用重组自交系构建西瓜分子遗传图谱
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用可溶性固形物含量高、皮薄、感枯萎病的栽培西瓜自交系(Citrullus lanatus var. lanatus)97103和可溶性固形物含量低、皮厚、抗病的野生西瓜种质(Citrullus lanatus var. citroides)PI296341杂交所得重组自交系F_8的117个单株为作图群体,构建西瓜分子遗传图谱。该图谱包含87个RAPD标记、13个ISSR标记和4个SCAR标记,分为15个连锁群,包括1个最大的含31个标记的连锁群(277.5cM)、6个大的含4-12个标记的连锁群(51.7cM-172.2cM)和8个小的含2-5个标记的连锁群(7.9cM-46.4cM),覆盖基因组的1027.5cM。两个标记间的平均距离为11.54cM。该图谱为以后获得饱和的分子遗传图谱、重要农艺性状的QTL分析以及图谱克隆抗病基因奠定了坚实的基础。
A molecular genetic map was constructed for watermelon based on 87 RAPD(random amplified polymorphic DNAs) markers, 13 ISSR(inter simple sequence repeat) markers, and 4 SCAR(sequence characterized amplified region) markers using a RIL population of 117 F8 progenies derived from the cross 97103(which is a cultivar with higher total soluble solids concentration, thin rind, susceptible to Fusarium wilt disease) X PI296341 (which is a wild germplasm with lower total soluble solids concentration, thick rind, resistant to Fusarium wilt disease). The map consists of 15 linkage groups. Among them are a large groups linkage group that contains 31 markers covering a mapping distance of 277. 5 cM, six large groups each with 4-12 markers covering a mapping distance of 51. 7 to 172. 2c M and eight small groups each consisting of 2-5 markers covering a mapping distance of 7.9-46.4 cM. The entire map covers a total distance of 1027. 5cM with an average distance of 11.54 cM between two markers. This map is useful for the further development of matured molecular genetic map, analysis of important agricultural characterized quantitative trait loci (QTL) and map-based positional cloning for disease resistance gene.
引文
[1]曹宛红.西瓜同工酶及可溶性蛋白分析.华北农学报,1994,2(9):64-71.
    [2]范敏,许勇,张海英等.西瓜果实性状QTL定位及其遗传效应分析.遗传学报,2000,27(10):902-910.
    [3]何祯祥,施季森,邱进清等.林木遗传图谱构建的技术与策略.浙江林学院学报,1998,15(2):151-157.
    [4]李维明,唐定中,吴为人等.用籼/籼交重组自交系群体构建的分子遗传图谱及其与籼梗交群体的分子图谱的比较.中国水稻科学,2000,14(2):71-78.
    [5]卢钢.白菜分子遗传图谱构建及其重要农艺性状的基因定位研究.浙江大学博士论文,2001.
    [6]毛健民,李俐俐.植物基因分离的图位克隆技术.生物学通报,2002,37(4):32-33.
    [7]陶抵辉.西瓜野生性状的遗传及同工酶研究.中国西甜瓜,1994(3):17-20.
    [8]魏惠军,杜胜利,马德华.分子标记和种类及其进展.生物技术通报,1999,15(4):21-26.
    [9]向道权,曹海河,曹永国等.玉米SSR遗传图谱的构建及产量性状基因定位.遗传学报,2001,28(8),778-784.
    [10]徐云碧,朱立煌.分子数量遗传学,北京:中国农业出版社,1994,P108-110.
    [11]徐云碧,中宗坦,陈英,等.利用最大似然法进行水稻产量性状基因的分子作图.遗传学报,1995,22(1):46-52.
    [12]许勇,张海英,康国斌等.西瓜抗枯萎病育种分子标记辅助选择的研究.遗传学报,2000,27(2):151-157.
    [13]王斌,李松涛.RAPD及其在植物分子生物学研究中的应用.植物分子生物学,科学技术出版社,1995:295-303.
    [14]吴为人,李维明,卢浩然.建立一个重组自交系群体所需的自交代数.福建农业大学学报,1997,26(2):129-132.
    [15]张兴平,王鸣.西瓜杂种及其亲本同工酶分析.果树科学,1989,6(2):97-102.
    [16]张忠延,李松涛,王斌.RAPD在水稻温敏核不育研究的应用.遗传学报,1994,21(5):373-378.
    [17]张德水,陈受宜.DNA分子标记、基因组作图及其在植物遗传育种上的应用.生物技术通报,1998,1(5):15-22.
    [18]郑素秋等,西瓜杂种及其亲本酯酶过氧化无酶多酚氧化酶同工酶的分析.中国西甜瓜,1992(1):26-30.
    [19]Ammiraju J S S, Dholakia B B, Santra D K, et al. Identification of inter simple sequence repeat (ISSR) markers associated with seed size in wheat. Theor Appl. Genet.,2001,102:726-732
    [20]Barcaccia G., E. Albertini, D. Rosellini, S. Tavoletti, F. Veronesi. Inheritance and mapping of 2n-egg production in diploid alfalfa. Theor. Appl. Genet.,2000,43:528-537.
    [21]Bassiri. A. Barley cultivar identification by use of isozyme electrophoretic patterns. Can. Plant Sci.,1976,56:1-6.
    
    
    [22] Biles C.L. Isozymes and general proteins from various watermelon cultivars and tissue types. Hortscience, 1989,24(5):810-812.
    [23] Bohn. M, M. Khairallah, D. QTL mapping in tropical maize: Ⅰ. Genomic regions affecting leaf feeding resistance to sugarcane borer and other traits. Crop Sci, 1996,36(4):1352-1361.
    [24] Casasoli. M.,C. Mattioni, M. Cherubini, F. Villani. A genetic linkage map of European chestnut(Castena sativa Mill.) based on RAPD, ISSR and isozyme markers. Theor, Appl. Genet.,2001,102:1190~1199.
    [25] Dror Sharon. DNA fingerprints in plants using simple-sequence repeat and minisatellite probes. Hortscience, 1995,30(1):109-112.
    [26] Gilbert J E, Lewis R V, Wilkinson M J, et al. Developing an appropriate strategy to assess genetic variability in plant germplasm collections. Theor Appl. Genet.,1999,98:1125-1131.
    [27] Godwin I D, Aitken E A, Smith L W. Application of inter-simple sequence repeat (ISSRO markers to plant genetica Electrophoresis, 1997,18:1524-1528.
    [28] Hawkin L.K., F. Dane, T.L. Kubisiak, B.B. Rhode, and R.L. Jarret. Linkage mapping in a watermelon population segregating for fusarium wilt resistance. J. Amer. Soc. Hort. Sci.,2001,126(3):344-350.
    [29] Hittalmani S, et al. Development of a PCR-based marker to identify rice'blast resistant gene Pi-Z(t) in a segregating population. Theor. Appl. Genet.,1995,91:9-14.
    [30] Joshi S.P., V.S. Gupta, R.K. Aggarwal, P.g. Ranjekar, D.S. Brar. Genetic diversity and phylogenetic relationship as revealed by inter-simple sequence repeat (ISSR) polymorphism in the genus Oryza. Theor. Appl. Genet.,2000,100:1311-1320.
    [31] Katzir. N. Length polymorphism and homologies of microsatellites in several Cucurbitaceae species. Theor. Appl. Genet.,1996,93:1282-1290.
    [32] Khush G.S. Primary trisomics of rice:Origin, morphology, cytology, and use in linkage mapping. Genetics, 1984,107:141-163.
    [33] Lander E.S, et al. MAPMARKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987(1):174-181.
    [34] Laroche A, Demeke T, Gaudet D A, et al. Development of a PCR marker for rapid identification of the Bt-10 gene for common bunt resistance in wheat. Genome, 43:217-223.
    [35] Lee S.J, J.S. Shin, K.W. Park. Detection of genetic diversity using RAPD-PCR and sugar analysis in watermelon (C. lanatus) germplasm. Theor. Appl. Genet, 1996,92(7):719-725.
    [36] Levi. A.,L.J. Rowland. Identifying blueberry cultivars and evaluating their genetic relationships using randomly amplified polymorphic DNA(RAPD) and simple sequence repeat-(SSR-)anchored primer. J. Amer. Soc. Hort. Sci.,1997, 122:74-78.
    [37] Levi. A., C.E. Thomas, X.P. Zhang, T. Joobeur, R.A. Dean, T.C. Wehner, B.R. Carle. Agenetic linkage map for watermelon based on RAPD markers. J. Amer. Soc. Hort. Sci.,2001,126(6):730-737.
    
    
    [38] Lindhout Pim. Et al, Perspectives of molecular marker assisted breeding for earliness in tomato, Euphytica, 1994,79:279-286.
    [39] Murry H G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980,8:4321-4325.
    [40] Navot N. and D. Zamir. Linkage relationships of 19 proteincoding genes in watermelon. Theor. Apple. Genet.,1986,72:274-278.
    [41] Navot N & D. Zamir. Isozyme and seed protein phylogeny of the genus Citrullus (Cucurbitaceae). P1 Syst Evol, 1987, 156:61-67.
    [42] Plaschke J, et al. Detection of genetic diversity in closely related bread wheat using micro-satellite markers. Theor Appl. Genet., 1995,91:1001-1007.
    [43] Prevost A, Wilkinson M J. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivators. Theor Appl Genet.,1998,98:107-112.
    [44] Powell W, Morgante M, et al. The comparison of RFLP, AFLP and SSR Markers for germplasm analysis, Molecular breeding, 1996,2:225-238.
    [45] Prevost. A, Wilkenson j. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor. Appl. Genet.,1999,98:107-112.
    [46] Ragot M. Molecular marker for plant breeding;comparisons of RFLP and RAPD genotyping cost. Theor. Appl. Genet.,1993,86:975-984.
    [47] Roder Ms, et al. Abundunce variability and chromosomal location of microsatellites in wheat. Mol Gen Genet, 1995,246:327-333.
    [48] Santra. D.K.,M. Tekeoglu, M. Ratnaparkhe, W.J. Kaiser, F.J. Muehlbauer. Identification and mapping of QTLs conferring resistance to ascochyta blight in chickpea. Crop Sci.,2000,40:1606-1612.
    [49] Smith Tsc. An evaluation of the utility of SSR loci as molecular markers in maize (zeumays) comprisons with data from RFLP and pedigree. Theor. Appl. Genet.,199795:163-173.
    [50] Soller, M.T. Sequence-Tagged Sites(STS) as standard landmarkers in the rice genome. Theor. Appl. Genet.,1994,89:728-734.
    [51] Staub JK, Serquen FC, Guptam. Genetic markers map construction and their application in plant breeding,Hortscience, 1996,31(5):729-740.
    [52] Stuber C W, Sisco PH. Marker-facilitated transfer of QTL alleles between elite inbred lines and responses in hybred. Proc 46th Annual Corn and Sorghum Industry Research Conf, 1991,41:70-83.
    [53] Toshiharu Hashizume. Constrution of a linkage map for watermelon [Citrullus (Thunb) Matsum & Nakai] using RAPD. Euphytica, 1996, 90:265-273.
    [54] Tuinstra M.R., et al. Identification of quantitative trait loci associated with pre-flowering drought tolerance in sorghum. Crop Sci., 1996,36:1337-1344.
    [55] Voorrips.,RE, Jomgerius, MC, Kanne, HJ. Mapping of two genes for resistance to clubroot (Plasmodiophora brassicae) in a population of doubled haploid lines of Brassica oleracea
    
    by means of RFLP and AFLP markers. Theor. Appl. Genet, 1997,94(1):75-82.
    [56] Wikie. RAPD markers for genetic analysis in Allium. Theor. Appl. Genet.,1993, 86:497-504.
    [57] Zamir D, N Navot, J Rudich. Enzyme polymorphorism in Citrulllus and C Colocythis in Israel and Sinai. Plant Syst. Evol.,1984, 146:163-170.
    [58] Zhang Xingping, Bill Rhodes. Inheritance of Resistance to Race 0, 1, and 2 of Fusarium oxysporum f. sp. niveum in Watermelon (Citrullus sp. PI296341). CGC Report, 1993,16: 77-78.
    [59] Zhang X.P., B.B. Rhodes. RAPD molecular marker in watermelon. Hort. Science, 1993,28(5):583.
    [60] Zhuchenko, A. A Linkage between loci of quantitative characters and marmer loci. Genetic, 1979,14:771-776.