持学报.2003,17(2):77-80.
    [241]王洪杰,李宪文,史学正等.不同土地利用方式下土壤养分的分布及其与土壤颗粒组成关系[J].水土保持学报,2003,17(2):44-46.
    [242]Foster G R,Young R A,Neibling W H.Sediment composition for non-point source pollution analyses[J].Transactions of the ASAE,1985,28(2):705-719.
    [243]Stefano C,Ferro V,Palazzolo.E.Sediment delivery processes and chemical transport in a small forestedbasin[J].J.Hydrological Sciences Journal,2005,50(4):697-712.
    [244]中国科学院成都分院土壤研究室著.中国紫色土.科学出版社,1991.
    [245]张红,吕家珑,赵世伟等.不同植被覆盖下子午岭土壤养分状况研究[J].干旱地区农业研究,2006,24(2):66-69.
    [246]陈晓燕,何丙辉,陈道平.重庆合川市土壤侵蚀时空变化研究.西南农业大学学报(自然科学版),2003,25(4):463-466.