长沙地区单、双层塑料大棚性能和栽培效果的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
塑料大棚是南方设施栽培的主要类型。本试验以露地作对照,观测和分析了长沙地区单、双层覆盖塑料大棚内小气候变化规律,并对其性能和栽培效果进行了比较,以期为长沙地区设施栽培采用合理的覆盖层次,制定切实可行的调控措施,为夺取蔬菜高产、优质、高效提供依据。主要试验结果如下:
     1.长沙地区单、双层塑料大棚温度的变化规律
     1.1 冬、春季单、双层塑料大棚温度的季节变化呈现由低到高的上升趋势。最低温度出现在1月上旬,双层塑料大棚最低气温为4.2℃,比单层塑料大棚和露地分别高2.7℃、4.1℃。最高温度出现在3月下旬,双层塑料大棚最高气温为30.6℃,比单层塑料大棚和露地分别高2.2℃、4.4℃。
     1.2 不同天气状况下单、双层塑料大棚的温度变化大致呈正弦形式,且晴天变化明显大于阴、雨天。最高气温出现在14:00左右,晴天,双层塑料大棚平均最高气温为27.9℃,比单层塑料大棚和露地分别高2.8℃,10.7℃;最高地温出现在16:00左右;最低温度出现在清晨6:00左右。其日变化白天呈单波峰曲线,晚上呈缓慢下降趋势。
     1.3 单、双层塑料大棚气温的垂直变化,白天随高度的升高而上升,晚上单、双层覆盖塑料大棚的温度变化与白天相反,即随高度的升高而下降。气温的水平变化,上午东侧高于西侧,下午则相反。南北方向上因距离较长而梯度变化较小。
     2.长沙地区单、双层塑料大棚光照的变化规律
     2.1 单、双层塑料大棚光照强度的季节变化由冬到春呈现由低到高的上升趋势,单层塑料大棚的光照强度明显大于双层塑料大棚。
     2.2 不同天气状况下单、双层塑料大棚光照强度的变化呈单波峰曲线,且晴天的变化明显大于阴、雨天,棚外大于棚内。最大光强出现在14:00左右。单、双层塑料大棚光照强度的日变化是早晨和傍晚弱,而中午强。
     2.3 单、双层塑料大棚内光照强度的水平变化,上午由东向西光照强度逐渐减弱,下午由东向西光照强度逐渐增加。
     3.长沙地区单、双层塑料大棚相对湿度的变化规律
     3.1 冬、春季单、双层塑料大棚相对湿度的季节变化一直呈下降趋势。相对湿度最高出现在12月份,双层塑料大棚在95%,分别比单层塑料大棚和露地高5%和12%。
     3.2 不同天气状况下单、双层塑料大棚相对湿度的变化呈单波谷曲线,且晴
    
    天变化幅度明显大于阴、雨天,棚外变幅明显大于棚内。
     3.3单、双层塑料大棚相对湿度的日变化,白天随温度的升高而呈逐渐下降
    的趋势,晚上随温度的下降而呈逐渐上升的趋势。
     3.4单、双层塑料大棚相对湿度的垂直变化,白天随高度的增加而减小,晚
    上变化与白天相反,即随高度的增加而增加。相对湿度的水平变化,东侧的相对
    湿度均高于西侧,南北方向上因距离较长而变化较小。
    4.单、双层塑料大棚C02浓度的日变化呈单波谷趋势,最大值出现于早晨,最小
    值出现于13时左右。
    5.单、双层塑料大棚对黄瓜(番茄)植株生长的影响呈现以下的规律,株高的变
    化随着覆盖层次的增加而增高,茎粗和开展度的变化随着覆盖层次的增加而减
    小。
    6.晴天单、双层覆盖塑料大棚黄瓜(或番茄)的光合速率变化呈双峰型曲线,
    单层塑料大棚明显大于双层塑料大棚;光合速率最小值出现在12:30左右。阴天
    光合速率变化呈单峰型曲线,双层塑料大棚光合速率的变化比单层塑料大棚和露
    地均大,光合速率最大值出现在12:30左右,与晴天正好相反。
    7.单、双层塑料大棚栽培黄瓜(番茄),双层塑料大棚黄瓜(番茄)的早熟性比
    单层塑料大棚和露地分别早7天,12天;产量比单层塑料大棚和露地分别增产
    25.2%(33.5%),151.6%;其果实中干物质的含量随着覆盖层次的增加而增加,
    可溶性糖含量及V。含量随着覆盖层次的增加而减少。
The plastic shed is a predominant type of protected cultivation in south. The characteristic of the variation of microclimate inside the single-covered and the double-covered plastic shed were studied in Changsha, and their functions and planting-effect were compared. In order to provide a scientific basis for application of proper covering layer and taking workable measures to control, in Changsha, and getting high productivity, good quality and high efficiency in vegetable. The results are as follows:
    1. Law of variation of temperature inside the single-covered and the double-covered in Changsha.
    1.1 The seasonal variation of temperature inside the single-covered and the double-covered showed gradual increase trend, in winter and summer. The lowest temperature appeared on the first ten day of January, the lowest air temperature in the double-covered plastic shed, which was 4.2 ℃,increased respectively2.7℃, 4.1℃, compared with the single-covered plastic shed and outside. The highest temperature appeared on the third ten day of March, the highest air temperature in the double-covered plastic shed, which was 30.6℃, increased respectively2. 2℃, 4. 4 C,compared with the single-covered plastic shed and outside.
    1. 2 The variation of temperature inside the single-covered and the double-covered plastic shed in different weather roughly took on the shape of a Sine, and the variation of temperature in sunny day was greater than that of cloudy and rainy day. The highest air temperature was at about 14:00, in sunny, the mean highest air temperature in the double-covered plastic shed, which was 27. 9℃, increased respectively2. 8℃, 10. 7 ℃, compared with the single-covered plastic shed and outside; the highest soil temperature was at about 16:00; The lowest temperature was at about 6:00 in the early morning. Their diurnal variation took on a single curve peak in the morning, while decreased gradually in the evening.
    1. 3 In the day, the vertical variation inside the single-covered and the double-covered plastic shed increased along with the increase of height, while in the evening decreased along with the increase of height. Their horizontal variation, in the morning, was that the east side was high while the west side was low, in the afternoon the results were opposite. From south to north, the variation of air temperature was not obvious because the distance was too long.
    2. Law of variation of intensity of illumination inside the single-covered and the double-covered in Changsha.
    
    
    
    2.1 The seasonal variation of intensity of illumination in the single-covered and the double-covered plastic shed showed gradual increase trend from winter to summer, the illumination inside the single-covered plastic shed was far stronger than that of the double-covered plastic shed.
    2. 2 The variation of intensity of illumination in the single-covered and the double-covered plastic shed under different weather took on a single peak curve, and the variation of illumination in sunny day was far greater than that in cloudy day and rainy day, the outside was greater than inside. The maximum of illumination was at about 14:00. Their diurnal variation of intensity of illumination was weak in the morning and the dusk, while it was strong at noon.
    2.3 The horizontal variation of intensity of illumination in the single-covered and the double-covered was reduced gradually in the morning from east to west, while it was raised in the afternoon.
    3. Law of variation of relative humidity inside the single-covered and the double-covered in Changsha.
    3.1 Relative humidity inside in the single-covered and the double-covered plastic shed showed straightly decrease trend in winter and summer. The highest relative humidity inside appeared on December, the relative humidity inside the double-covered plastic shed, which was 95%, increased respectively by 5%, 12% compared with the single-covered plastic shed and outside.
    3. 2 Variation of the relative humidity inside the single-covered and the double-covered plastic shed under different weather took
引文
1 王光耀等主编.设施工程技术.郑州:河南科学技术出版社,2000.10
    2 Baaer, J.C.,Bot, G.P.A.Challa.H.and N.J.Van de Break.Greenhouse Climate control -an integrated approaeh.Wageningen Pers,279p
    3 Bot. G.P.A.and N.J.van de Break.Physical of greenhouse climste .journal of fgricultural Engineering Research. 1984,8(4): 125~159
    4 Levit,H.J.and Gaspse.R..Energy budget for greenhouse in humid-temperature climate .Agric. For. Meteorol. 1988,42:241~254
    5 Kimball,B.A.Simulation of the balance of a greenhouse.Agric.Meteorol. 1973,11:243~260
    6 储长树,朱军.塑料大棚内辐射分量的日变化特点.中国农业气象.1992,13(4):29~32
    7 fwairi, S.and Z.Uehijima.Teperature regime and heat transfer in al glasshouse at the daytime .J.Agric.Meteorlol.Tokyo, 1971,26,197-207
    8 Stanhill,G.and H.Zvi Enoch,GREENHOUSE ECOSYSTEMS.1999.44
    9 苗香文,崔绍荣,王绍金。温室喷雾—水模降温系统研究.农业工程学报.1990,6(2):38~42
    10 李树海,马承伟.温室环境模型的回顾和展望.农业工程学报.2002,18(增刊):57~62
    11 沈明卫,苗香文,崔绍荣.华东型连栋塑料温室内光环境的研究.浙江大学学报(农业与生命科学版).2000,26(5):533~536
    12 Avissar.R.and Y.Mahrer.Verification study of a numerical greenhouse microclimate model.Trans.ASAE. 1982,25:1711~1720
    13 刘克长,任中兴,张继祥等.山东日光温室温光性能的实验研究.中国农业气象.1999,20(4):34~37
    14 张继冗.温室太阳辐射调节系统降温效果的研究.农业机械学报.1999,30(3):53~65
    15 顾寄南.“大系统”理论及其在温室系统建模中的应用.农业系统科学与综合研究.2000,15(5):186~190
    16 陈端生,郑海山.张建国等.日光温室气象环境综合研究(二).一几和弧型采光屋面温室内直射光量的比较研究.农业工程学报.1992,8(4):78~82
    17 藏田宪次.温室方位和地理纬度对太阳直射光透过率的影响.农业工程学报.1993,9
    
    (2):52~56
    18陈青云.单屋面温室光照环境的数值实验.农业工程学报.1993,9(3):96~101
    19贺芳芳.上海地区荷兰玻璃温室内温、湿度控制分析.中国农业气象.2000,21(2):35~38
    20余纪柱,金海军.塑料连栋温室的温、湿度变化规律及相应调控措施.上海市设施园艺技术重点实验室年报.2001,3843
    21屈口郁夫.寒地园艺设施的农业气象学研究。中国农业气象.1991,12(3):57~59
    22Takami.S.and Uech jjima,Z,A model of the greenhouse with a strong-type heat exchange and its verification.J.Agric.Meteorol. 1977,33:155~163
    23李国师,谢士占,王海东.日光温室地温变化规律与调控.中国农业气象.1996,17(4):38~40
    24陈端生.我国温室气候环境研究进展.农业工程学报.2002,18(增刊):53~56
    25李振海,郭慧卿,张振武等.日光温室几何参数与室内温度环境的关系.沈阳农业大学学报.1993—03.26(1):58~63
    26蔡德存.2/3式塑料薄膜全日光温室的小气候特点及调节.中国农业气象.1989,10(2):34~37
    27吕钊钦等.蜂窝塑料大棚温室覆盖材料性能试验研究.山东农业大学学报.1993,3:29~36
    28邱伸华.宋明军,一种复合保温覆盖材料研制和应用初报.农业工程学报.1995,11(4):117~120
    29赵花其.日本温室覆盖材料应用趋势.北方园艺.(总120,121)79
    30任艳芳,温祥珍,李亚灵.温室内保温材料的保温性能.华北农学报.2001(16):107~110
    31王宏丽,李凯,代亚丽等.节能日光温室的发展现状与存在的问题.西北农业学报.2000,28(4):108112
    32陈玉南,严杏玲.温室降温(湿帘—风机)系统.农机与食品机械.1998,1:29,34
    33陈育辉.大型玻璃温室的夏季降温.广东农机.1996,4:22~23
    34马承伟,黄之栋,李保明等.农业建筑蒸发降温技术研究与应用的现状及展望.农业工程学报.1995,11(3):95~100
    35任振辉,张曙光,谢景毅等.日光温室环境参数智能化监测管理系统的研制.农业工程学报.2001,17(2):107~110
    
    
    36吴军辉,徐立鸿等.基于RTOS的单片机系统在温室环境控制中的应用研究.农业工程学报.2001,17(5):99101
    37王暄,迟道才,王铁良.日光温室夏季降温措施的试验研究初报.农业工程学报.2001,17(5):95~98
    38James E F ,Royal D H .Thermal screen increase plant temperature [J].Grower Talks, 1995,6:84~86
    39taley Dayan E,et al. Development ,calibration and validation of a greenhouse tomato growth model;Ⅰ.Description of the model ,Agricultural System, 1993,43 (2): 148~163
    40Dayan E,et al. Development ,calibration and validation of a greenhouse tomato growth model Ⅱ;Field calibration and validation, Agricultural System, 1993, 43(2): 165~183
    41Jones J W ,et al.Reduceed state-variable tomato growth model,ASAE, 1999,42(1): 255~256
    42Heuvelink,et al.Dry matter distribution in tomato and cucumber.Acta Horticulturae, 1989,260:149~158
    43Marcelis I.F M .A simulation model for dry matter partitioning in cucumber .Ann,Bot., 1994,74(1): 43~52
    44Bailey B J.Energy and the United Kingdom greenhouse industry[J].Acta Horticulture,1989,245:21~29
    45L ,Monk G K, Molnar J M,The influence of thermal curtains on energy utilization in glass greenhouse[J], J Agri Eng Res, 1986,77(1): 127~139
    46周长吉,程勤阳,周新群等.铝箔保温幕保温性能测试分析[J].农业工程学报,1999,15(3):191—194
    47王松涛,冯广和,陈端生等.论我国设施园艺建设的宏观管理[J].农业工程学报,1999,15(1):22~23
    48段武德.发展设施农业和加强宏观管理[J].发展中的中国工厂化农业,北京出版社.2000,17~21
    49张志斌.关于我国设施蔬菜生产可持续发展的探讨[J].沈阳农业大学学报.2000,3(2):15~17
    50王松涛.日本的设施园艺及其在中国的应用.世界农业,1985(7):31~32
    51Yu zhao ,Meir Teitel. Vertical Temperature and Humidity Gardens in a Natrurally
    
    Vemtilated Greenhouse[J].J.agfic.Engng red,2001,78 (4):4431-4361
    52 S.Li,K.Kurata,T.Takakura.Solara radiation transmissivity into a lean-togreenhouse.Acta Hort,1995,(339): 127~134
    53 TAP R F, van WILIJIGENBURC L G,van STRATEN C,Experimental result of receding horizon optimal control of greenhouse climate[J], Acta Horticulturae, 1996(406): 229~238
    54 宋元林等 编著 蔬菜保护地栽培技术大全,中国农业出版社,1996
    55 LEVTTH J,PIACENTINI R O.Greenhouse beating by simultaneous use of themal screen and underground pipes[J].Acta Horticulturae,1994(357):335~342
    56 Walker JM. One degree increment in soil temperature affects raise seeding behaviour [J].Pro. Soc. Soil Sci. Agri.,1969, (33): 729~736
    57 寿森炎等.南方塑料大棚设施内若干环境因子变化的研究[C].曾广文主编,现代蔬菜科学论文集.上海科学技术出版社,1998,192~195
    58 北京农业大学主编,蔬菜栽培学—保护地栽培[M].第二版.农业出版社,1993,80~96
    59 傅利霞.塑料大棚多层覆盖的应用效果试验.浙江农业大学学报,1994,20(3):313-316
    60 宋元林 主编.蔬菜塑料大棚立体高效栽培大全.北京:中国农业科技出版社,1994,9
    61 吴国兴 主编.日光温室蔬菜栽培技术大全.北京:中国农业出版社,1998,3
    62 Okada M.An analysis of thermal screen effects on greenhouse environment by means of multi-layer screen model.Acta Hoticulture, 1985,174:139~144
    63 Ido Seginer, Loris D.Albright,Rational operation of greenhouse thennal-curtains, Trans. ASAE. 1980:1240~1245
    64 南京大学 主编.土壤农化分析(第二版).农业出版社,1998.
    65 张志良 主编.植物生理学实验指导(第二版).高等教育出版社,1990
    66 张宪政 主编.作物生理研究法[M].农业出版社,1992,117~119
    67 隋益虎,刘冬.单、双层的温、光变化及对几种蔬菜生长的影响.安徽技术师范学院学报.2002,16(3):6~8
    68 康健.双层覆盖小拱棚内部植物环境测试与分析.新疆农机化,1997(2):32~34
    69 王子瑜,田兰芳,张根仔等.双顶棚栽培秋冬茄子技术试验初报.江西农业科,1999(4):
    
    34~36
    70欧阳瑞光,陈耀生,周益平等.大棚番茄多层覆盖栽培技术.长江蔬菜,1999(2):9~10
    71王延效,徐守东.拱棚辣椒“三膜两苫”越冬栽培技术.蔬菜 2002(3):8
    72王素梅,王肖锋,王秀等.拱棚多层覆盖越冬草莓栽培技术.长江蔬菜,2000(8):10~11
    73朱进.大棚西葫芦“四膜一网”越冬栽培技术.蔬菜,2002,10:35~36
    74孙发仁.马铃薯双膜覆盖栽培.西北园艺,2000(3):23
    75赵连德.优质白兰瓜双覆盖栽培技术.西北园艺,2000(1):21
    76张风德.简易双层中棚茄子早熟栽培技术.长江蔬菜,1996(4):34~35
    77陈宝宽,丁忱,朱瑞金等.莴笋双膜覆盖高效栽培法.中国蔬菜,1997(3):41
    78周广永,张新谦,李鸿昌等.苍山大蒜双膜覆盖栽培技术.长江蔬菜,1999(9):11~12
    79施达.大棚茄子三层覆盖栽培技术.长江蔬菜,1998(9):11~12
    80郑夏来.番茄“四膜一网”早熟栽培技术.长江蔬菜,1998(11):9~10
    81庞虎.竹架拱棚三层膜栽培早春苋菜技术.中国蔬菜,1997(1):39~40
    82王军,孙兴祥,倪宏正等.大棚丝瓜多层覆盖密植早熟栽培技术.长江蔬菜,1999(11):13
    83刘裕岭,洪忠林.“三膜”西瓜早熟栽培技术.长江蔬菜,1999(11):15
    84王宇,王彩灵,那德伟.海拉尔市塑料大棚厚皮甜瓜多层覆盖早熟栽培技术.中国西瓜甜瓜,2000(3):36~37
    85汪汉林.南方蔬菜设施栽培现状及前景对策.长江蔬菜,2000(12):1~4
    86刘裕林,唐之元,孙爱萍等.三膜丝瓜早熟高产栽培技术.长江蔬菜,1998(2):8~9
    87屈小江.四川型蔬菜大棚节能高效的措施.沈阳农业大学学报,2000-0231(1):149~151
    88潘复生,盛良明.苏州市蔬菜设施栽培生产现状及发展对策.上海蔬菜,2001(5):5~7
    89汪炳良 主编.南方大棚蔬菜生产技术大全.中国农业出版社,2000,36~37
    90张芝福.日光温室冬季管理中应注意的几个问题.中国蔬菜,1998(6):59
    91R.de Graaf, Transpiration of greenhouse roses.Acta Hort, 1992,(312): 116
    92黄伟波.外界环境对长春密刺黄瓜性型分化与产量的影响[J].中国蔬菜,1996(4):26~27
    93王孝宜.李树穗,东惠茹等.番茄品种耐寒性与ABA和可溶性糖含量的关系.园艺
    
    学报,1998,25(1):56~60
    94 Brggemmann W.,linger P.long-term chilling of young tomato plants under low light and subsequent recovery. Ⅱ.chlorophyll fluorescence,carbon metabolism and activity of rubisco.Planta, 1992,186:179~187
    95 Brggemmann W.,linger P.long-term chilling of young tomato plants under low light and subsequent recovery.Ⅲ.Leaf development as reflected by photosynthesis parameters,Plant Cell Physiol., 1993,34:1251~1257
    96 Brggemmann W.,linger P.long-term chilling of young tomato plants under low light and subsequent recovery.Ⅴ. Kinectic and molecular properties of two key enzymes of the calvin cycle in Lycopersion esculentum mill and L.peruvianum Mill.Planta,1991,194:160~168
    97 Brggemmann W.,linger P.long-term chilling of young tomato plants under low light and subsequent recovery. Ⅳ.differential responses of chlorophyll fluorescence quenching coefficients in Lycopersion species of different chilling sensitivity.Plant Cell Physiol.,1994,35:585
    98 Brggemmann W.,linger P.long-term chilling of young tomato plants under low light and subsequent recovery. Ⅰ.Growth,development and photosynthesis. Planta,1992,186:172~178
    99 胡文海,喻景权.低温弱光对番茄叶片光合作用及叶绿素荧光参数的影响.园艺学报,2001,28(1):41~46
    100 陈青君,张福墁.不同品种黄瓜在低温弱光胁迫和恢复过程中的光合特性.中国农业大学学报,2000,5(5):30~35
    101 吴毅明,徐师华.温室塑科棚环境管理[M].北京:中国农业出版社,1990
    102 Xu H L,Wang R, Gauthier LM,Gosselin A.Tomato leaf photosynthetic responses to humidity and temperature under salinity and water deficit.Pedosphere, 1999,9(2): 105~112
    103 Tdgui M,Barrington S F, Gauthier L.Effeet of humidity on tomato (Lycopersicon eseulentum cv.Truss) water uptake ,yield and dehumiditication cost.Canadian Agricultural Engineering, 1999,441 (3):135~140
    104 Comstoek J,Ehleringer J.Stomatal reponse to humidity in common bean
    
    (phaseolusvulgaris):implication for maximum transpiration rate ,water-used efficiency and productivity.Australian Journal of Plant Physiology,1993, 20(6): 669~691
    105 Araki V.Effects of environmental conditions on plant water status in tomato.Journal of the Japanese Society for Horticultural Science, 1993,61(4):827~837
    106 Stanghellini C,Meurs WTM Van,Van Mear WTM.Environmental control of greenhouse crop transpiration.Journal of Agricultural Engineering Research ,1992, 52(4):297~311
    107 北京林学院 主编.植物生理学(上册).北京:中国林业出版社,1982,114~115
    108 Yakir D.Rudieh J,Bravdo B .Photoneoustie and fluorescence measurements of the chilling response and their relationship to carbon diocide uptake in tomato plant.Plants,1985,164(3):345~353
    109 Hethedngton S E,He J,Simile R M.Photoinhibition at low temperature in chilling-sensitive and resistant plant.Plant Phyaiol., 1989,90(4): 1609~1615
    110 Jung S Y, Steffen K L.Influenee of photosynthetic photon flux densities before and during long-term chilling on xanthophylls oycle and chlorophyll fluorescence quenching in leaves of tomato (lyoopernioon himutum).Physiol,Plant, 1997, 100(4):958~966
    111 Brggemmann W, Tomato A W, van der koojj,et al.Long-tem chilling of young tomato plant under low light and subsequent recovery,Ⅰ.Growth, development and photosynthesis. Plant., 1992,186:172~178
    112 Brggemmann W ,Dauborn B .Long-term chilling of young tomato plants low light. Ⅲ,Leaf development as reflected by photosynthesis parameters.Plants Cell Physiol., 1993,34(8): 1251~1257
    113 Brggemmann W ,Linger P . Long-term chilling of young tomato plants low light. Ⅳ.Differential responses of chlorophyll fluorescence quenching coefficients in Lyooparasicon species of different chilling sensitivity .Plant Cell Physiol., 1994, 35(4):585~58