木薯光合特性的生理生态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木薯是三大薯类之一,主要栽培在热带和亚热带地区。由于木薯生长期常常有干旱、台风等自然灾害的发生,因此木薯生产受环境因素的影响较大。另外,与稻麦等作物相比木薯尚缺乏系统的栽培理论和栽培技术,特别是光合特性、逆境生理等基础研究较少。光合作用是物质生产的基础,研究木薯的光合特性及其与环境的关系不仅对于丰富木薯的栽培理论和逆境生理理论、发掘木薯生产潜力具有重要意义,同时还能为木薯的品种布局、适应性栽培和稳产高产提供理论依据和技术参数。为此,本研究以不同的土壤水分和光环境下培育的木薯为材料,从生理生态角度探讨了木薯的光合特性及其对环境因子的响应,主要研究结果如下:
     1.通过分析,在诸多环境因子中,土壤相对含水量(SRWC)、光合有效辐射(PAR)、空气相对湿度(RH)对气孔导度(Gs)的影响较大。RH与Gs之间呈极强的正相关关系,说明RH对Gs的影响受其它因子影响较小;PAR、SRWC与Gs之间虽然呈显著的正相关关系,但是它们对Gs的影响程度随SRWC的变化而变化,当SRWC较低时,SRWC是影响Gs的主导因子,而当SRWC较高时,PAR是影响Gs的主导因子;SRWC、PAR、RH与Gs的关系可用指数模型表达。该模型拟合精度高,不仅可以通过SRWC、PAR、RH等3个环境因子对Gs进行定量描述,同时模型参数b2指示干旱胁迫临界值,为深入研究木薯品种的耐旱特性及耐旱机理提供了数量依据。由模型可知,华南8号(SC8)适宜SRWC的低限临界值为51.9%。
     2.5个木薯品种的最大净光合速率(Pmax)、表观量子效率(AQY)、光饱和点(LSP)和C02羧化效率(CE)、C02饱和点(CSP)对土壤水分的变化具有明显的阈值响应。光合特性的主要参数在55%SRWC-75%SRWC变化幅度较小,在35%SRWC-55%SRWC范围出现明显的增大或减小趋势。根据SRWC对光合效率的影响程度,初步认为在5个参试品种中,华南10号(SC10)、华南8号(SC8)、华南5号(SC5)的抗旱能力强于华南9号(SC9)和华南205号(SC205)。SC10、SC8、SC5的抗旱能力相对较强的主要原因:Pmax、AQY降幅相对较小;气孔导度的降幅相对较小,同时非气孔因素对光合作用制约相对较小;叶绿素a(Chla)、叶绿素b(Chlb)、叶绿素a、b和(Chl(a+b))、类胡萝卜素(Car)、叶绿素a与叶绿素b比值、类胡萝卜素与叶绿素比值对土壤水分的变化相对敏感,在干旱条件下上升幅度大;磷酸烯醇式丙酮酸羧化酶(PEPCase)与1,5-二磷酸核酮糖羧化酶(RuBPCase)比值随着SRWC的减少而增大,即C4途径的表达增强。
     3.随着遮光程度的增加,5个木薯品种的Pmax、LCP和LSP均下降,不同品种间AQY的变化则不同;Pmax-C02和CE呈下降趋势;SC9、SC8、SC205的C02补偿点(CCP)、CO2饱和点(CSP)呈升高趋势,SC10的CCP、CSP呈降-升-降的趋势,SC5的CCP、CSP呈降-升的趋势。通过比较遮光55%和85%条件下各品种的光合效率,初步认为SC10、SC5、SC8的耐荫性优于SC9、SC205。SC10、SC8、SC5耐荫性相对较强的主要原因在于其在遮光条件下气孔导度的降幅较小,AQY的增加幅度大。在诸多影响Pmax的因子中,LSP、AQY、胞间CO2浓度(Ci)、LCP与Pmax关系密切,因此,初步认为LSP、AQY、Ci、LCP等因子可作为木薯耐荫性的评价指标。
     4.本研究利用净光合速率(Pn)、Gs、大气CP2浓度(Ca)和胞间CO2浓度(Ci)间的关系表达式ci=Ca-Pn/Gs,分析了不同土壤水分和光照条件下,影响木薯光合作用的主要因素。发现,不同土壤水分条件下,在一定光照范围内,木薯光合作用主要受气孔限制,光照强度的影响较小;超出此范围后,其受光照强度的影响较大,出现由气孔限制向非气孔限制转变的PAR临界值,本试验条件下,该临界值约为600μmol·m-2.s-1。而其限制作用的大小则与土壤水分密切相关,品种间存在差异。在不同光照条件下,影响木薯光合作用的主要因素也存在发生转变的PAR临界值,即当光照强度在某一范围值时,光合作用主要受气孔限制,当光照强度超过该范围后,光合原料(C02)的供求达到动态平衡,光合作用受气孔因素和非气孔因素的影响均较小,且该临界值因品种及其遮光程度的不同而不尽相同。
     5.土壤干旱对PEPCase活性的诱导作用品种间存在差异,干旱胁迫使SC10、SC8、SC5的PEPCase/RuBPCase比值升高,,SC9和SC205的PEPCase/RuBPCase比值下降。且当土壤干旱超过一定程度后,PEPCase/RuBPCase比值由开始的升高出现下降趋势。不同土壤水分条件下,各品种的Chla/b比值的变化范围为:2.812-3.347;不同土壤水分和光照条件下CO2补偿点的变化范围分别为57.5~92.2μmol·mol-1和69.5~104.6μmol·mol-1;短时间大气CO2浓度增加均使光合速率提高超过10%。木薯的这些变化特性均与C3植物类似。
Cassava is one of the three potato categories, mainly cultivated in tropical and sub-tropical regions. Because during the course of growth and development of cassava often have droughts, typhoons and other natural disasters, so will have a greater impact on cassava production by environmental factors. Moreover, cassava is still a lack of systematic cultivation of theories and techniques to compare with the crops of rice and wheat, in particular the basic research of photosynthesis, stress physiology is less. Photosynthesis is the basis of material production, photosynthetic characteristics of cassava and its relationship to the environment not only for the rich theories of cassava cultivation and stress physiological and important for exploring the potential production capabilities of cassava, and while provide theoretical basis and technical parameters for the varieties layout, adaptability cultivation and high yield and stable. Therefore, this study used the cassava which cultivated under different moisture and light as a test materials, and investigated photosynthetic characteristics of cassava and its response to environmental factors from the ecophysiology point of view. The main results were as follows:
     1. Through the analysis of many environmental factors, we found that soil relativ water content (SRWC), photosynthetically active radiation (PAR) and air humidty (RH)had a great influence on stomatal conductance. RH with constant strong positive correlation with Gs was the principal environmental factors working quite independently. Although SRWC and PAR had significant positive correlation with Gs, yet their impact magnitude would vary with the change of SRWC. This was because when the SRWC was low, the SRWC became the dominant factor affecting Gs, while the SRWC was high, the PAR was the dominant factor. The relationship between the Gs and SRWC, PAR, and RH could be expressed as exponential exponential model. And this model has high accuracy, not only could be described Gs quantitatively by three environmental factors of SRWC, PAR and RH, but also the b2 of the model's parameter indicated that the critical value of drought stress, and it provided the data basis to go on investigating the characteristics and mechanism of drought tolerance among cassava varieties. Using the constructed model, we found that the lower limit threshold of appropriate SRWC for cassava variety SC8 was 51.9%.
     2. The results showed that the maximum photosynthetic rate (Pmax), apparent quantum yield (AQY), light saturation point (LSP), carboxylation efficiency (CE) and CO2 saturation point (CSP), had evidently threshold responsed to the variations of soil moisture. The main parameters of photosynthesis with a little change under the range from 55% SRWC to 75%SRWC, but with significant increase or decrease trends under the range from 35%SRWC to55%SRWC. According to the impact of SRWC on photosynthetic efficiency, we preliminarily viewed that the drought tolerance cassava varieties of SC10, SC5 and SC8 was better than SC9 and SC205, mainly due to the small decline of Pmax and AQY relatively; the small decline of stomatal conductance relatively, while the small limition of non-stomatal factor on photosynthesis relatively; chlorophylla(Chla), chlorophyllb(Chlb), chlorophyll(a+b)(Chl(a+b)), carotenoid(Car), Chla/b and Car/Chl were relatively sensitive to the changes of soil moisture and rose more steeply under drought conditions. The ratio of phosphoenolpyruvate carboxylase and ribulose-1,5-bisphosphate carboxylase increased with the decreasing SRWC, that was the C4 pathway to increase expression.
     3. With the increase of shading level, Pmax, LCP and LSP decreased, while the AQY was different in varieties. The trend was generally decreased of Pmax-co2 and CE in all varieties and increased of CO2 compensation point(CCP), CO2 saturation point(CSP) in SC9, SC8, SC205; the trend was down-up-down of the CCP, CSP in SC10, and down-up in SC5. By comparing the photosynthetic efficiency of shading55% and 85%, we preliminarily viewed that the shade tolerance of SC10, SC5 and SC8 was better than SC9 and SC205, mainly due to their stomatal conductance showed a smaller decline, and the increase large of AQY. The LSP, AQY, intercellular CO2 concentration (Ci), LCP were closed to Pmax in all the factors that influence the Pmax. Therefore, the LSP, AQY, Ci, LCP were preliminarily considered as evaluation indicators for shade tolerance of cassava.
     4. The study used the expression of relationship among net photosynthetic rate (Pn), Gs, atmosphere CO2 concentration (Ca)and Ci, that is Ci=Ca - Pn/Gs to analyse the main factor affecting on photosynthesis of cassava under different moisture and light conditions. We found that the main affect factor on photosynthesis of cassava closely related to the light intensity. In a certain light intensity range, photosynthesis was mainly affected by stomatal limit rather than PAR. Out of this range, photosynthesis was obviously affected by PAR, and the critical turning point of PAR was observed with the change from stomatal limit to non-stomatal limit. In this experiments, the critical turning point of PAR was 600μmol·m-2·s-1. And its action degree closely related to the soil moisture, also there was difference in varieties. Under different light conditions, the main factors affect the photosynthesis of cassava also shift the PAR threshold, that was, when the light intensity in a range of value, photosynthesis was mainly affected by stomatal limit, when the light intensity out of the range, photosynthetic materials (CO2) to achieve dynamic balance of supply and demand, photosynthesis was affected by stomatal and non-stomatal factors were small, and the threshold level was different due to varieties and their differences in shading.
     5. The induction of drought on PEPCase activity was different among varieties. The ratio of PEPCase and RuBPCase of SC10, SC8 and SC5 increased, while the SC9 and SC205's decreased under drought conditions. Although the ratio of PEPCase and RuBPCase from initial increase to decrease when the drought exceeded a certain degree. The variation range of the ratio of chlorophylla and chlorophyllb was 2.812~3.347 under different soil moisture. Under different soil moisture and light conditions the variation range of CO2 compensation point was 57.5~92.2μmol·mol-1,69.5~104.6μmol·mol-1, respectively. The photosynthetic rate was increased more than 10% by short time increase CO2 concentration. These changes of cassava were similar to the C3 plants.
引文
[1]艾天成,李方敏,周治安,等.作物叶片叶绿素含量与SPAD值相关性研究[J].湖北农学院学报,2000,20(1):6-8.
    [2]艾天成,周治安.小麦等作物叶绿素速测方法研究[J].甘肃农业科技,2001.16-18.
    [3]艾克拜尔,伊垃洪,周抑强,等.土壤水分对不同品种棉花叶绿素含量及光合速率的影响[J].中国棉花,2000,27(2):21-22.
    [4]哀建国,金松恒.干旱胁迫对浙江雪胆光合特性的影响[J].中草药,2008,39(7):1074-1078.
    [5]白向历,齐华,何萍,等.水分胁迫对灌浆期燕麦叶片光合特性的影响[J].杂粮作物,2006,26(1):25-27.
    [6]陈建军,韩锦峰,王瑞新,等.水分胁迫下烟草光合作用的气孔与非气孔限制[J].植物生理学通讯,1991,27:415-418.
    [7]陈绍光,李燕南,王沙生.空气和土壤干旱对不同杨树种类无性系生长及光合的影响[J].北京林业大学学报,1996,18(3):35-41.
    [8]迟伟,王荣富,张成林.遮荫条件下草莓的光合特性变化[J].应用生报,2001,1(4):566-568.
    [9]程林梅,李占林,高洪文.水分胁迫对白羊草光合生理特性的影响[J].中国农学通报,2004,20(6):238-240.
    [10]曹昀,王国祥.土壤水分含量对菖蒲(Acorus calamus)萌发及幼苗生长发育的影响[J]生态学报,2007(5):1748-1755.
    [11]成雪峰,张凤云,柴守玺.春小麦对不同灌水处理的气孔反应及其影响因素[J].应用生态学报,2010(21):36-40.
    [12]董永华,史吉平,李广敏,等.小麦幼苗PEP羧化酶及细胞保护酶活性的影响[J].河北农业大学学报,1994,17(增刊):72-76.
    [13]董永华,史吉平,李广敏,等.ABA和6-BA对水分胁迫下小麦幼苗CO2同化作用的影响[J].作物学报,1997,23(4):501-504.
    [14]邓雄,李小明,张希明,等.多枝怪柳气体交换特性研究[J].生态学报,2003,23(1):180-187.
    [15]邓恒芳,王克勤.土壤水分对石榴光合速率的影响[J].浙江林学院学报,2005,22(3):277-281.
    [16]范叶萍,余让才,郭志华.遮阴对匙叶天南星生长及光合特性的影响[J].园艺学报,1998,(3):270-274.
    [17]付芳婧,赵致,张卫星.水分胁迫下玉米抗旱性与光合生理指标研究[J].山地农业生物学报,2004,23(6):471-474.
    [18]付士磊,周永斌,何兴元,等.干旱胁迫对杨树光合生理指标的影响[J].应用生态学报,2006,17(11):2016-2019.
    [19]方祖柽.C02浓度增加对作物影响的研究动态[J].资源开发与市场,2006,22(3):252-253.
    [20]房玉林,惠竹梅,陈洁,等.水分胁迫对葡萄光合特性的影响[J].干旱地区农业研究,2006,24(2):135-138.
    [21]付秋实,李红岭,崔健.水分胁迫对辣椒光合作用及相关生理特性的影响[J].中国农业科学,2009,42(5):1859-1866.
    [22]郭志华,王伯荪,张宏达.银杏的蒸腾特性及其对遮荫的响应[J].植物学报,1998,40(6):567-572.
    [23]葛滢,常杰,刘珂,等.杭州石荠芋蒸腾的生理生态学研究[J].植物生态学报,1999,23(4):320-326.
    [24]高延军,张喜英,陈素英,等.冬小麦叶片水分利用生理机制的研究[J].华北农学报,2004,19(4):42-46.
    [25]高素华,郭建平,周广胜.高C02浓度下羊草对土壤干旱胁迫的响应[J].中国农业生态学报,2002,10(4):31-33.
    [26]郭卫华,李波,黄永梅,等.不同程度的水分胁迫对中间锦鸡儿幼苗气体交换特征的影响[J].生态学报,2004,24(12):2716-2722.
    [27]郭宝林,杨俊霞,鲁韧强,等.遮光处理对扶芳藤生长和光合特性的影响[J].园艺学报,2007,34(4):1033-1036.
    [28]高峻,吴斌,孟平,等.水分胁迫对金太阳杏幼树蒸腾、光合特性的影响[J].河北农业大学学报,2007,30(3):36-40.
    [29]郭春芳,孙云,张木清.土壤水分胁迫对茶树光合作用-光响应特性的影响[J].中国生态农业学报,2008,16(6):1413-1418.
    [30]龚春梅,宁蓬勃,王根轩,等.C3和C4植物光合途径的适应性变化和进化植物[J].生态学报,2009,33(1):206-221.
    [31]高凌娜,司龙亭,李丹丹,等.遮光下黄瓜幼苗叶片解剖结构及光合特性研究[J].江西农业大学学报,2009,31(6):1011-1015.
    [32]郭欧英,谢良生,雷江丽,等.遮荫对华南毛蕨叶绿素含量及荧光参数的影响[J].广东林业科技,2009,25(2):23-25.
    [33]高丽,杨劫,刘瑞香.不同土壤水分条件下中国沙棘雌雄株光合作用、蒸腾作用及水分利用效率特征[J].生态学报,2009,29(11):6025-6034.
    [34]郝乃斌,戈巧英,张玉竹,等.高光效大豆光合特性的研究[J].大豆科学,1989,8:283-287.
    [35]黄占斌,山仑.春小麦WUE日变化及其生理生态基础的研究[J].应用生态学报,1997,8(4):263-269.
    [36]李吉跃.植物耐旱性及其机理[J].北京林业大学学报,1991,13(3):92-96.
    [37]胡新生,王世绩.树木水分胁迫生理与耐旱性研究进展及展望[J].林业科学,1998,34(2):77-89.
    [38]韩刚,赵忠.不同土壤水分下4种沙生灌木的光合光响应特性[J].生态学报,2010,30(15):4019-4026.
    [39]贺康宁,田阳,史常青,等.黄土半干旱区集水造林条件下林木生长适宜的土壤水分环境[J].林业科学,2003,39(1):10-16.
    [40]何军,许兴,李树华,等.水分胁迫对牛心朴子叶片光合色素及叶绿素荧光的影响[J].西北植物学报,2004,24(9):1594-1598.
    [41]黄卫东,吴兰坤,战吉成.中国矮樱桃叶片生长和光合作用对弱光环境的适应性调节[J].中国农业科学,2004,37(12):1981-1985.
    [42]韩希英,宋凤斌,王波.土壤水分胁迫对玉米光合特性的影响[J].华北农学报,2006,21(5):28-32.
    [43]侯小改,段春燕,刘改秀,等.土壤含水量对牡丹光合特性的影响[J].华北农学报,2006,21(2):91-94.
    [44]柯世省.干旱胁迫对夏蜡梅光合特性的影响[J].西北植物学报,2007,27(6):1209-1215.
    [45]柯世省,杨敏文.水分胁迫对云锦杜鹃光合生理和光温响应的影响[J].园艺学报,2007,34(4):959-964.
    [46]柯世省.云锦杜鹃气孔行为对水分的响应[J].天津师范大学学报(自然科学版),2007,27(4):21-25.
    [47]柯世省,金则新.干旱胁迫和复水对夏蜡梅幼苗光合生理特性的影响[J].植物营养与肥料学报,2007,13(6):1166-1172.
    [48]黄俊,郭世荣,吴震,等.弱光对不结球白菜光合特性与叶绿体超微结构的影响[J].应用生态学报,2007,18(2):352-358.
    [49]黄洁.木薯丰产栽培技术[M].海南:三环出版社,2007.
    [50]胡文海,胡雪华,曾建军,等.干旱胁迫对2个辣椒品种光合特性的影响[J].华中农业大学学报,2008,27(6):776-781.
    [51]焦德茂,季本华.光氧条件下两个水稻品种光合电子传递和光合酶活性的变化[J].作物学报,1996,22(1):43-48.
    [52]姜卫兵,高光林,戴美松,等.盐胁迫对不同砧穗组合梨幼树光合日变化的影响[J]园艺学报,2003,30(6):653-657.
    [53]金松恒,蒋德安,王品美,等.水稻孕穗期不同叶位叶片的气体交换与叶绿素荧光特性[J].中国水稻科学,2004,18(5):443-448.
    [54]金路路,齐华,衣莹,等.C02浓度增加对燕麦光合特性的影响[J].杂粮作物,2007,27(1):33-36.
    [55]贾士芳,董树亭,王空军.遮光对玉米产量及光合特性的影响[J].应用生态学报,2007,18(11):2456-2461.
    [56]缴丽莉,路丙社,周如久,等.遮光对青榨槭光合速率及叶绿素荧光参数的影响[J].园艺学报,2007,34(1):173-178.
    [57]康绍忠,张富仓,梁银丽,等.土壤水分和CO2浓度增加对小麦、玉米、棉花蒸腾、光合及生长的影响[J].作物学报,1999,25(1):55-63.
    [58]卢振民,牛文远,张翼.土壤含水量对冬小麦气孔导度开启程度的影响[J].植物学报,1986,28(4):419-426.
    [59]刘振亚,刘贞琦.作物光合作用的遗传及其在育种中的应用研究进展[A].作物育种研究与进展(第1集)[C].北京:北京农业出版社,1993.168-183.
    [60]刘世荣,赵广东,马全林.沙木蓼和沙枣对地下水位变化的生理生态响应Ⅱ.叶片光合作用及其对温度和光的反应[J].植物生态学报,2003,27(2):223-227.
    [61]卢从明,张其德,匡廷云,等.水分胁迫抑制水稻光合作用机理[J].作物学报,1994,20(5):601-606.
    [62]卢从明,张其德,匡延云.水分胁迫对小麦光系统Ⅱ的影响[J].植物学报,1992,36(2):93-98.
    [63]林韶湘,黄卓烈,陈永泉,等.植物生长调节物质IP-1号对木薯产量及其生物性状的影响[J].植物资源与环境,1994,3(4):34-38.
    [64]梁银丽,陈培元.水分胁迫和氮素营养对小麦根苗生长及WUE的效应[J].西北植物学报,1995,15(1):21-25.
    [65]林伟宏,白克智,匡廷云.大气C02增加对水稻光合、蒸腾及水分利用率的影响[J].生态农业研究,1996,4(2):40-43.
    [66]卢从明,张其德,刘丽娜,等.C02倍增对不同基因型大豆光合色素含量和荧光诱导动力学参数的影响[J].植物学报,1997,39(10):946-950.
    [67]梁宗锁,李敏,王俊峰.沙棘抗旱造林现状与改进意见[J].沙棘,1998,11(3):8-13.
    [68]李卫华,郝乃斌,戈巧英,等.C3植物中C4途径的研究进展[J].植物学通报,1999,16:97-106.
    [69]李卫华,卢庆陶,郝乃斌,等.大豆C4途径与光系统!光化学功能的相互关系[J].植物学报,2000,42(7):689-692.
    [70]刘贤赵,康绍忠,邵明安,等.土壤水分与遮阴水平对棉花叶片光合特性的影响研究[J].应用生态学报,2000,11:377-381.
    [71]刘贤赵,康绍忠.变水处理与短期遮阴对作物水分利用效率的影响[J].应用基础与工程科学学报,2000,8:148-153.
    [72]刘贤赵,康绍忠,黄明斌.土壤水分与短期遮阴对棉花光合及其气孔响应的影响[J].西北植物学报,2000,20:561-567.
    [73]李合生.现代植物生理学[M].北京:高等教育出版社,2002.130-131.
    [74]刘贤赵,康绍忠.番茄不同生育阶段遮荫对光合作用与产量的影响[J].园艺学报,2002,29(5):427-432.
    [75]刘贤赵,康绍忠.不同生长阶段遮荫对番茄光合作用、干物质分配与叶N、P、K的影响[J].生态学报,2002,22(12):2264-2271.
    [76]梁新华,许兴,徐兆桢.渗透胁迫对苗期不同品种春小麦叶片叶绿素荧光动力学的影响[J].宁夏大学学报(自然科学版),2002,23(4):256-258.
    [77]芦站根,赵昌琼,韩英,等.不同光照条件下生长的曼地亚红豆杉光合特性的比较研究[J].西南师范大学学报(自然科学版),2003,28(1):117-121.
    [78]刘国顺,乔新荣,王芳,等.光照强度对烤烟光合特性及其生长和品质的影响[J].西北植物学报,2007,27(9):1833-1837.
    [79]路丙社,白志英,孙浩元,等.土壤含水量对阿月浑子叶片净光合速率及叶绿素荧光参数的影响[J].园艺学报,2004,31(6):727-731.
    [80]李晓,冯伟,曾晓春.叶绿素荧光分析技术及应用进展[J].西北植物学报,2006,26(10):2186-2196
    [81]李延菊,李宪利,高东升,等.扁桃叶绿素荧光特性的研究[J].落叶果树,2006(3):1-4.
    [82]李潮海,栾丽敏,王群,等.苗期遮光及光照转换对不同玉米杂交种光合效率的影响[J].作物学报,2005,31(3):381-385.
    [83]刘文海,高东升,束怀瑞.不同光强处理对设施桃树光合及荧光特性的影响[J].中国农业科学,2006,39(10):2069-2075.
    [84]梁月,郭建斌,殷丽强.黄土高原半干旱区臭椿气孔导度及影响因子的研究[Jl.四川林勘设计,2007,3:9-12.
    [85]李茂广,薛建鹏,王鑫.干旱胁迫对白桦光合特性的影响[J].林业科技,2008,33(3):19-21.
    [86]李伟,黄金丽,眭晓蕾,等.黄瓜幼苗光合及荧光特性对弱光的响应[J].园艺学报,2008,35(1):119-122.
    [87]梁哲军,陶洪斌,周祥利,等.玉米光合生理对苗期土壤水分亏缺的响应[J].玉米科学,2008,6(4):72-76.
    [88]李清明.温室黄瓜(Cucumis sativus L.)对干旱胁迫与CO2浓度升高的响应与适应机理研究[D].西北农林科技大学,2008.
    [89]李伟,眭晓蕾.张振贤.温度对黄瓜幼苗光合生理弱光耐受性的影响[J].应用生态学报,2008,19(12):2643-2650.
    [90]李西文,陈士林.遮荫下高原濒危药用植物川贝母(Fritillaria cirrhosa)光合作用和叶 绿素荧光特征生[J].生态学报,2008,28(7):3440-3446.
    [91]李永红,杨悦.水分胁迫对叶子花光合特性的影响[J].北方园艺,2009(1):81-184.
    [92]李林芝,张德罡,辛晓平,等.呼伦贝尔草甸草原不同土壤水分梯度下羊草的光合特性[J].生态学报,2009,29(10):5271-5279.
    [93]李红生,刘广全,陈存根,等.黄土丘陵沟壑区沙棘光合特性及气孔导度的数值模拟[J].西北农林科技大学学报(自然科学版),2009,37(4):108-114.
    [94]李仙岳,杨培岭,任树梅,等.樱桃冠层导度特征及模拟[J].生态学报,2010,30(2):0300-0308.
    [95]吕洪飞,皮二旭,王岚岚,等.遮荫处理的白英光合作用和叶绿素荧光特性研究[J].浙江师范大学学报(自然科学版),2009,32(1):2-6.
    [96]马德华,庞金安,霍震荣,等.弱光对黄瓜幼苗光合及膜脂过氧化作用的影响[J].河南农业大学学报,1998,32(1):68-71.
    [97]牟会荣,姜东,戴廷波,等.遮荫对小麦旗叶光合及叶绿素荧光特性的影响[J].中国农业科学,2008,41(2):599-606.
    [98]马飞,姬明飞,陈立同,等.油松幼苗对干旱胁迫的生理生态响应[J].西北植物学报,2009,29(3):0548-0554
    [99]那松青.C3植物中PEPC及其有关酶活性研究.[D].北京:中国科学院植物研究所,1986.
    [101]牛书丽,蒋高明,李永庚.C3与C4植物的环境调控[J].生态学报,2004,24(2):308-313.
    [102]牛海山,旭日,张志诚,等.羊草气孔导度的Jarvis2类模型[J].生态学杂志,2005,24(11):1287-1290.
    [103]彭长连,林植芳,孙梓健,等.水稻光合作用对加富CO2的响应[J].植物生理学报,1998,24(3):272-278.
    [104]潘瑞炽,董愚得.植物生理学(第二版)[M].北京:高等教育出版社,1983.9.
    [105]潘瑞炽.植物生理[M].北京:高等教育出版社,2004.56-58.
    [106]彭世彰,徐俊增,丁加丽.控制灌溉水稻气孔导度变化规律试验研究[J].农业工程学报,2005,21(3):1-5.
    [107]秦舒浩,李玲玲.遮光处理对西葫芦幼苗形态特征及光合生理特性的影响[J].应用生态学报,2006,7(4):653-656.
    [108]齐华,白向历,孙世贤,等.水分胁迫对玉米叶绿素荧光特性的影响[J].华北农学报,2009,24(3):102-106.
    [109]任红旭,陈雄,吴冬秀.C02浓度升高对干旱胁迫下蚕豆光合作用和抗氧化能力的影响[J].作物学报,2001,27(6):731-736.
    [110]阮成江,李代琼.黄土丘陵区沙棘气孔导度及其影响因素[J].西北植物学报,2001,21(6):1078-1084.
    [111]任华中,黄伟,张福馒.低温弱光对番茄生理特性的影响[J].中国农业大学学报,2002, 7(1):95-101.
    [112]任三学,赵花荣,姜朝阳,等.土壤水分胁迫对冬小麦旗叶光合特性的影响[J].气象科技,2010,38(1):114-118.
    [113]施教耐,吴敏贤,查静娟.植物磷酸烯醇式丙酮酸羧化酶的研究I.PEP羧化酶同工酶的分离和变构特性的比较[J].植物生理学报,1979,5(2):225-235.
    [114]史正军,樊小林.干旱胁迫对不同基因型水稻光合特性的影响[J].干旱地区农业研究,2003,21(3):123-126.
    [115]宋丽萍,蔡体久,喻晓丽.水分胁迫对刺五加幼苗光合生理特性的影响[J].中国水土保持科学,2007,5(2):91-95.
    [116]宋晓蕾,杨红玉,曾黎琼.植物遮荫效应的研究进展[J].北方园艺,2009(5):129-133.
    [117]孙志虎,王庆成.土壤含水量对三种阔叶树苗气体交换及生物量分配的影响[J].应用与环境生物学报,2004,10(1):007-011.
    [118]孙存华,李扬,杜伟,等.干旱胁迫下藜的光合特性研究[J].植物研究,2007,27(6):716-720.
    [119]司建华,常宗强,苏永红,等.胡杨叶片气孔导度特征及其对环境因子的响应[J].西北植物学报,2008,28 (1):0125-0130.
    [120]石贵玉,康浩,梁士楚,等.大米草对C02浓度的光合和蒸腾响应[J].广西科学,2009,16(3):322-325.
    [121]Tankou CM,王秀林.施氮与荫蔽时间对木薯气体交换和生长的影响[J].世界热带农业信息,1992,3(11):47-50.
    [123]唐礼俊,李渤生,唐崇钦,等.华山松叶绿素荧光诱导动力学参数的地理变异及其与树高生长的关系[J].植物生态学报,1997,21(5):474-479.
    [124]唐如航,郭连旺,陈根云,等.大气CO2浓度倍增对水稻光合速率(?)(?)Rubisco的影响[J].植物生理学报,1998,24(3):309-312.
    [125]唐凤德,武耀祥,韩士杰,等.长白山阔叶红松林叶片气孔导度与环境因子的关系[J].生态学报,2008,28(11):5649-5655.
    [126]覃盈盈,甘肖梅,蒋潇潇,等.红树林生境中互花米草气孔导度的动态变化[J].生态学杂志,2009,28(10):1991-1995.
    [127]王万里.植物对水分胁迫的响应[J].植物生理学通讯,1981,5:55.
    [128]王洪春.植物生理学专题讲座[M].北京:科学出版社,1987.336-341
    [129]王邦锡,何军贤,黄久常.水分胁迫导致小麦叶片光合作用下降的非气孔因素[J].植物生理学报,1992,18(1):77-84.
    [130]王修兰,徐师华.CO2浓度倍增对大豆各生育期阶段的光合作用及干物质积累的影响[J].作物学报,1994,20(5):520-527.
    [131]王焘,郑国生,邹琦.小麦光合作用午休过程中RuBPCase活性的变化[J].植物生理学通讯,1996,32(4):257-260.
    [132]王可玢,许春晖,赵福洪,等.水分胁迫对小麦旗叶某些体内叶绿素荧光α参数的影
    响[J].生物物理学报,1997,13(2):273-278.
    [133]武海,张树源,许大全,等.珊瑚树叶片叶绿素荧光非光化学碎灭的日变化和季节变化[J].植物生理学报,1997,23(2):145-150.
    [134]王绍辉,郝翠玲,张振贤.植物遮荫效应的研究与进展[J].山东农业大学学报,1998,29(1):130-134.
    [135]王克勤,王力.不同土壤水分下金矮生苹果叶片蒸腾速率研究[J].西南林学院学报,1999,19(1):8-13.
    [136]王玉辉,周广胜.羊草叶片气孔导度对环境因子的Ⅱ向应模拟[J].植物生态学报,2000,24(6):739-743.
    [137]王玉辉,周广胜,何兴元.羊草叶片气孔导度特征及数值模拟[J].应用生态学报,2001,12(4):517-521.
    [138]王克勤,王斌瑞,王震洪.金矮生苹果水分利用效率的研究[J].生态学报,2002,22(5):723-728.
    [139]王克勤,王斌瑞.土壤水分对金矮生苹果光合速率的影响[J].生态学报,2002,22(2):206-214.
    [140]魏道智,宁书菊.玉米素、脱落酸处理对小麦叶片光合性能的影响[J].华北农学报2002,17(增):23-28.
    [141]魏爱丽,王志敏,翟志席,等.土壤干旱对小麦旗叶和穗器官C4光合酶性的影响[J].中国农业科学,2003,36(5):508-512.
    [142]王淼,李秋荣,郝占庆,等.土壤水分变化对长白山主要树种蒙古栎幼树生长的影响[J].应用生态学报,2004,15(10):1765-1770.
    [143]眭晓蕾,张宝玺,张振贤,等.不同品种辣椒幼苗光合特性及弱光耐受性的差异[J].园艺学报,2005,32(2):222-227
    [144]吴炫柯,李永健,李杨瑞.不同木薯品种气体交换特性及光合酶活性的变化[J].亚热带农业研究,2006,2(3):179-183.
    [145]吴炫柯,李永健,李杨瑞.不同生长期木薯品种气体交换特性的研究[J].西南农业学报,2006,19(3):456-459.
    [146]吴家兵,关德新,张弥,等.长白上地区蒙古栎光合特性[J].中国科学院研究生院学报,2006,23(4):548-554.
    [147]眭晓蕾,张振贤,张宝玺,等.不同品种辣椒幼苗光合与呼吸对弱光的响应[J].中国农业生态学报,2007,15(2):88-91.
    [148]眭晓蕾,毛胜利,王立浩,等.弱光条件下辣椒幼苗叶片的气体交换和叶绿素荧光特 性[J].园艺学报,2007,34(3):615-622.
    [149]文军.遮荫对粤西香根草光合特性和生长的影响[D].甘肃农业大学,2007.
    [150]伍维模,李志军,罗青红,等土壤水分胁迫对胡杨、灰叶胡杨光合作用-光响应特性的影响[J].林业科学,2007,43(5):30-35.
    [151]魏磊,崔世茂.干旱胁迫对山杏光合特性的影响[J].华北农学报,2008,23(5):194-197.
    [152]王良桂,张春霞,彭方仁,等.干旱胁迫对几种楸树苗木叶片荧光特性的影响[J].南京林业大学学报(自然科学版),2008,32(6):119-122.
    [153]王强,陈存根,钱红格,等.水分胁迫对6种苗木光合生理特性的影响[J].水土保持通报,2009,29(2):144-149.
    [154]王建林.燕麦叶片光合速率、气孔导度对光强和CO2的响应与模拟[J].华北农学报,2009,24(3):134-137.
    [155]许大全,徐宝基,沈允钢.C3植物光合效率的日变化[J].植物生理学报,1990,16(1):1-5.
    [156]许大全.光合作用效率[M].上海:上海科学技术出版社,2002.
    [157]谢会成,朱西存.水分胁迫对栓皮栎幼苗生理特性及生长的影响[J].山东林业科技,2004(2):6-7.
    [158]夏江宝,张光灿,刘刚.不同土壤水分条件下紫藤叶片生理参数的光响应[J].应用生态学报,2007,18(1):30-34.
    [159]薛建平,王兴,张爱民,等.遮荫对半夏光合特性的影响[J].中国中药杂志,2008,33(24):2896-2900.
    [160]夏尚光,张金池,梁淑英.水分胁迫下3种榆树幼苗生理变化与抗旱性关系[J].南京林业大学学报:自然科学版,2008,32(3):131-134.
    [161]谢涛,杨志峰.水分胁迫对黄河三角洲河口湿地芦苇光合参数的影响[J].应用生态学报,2009,20(3):562-568.
    [162]杨涛,梁宗锁,薛吉全,等.土壤干旱不同玉米品种WUE差异的生理学原因[J].干旱地区农业研究,2002,20(2):68-71.
    [163]杨广东,朱祝军,计玉妹.不同光强和缺镁胁迫对黄瓜叶片叶绿素荧光特性和活性氧产生的影响[J].植物营养与肥料学报,2002,8(1):115-118.
    [164]杨晓青,张岁岐,梁宗锁,等.水分胁迫对不同抗旱类型冬小麦幼苗叶绿素荧光参数的影响[J].西北植物学报,2004,24(5):812-816.
    [165]易建华,孙在军.烟草光合作用对低温的响应[J].作物学报,2004,30(6):582-588.
    [166]云建英,杨甲定,赵哈林.干旱和高温对植物光合作用的影响机制研究进展[J].西北植物学报,2006,26(3):0641-0648.
    [167]叶子飘,赵则海.遮光对三叶鬼针草光合作用和叶绿素含量的影响[J].生态学杂志,2009,28(1):19-22.
    [168]叶子飘,于强.植物气孔导度的机理模型[J].植物生态学报,2009,33(4):772-782.
    [169]杨全,孟平,李俊清,等.土壤水分胁迫对杜仲叶片光合及水分利用特征的影响[J]中国农业气象,2010,31(1):48-52.
    [170]张维强,沈秀瑛.水分胁迫和复水对玉米叶片光合速率的影响[J].华北农学报,1994,9(3):44-47.
    [171]郑有飞,颜景义,张卫国.小麦气孔阻力对气象条件的响应[J].中国农业气象,1995,16(3):9-13,
    [172]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448.
    [173]赵会杰,邹奇,于振文.叶绿素荧光技术及其在光合机理研究中的应用[J].河南农业大学学报,2000,9(3):248-251.
    [174]张光灿,贺康宁,刘霞.黄土高原半干旱区林木生长适宜土壤水分环境的研究[J]水土保持学报,2001,15(4):1-51.
    [175]张永强,毛学森,孙宏勇,等.干旱胁迫对冬小麦叶绿素荧光的影响[J].中国生态农业学报,2002,10(4):13-15.
    [176]张明生,谢波,谈锋,等.甘薯可溶性蛋白、叶绿素及ATP含量变化与品种抗旱性关系的研究[J].中国农业科学,2003,36(1):13-16.
    [177]张广华,葛会波,李青云,等.SOD对草苟叶片光抑制的防御作用[J].果树学报,2004,21(4):328-330.
    [178]曾小平,赵平,蔡锡安,等.不同土壤水分条件下焕镛木幼苗的生理生态特性[J].生态学杂志,2004,23(2):26-31.
    [179]张光灿,刘霞,贺康宁,等.金矮生苹果叶片气体交换参数对土壤分胁迫的响应[J].植物生态学报,2004,28(1):66-72.
    [180]张广华,葛会波,李青云,等.SOD对草苟叶片光抑制的防御作用[J].果树学报,2004,21(4):328-330.
    [181]左闻韵,贺金生,韩梅,等.植物气孔对大气CO2浓度和温度升高的反应[J].生态学报,2005,25(3):565-574.
    [182]张寄阳,刘祖贵,段爱旺,等.棉花对水分胁迫及复水的生理生态响应[J].棉花学报,2006,18(6):395-399.
    [183]张国斌,郁继华.低温弱光对辣椒幼苗光合特性与光合作用启动时间的影响[J].西北植物学报,2006,26(9):1770-1775.
    [184]周兴元,曹幅亮.遮荫对假俭草抗氧化酶系统及光和作用的影响[J].南京林业大学学报,2006,30(3):32-36.
    [185]朱延姝,冯辉.弱光环境下番茄幼苗需光特性的变化弱光环境下番茄幼苗需光特性的变化[J].华北农学报,2007,22(5):76-78.
    [186]郑盛华.水分胁迫对玉米生理生态特性影响的研究[D].中国农业科学院农业环境与 可持续发展研究所,2007.
    [187]张振文,李开绵,叶剑秋,等.木薯光合作用特性研究[J].云南大学学报(自然科学版),2007,29(6):628-632.
    [188]张吉旺,董树亭,王空军,等.大田遮荫对夏玉米光合特性的影响[J].作物学报,2007,33(2):216-222.
    [189]赵溪竹,姜海凤,毛子军.长白落叶松、日本落叶松和兴安落叶松幼苗光合作用特性比较研究[J].植物研究,2007,27(3):361-366.
    [190]张永霞,李国旗,张琦,等.不同遮荫条件下罗布麻光合特性的初步研究[J].西北植物学报,2007,27(12):2555-2558.
    [191]赵权,赵文若.遮荫对大叶芹光合特性的影响[J].北方园艺,2008(8):7-10.
    [192]钟泰林,李根有,石柏林.遮荫对南五味子光合特性的影响[J].中草药,2009,40(3):466-469.
    [193]张昆,万勇善,刘风珍.花生幼苗光合特性对弱光的响应[J].应用生态学报,2009,20(12):2989-2995.
    [194]张昆,万勇善,刘风珍.苗期弱光对花生光合特性的影响[J].中国农业科学,2010,43(1):65-71.
    [195]Arnon D I. Copper enzymes in isolated chloroplasts:polyphenoloxidase in Beta vulgaris. Plant Physiology,1949,24(1):1-15.
    [196]Alberte R S, Thornber J P, Fiscus E L. Water stress effects in the content and organizationof chlorophyll in mesophyll and bundle sheach chloroplasts of maise[J]. Plant Physiology,1977,59:351-353.
    [197]Aresta R B, Fukai S. Effects of solar radiation on growth of cassava (Manihot esculenta crantz.). II. Fibrous root length[J]. Field Crops Research,1984,9:361-371.
    [198]Anozis P A, Nelemans J A, Findenegg G R. Phosphoenolpyruvatecarboxylase activity in plants grown with either NO3- or NH4+asinorganic nitrogen source. Journal of Plant Physiology,1988,132:23-27.
    [199]Arp W J. Effects of source-sink relation on photosynthetic acclimation to elevated CO2 [J]. Plant, cell and environment,1991,14(8):869-875.
    [200]Alves A A C, Setter T L. Response of cassava to water deficit:leaf area growth and abscisic acid[J]. Crop Sci.2000,40:131-137.
    [201]Boyer J S. Photosynthesis at low water potentials. Philosophical Transactions of the Royal Society B[J].1976,273:501-512.
    [202]Ball J T, Woodrow I E, Berry J A. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions [A]. In:BigginsJ. Ed. Progress in Photosynthesis Research [C]. Netherlands:Martinus Nijh off Publishers,1987.221-224.
    [203]Bassman J, Zwier J C. Gas exchange characteristics of Populus trichocarpa,Populus deltoides and Populus trichocarpa×P deltorides clone.Tree Physiology,1991,8:145-149.
    [204]Bowes G. Facing the inevitable:plant and atmospheric CO2 [J]. Annual Review of Plant Physiology and Plant Molecular Biology,1993,44:309-332.
    [205]Bota J, Flexas J, Medrano H. Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress [J]. New Phytologist,2004,162 (3): 671-681.
    [206]Cock J H, Franklin D, Sandoval G, et al. The ideal cassava plant for maximum. Crop Science,1979,19:271-279.
    [206]Cornic G, Miginiac E. Non-stomatal inhibition of net CO2 uptake by (+) abscisic acid in Phurbitis nil[J]. Plant Physiol,1983,73:529.
    [207]Cock J H, Porto M C M, El-Sharkawy M A:Water use efficiency of cassava. Ⅲ. Influence of air humidity and water stress on gas exchange of field grown cassava. Crop Sci., 1985,25:265-272
    [208]Cock J H, Riano N M, El-Sharkawy M A, et al. C3-C4 intermediate photosynthetic characteristics of cassava(Manihot esculenta Crantz). Ⅱ. Initial products of 14CO2 fixation[J]. Photosynth. Res.,1987,12:237-241.
    [209]Collatz G J, Ball J T, Grivet C, et al. Physiological and environmental regulation of stomatal conductance,photosynthesis and transpiration:a model that includes a laminar boundary layer. Agricultural and Forest Meteorology,1991,54:107-136.
    [210]Cohen S, Moreshet S, Guillou L L, et al. Response of citrus trees tomodified radiation regime in semrarid conditions [J]. Journal of Experiment Botany,1997,48:35-44.
    [211]Cayon M G, El-Sharkawy M A, Cadavid L F. Leaf gas exchange of cassava as affected by quality of planting material and water stress[J]. Photosynthetica,1997,34(3):409-418.
    [212]Comic G. Drought stress inhibits photosynthesis by decreasing stomatal aperture, not by affecting ATP synthesis[J]. Trends in Plant Science,2000,5 (5):187-188.
    [213]Calatayud P A, Lloveral E, Bois J F, et al. Photosynthesis in Drought-Adapted Cassava[J]. Photosynthetica,2000,38(1):97-104.
    [214]Chaves M M, Oliveira M M. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture[J]. Journal of Experimental Botany,2004,55: 2365-2384.
    [215]Cheruth A J, Ragupathi G,Beemarao S, et al. Differential responses in water use efficiency in two varieties of Catharan thus roseus under drought stress[J]. C. R. Biologies, 2008,3(31):42-47.
    [216]Duffus C M, Rosie R. Some enzyme activities associated with the chlorophyll containing layers of theimmature barley pericarp[J]. Planta,1973,111:219-226.
    [217]Downton W J S, Grant W J R, Loveys B R. Diurnal changes in the photosynthesis of field-grown grapevines [J]. New Physiol,1987,106:71.
    [218]De Tafur S M, El-Sharkawy M A, Cadavid L F. Response of cassava (Manihot esculenta Crantz) to water stress and fertilization[J]. Photosynthetica,1997,34(2):233-239.
    [219]El-Sharkawy M A, Cock J H. Water use efficiency of cassava. I Effects of air humidity and water stress on stomata conductance and gas exchange[J]. Crop Sci.1984,24:497-502.
    [220]El-Sharkawy M A, Cock J H, Hernandez A D P:Stomatalresponse to air humidity and its relation to stomatal density ina wide range of warm climate species [J]. Photosynth. Res., 1985,7:137-149.
    [221]E1-Sharkawy M A, Cock J H:The humidity factor in stomatal control and its effect on crop productivity, In:Marcelle, R., Clijsters, H., Van Poucke, M. (ed.):Biological Control of Photosynthesis.Martinus Nijh off Publ., Dordrecht-Boston-Lancaster,1986.187-198.
    [222]E1-Sharkawy M A, Cock J H. C3-C4 intermediate photosynthetic characteristics of cassava(Manihot esculentaCrantz). I. Gas exchange[J]. Photosynth. Res.1987,12(3): 219-235.
    [223]El-Sharkawy M A, Cock J H:Response of cassava to waterstress[J]. Plant Soil,1987b, 100:345-360.
    [224]Edwards G E, Sheate E, Moore B,et al Photosynthetic characteristics of cassava (Manihot esculenta Crantz), a C3 species with chlorenchymatous bundle sheath cells[J]. Plant Cell Physiol.,1990,31:1199-1206.
    [225]E1-Sharkawy M A, Cock J H. Photosynthesis of Cassava[J].Experimental Agriculture, 1990,26:325-340.
    [226]Ellsworth D S. CO2 enrichment in a maturing pine forest:are CO2 exchange and water status in the canopy affected? [J]. Plant Cell Environ.,1999,22(5):461-472.
    [227]Escalona J M, Flexas J, Medrano H A. Stomatal and non-stomatal limitations of photosynthesis under water stress in field-grown grapevines Aust[J]. J. Plant Physiol.,1999, 26:421-433.
    [228]E1-Sharkawy M A:Cassava biology and physiology [J]. Plant mol.Biol.,2004,56: 481-501.
    [229]Ennahli S, Earl H J. Physiological limitations to photosynthetic carbon assimilation in cotton under water stress[J]. Crop Science,2005,45:2374-2382.
    [230]E1-Sharkawy M A:How can calibrated research-based models be improved for use as a tool in identifying genes controlling crop tolerance to environmental stresses in the era of genomics-from an experimentalist's perspective. Photosynthetica,2005,43:161-176.
    [231]E1-Sharkawy M A, De Tafur S M:Genotypic and within canopy variation in leaf carbon isotope discrimination and its relation to short-term leaf gas exchange characteristics in cassava grown under rain-fed conditions in the tropics[J]. Photosynthetica,2007,45:515-526.
    [232]E1-Sharkawy M A, Lopez Y, Bernal L M. Genotypic variations in activities of phosphoenolpyruvate carboxylase and correlations with leaf photo synthetic characteristics and crop productivity of cassava grown in low-land seasonally-dry tropics[J]. Photosynthetica, 2008,46 (2):238-247.
    [233]Farquhar G. D, Sharkey T D. Stomatalconductance and photosynthesis[J]. Ann.Res.Physiol.1982,33:317-345.
    [234]Fay P A, Knapp A K. Photosynthetic and stomatal responses of A vena sativa to a variable light environment[J]. Am J Bot,1993,80:1369-1373.,
    [235]Fordham M, Barnes J D, Bettarini Ⅰ, et al.The impact of elevated CO2 on growth and photosynthesis in Agrostis canina L.ssp.Monteluccii adapted to contrasting atmospheric CO2 concentrations [J]. Oecologia,1997,110:169-178.
    [236]Flexas J, Medrano H. Drought-inhibition of photosynthesis in C3 plants:stomatal and non-stomatal limitation revisited[J]. Annals of Botany,2002,89:183-189.
    [237]Flexas J, Bota J, Loreto F, et al. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants[J]. Plant Biology,2004,6:269-279.
    [238]Genty B, Briantais J M, Baker N R. The relationship between the quantum of non-photochemical quenching of chlorophyll fluorescenceand the rate of photosystem Ⅱ photochemistry in leaves[J]. Biochim. Biophys. Acta,.1989,900:87-92.
    [239]Govidjee. A role for a light-harvesting antenna complex of photosystem Ⅱ in photo protection[J]. The Plant Cell,2002,14:1663-1667.
    [240]Giacomo G, Federico M. Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leafontogeny in ash and oak trees [J]. Plant, Cell and Environment 2005,28:834-849.
    [241]Gong C M, Gao X W, Cheng D L, et al.C4 photosynthetic characteristics and antioxidative protection of C3 desert shrub Hedysarum scoparium in Northwest China. [J]. Pakistan Journal of Botany,2006,38:647-661.
    [242]Hetthol T J J. Water use efficiency and dry matter dist ribution in nit rogen and water stressed winter wheat [J]. Agron.J.,1989,81:464-469.
    [243]Horie T, Baker J T, Nakagawa H, et al. Crop ecosystem responses to climatic change:rice.[A].Crop ecosystem responses to climatic change:rice.[C].Wallingford,United Kingdom:CAB International Press,2000.81-106.
    [244]Ike I F. Effect of water deficits on transpiration, photosynthesis and leaf conductance in cassava[J]. Physiologia Plantarum,1982,55(4):411-414.
    [245]Idso S B, Kimball B A. Downward regulation of photosynthesis and growth at high CO2 levels.No evidence for either phenomenon in three-year study of sour orangetrees[J]. Plant Physiology,1991,96:990-992.
    [246]Jarvis P G. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field[J]. Philos. Trans. Roy. Soc. L ondon B,1976,273: 593-610.
    [247]Jiang G M, Chang J, Gao Y B, et al. The main affected environment factors of photosynthesis[M]. In:Plant Ecophysiology. Beijing:Higher EducationPress,2004.65-67.
    [248]Joon K, Shashi BV. Modeling canopy stomatal conductance in a temperature grassland ecosystem[J]. Agricultural and Forest Meteorolgy,1991,55:149-166.
    [249]Kiippers M. Water vapor and carbon dioxide exchange of leaves as affected by different environmental conditions [J]. Acta Horticulturae,1988,229:85-112.
    [250]Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis:The BasicsAnnu. Rev. Plant Physiol[J]. Plant Mol. Biol.,1991,42:313-340.
    [251]Kimball B A. Carbon dioxide and agricultural:an assemblage and analysis of 430 prior observations [J]. Agronomy Journal,1989 (9-10):779-787.
    [252]Koch K E. Carbohydrate-modulated gene expression in plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1996,47(1):509-540.
    [253]Kim S H, Lieth H. A coupled model of photosynthesis, stomatal conductance and transpiration for a rose leaf (Rosa hybrida L.) s[J]. Annals of Botany,2003,91:771-781.
    [254]Kitao M, Utsugi H, Kuramoto S, et al. Light-dependent photosynthetic characteristics indicated by chlorophyll fluorescence in five mangrove species native to Pohnpei Island, Micronesia[J]. Physiol. Plant,2003,117:376-382.
    [255]Lilley R M, Walker D A. An improved spectrophotometric assay for ribulose bisphosphate carboxylase[J]. Biochimicaet Biophysica Acta,1974,358:226-229.
    [256]Leuning R. Modelling stomatal behavior and photosynthesis of Eucalyptus grandis[J]. Australian Journal ofPlant Physiology,1990,17:159-175.
    [257]Leuning R. A critical appraisal of a combined stomatal photosynthesis model for C3 plants[J]. Plant, Cell and Environment,1995,18:339-355.
    [258]Lafitte H R, Edmeades G O.Temperature efiects on radiation use and biomass partitioning in diverse tropical maize cultivars[J]. Field Crops Research,1997,49:231-247.
    [259]Liu X Z, Kang S Z, Shao M A. Effect of shading on gas exchange of cotton leaves under conditions of different soil water contents[J]. Pedo sphere,2000,10:77-80.
    [260]Lawlor D W, Cornic G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants [J]. Plant, Cell and Environment,2002,25:275-294.
    [261]Ormrod D P, Lesser V M, Olszyk D M, et al.Elevated temperature and carbondioxide affect chlorophylls and carotenoids in douglas-fir seedlings[J].Int.J.Plant Sci.,1999,160(3): 529-534.
    [262]Nemani R R, Keeling C D, Hashimoto H, et al. Climatedrivenincreases in global terrestrial net primary productionfrom 1982 to 1999[J]. Science,2003,300:1560-1563.
    [263]O'Toole J C, Ozbun J L, Wallace D H. Photosynthetic response to water stress in Phaseolus vulgaris[J]. Physiol.Plant,1977,40:111-114.
    [264]Okoli P S O, Wilson G F. Response of cassava (Manihot escudenta Crantz)to shade under field conditions [J]. Field Crops Rsearch,1986,14:349-360.
    [265]Omarova E I, Bogdanova E D, Polimbetova F A. Regulation of Water Loss by theLeaves of Soft Winter Wheat with Different Organization of Leaf Structure[J]. Russ. J. Plant Physiol.,1995,42:383-385.
    [266]Oh S A, Park J H, Lee G I, et al. Identification of three genetic loci controlling leaf senescence in A rabidopsisthaliana[J]. J. Plant,1997,12 (3):527-533.
    [267]O'Connor T G, Haines L M, Snyman H A. Influence of precipitation and species composition on phytomass of a semi-arid African grassland[J]. Journal of Ecology,2001,89: 850-860.
    [268]Powl B. Photoinhibition of photosynthesis induced by visible light[J].Ann Rev.Plant physiol,1984,35:15-44.
    [269]Palta J A:Influence of water deficits on gas-exchange and the leaf area development of cassava cultivars[J]. J. exp. Bot.,1984,35:1441-1449,
    [270]Parry M A, Andralojic P J, Rhan S, et al. Rubisco activity:effects of drought stress[J].Aannals of Botany,2002,89(S):833-901.
    [271]Price A H, Cairns J E, Horton P, et al. Linking Drought Resistance Mechanisms to Drought Avoidance in Upland Rice Using a QTL Approach:Progress and New Opportunities to Integrate Stomatal and Mesophyll Responses[J]. J. Exp.Bot,2002,53:989-1004.
    [272]Raschke K. Stomatal action. Annual Review of Plant Physiology,1975,26:309-400.
    [273]Gleadow R M, Evans J R, Mccaffery S, et al. Growth and nutritive value of cassava (Manihot esculenta Crantz) are reduced when grown in elevated CO2[J]. Plant Biology, 2009.1-7.
    [274]Siefermann D. Carotenoids in photosynthesis.Ⅰ.Location in photosynthetic membrane and light-harvesting function[J]. Biochim Biophys Acta,1985,811:325
    [275]Sage R F, Sharkey T D, Seemann J R. Acclimation of photosynthesis to elevated CO2 in five C3 species[J]. Plant Physiol,1989,89(2):590-596.
    [276]Sellers P J, Berry J A, Collatz G J, et al. Canopy reflectance, photosynthesis and transpiration.Ⅲ. A reanalysis using improved leaf models and a new canopy integration scheme[J]. Remote Sensing of Environment,1992,42:187-216.
    [277]Steduto P, Katerji N, Puertos-Molina H, et al. Water-use efficiency of sweet sorghumunder water st ress conditions:Gas-exchange investigations at leaf and canopy scales[J]. Field Crops Research,1997,14:221-234
    [278]Thind S K, Malik C P. Carboxylation and related reaetion in wheat seedlings under Osmotic stress[J]. Plant Physiolog, andBioehemistry, Indian,1988,15(1):58-63.
    [279]Tezara W V J, Mitchell S P, Driscoll S P, et al.Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP[J]. Nature,1999,401:914-917.
    [280]Tezara W, Mitchell V J, Driscoll S D, et al. Effects of water deficit and its interaction with CO2 supply on the biochemistry and physiology of photosynthesis in sunflower[J]. Journal of Experimental Botany,2002,53:1781-1791.
    [281]Tuzet A, Perrier A, Leuning R. A coupled model of stomatal conductance, photosynthesis and transpiration [J]. Plant, Cell and Environment,2003,26:1097-1116.
    [282]Van kooten O, Ksnel J F H. The use of chloroohyll nomenclature in p lant stress physiology [J]. Photosynth. Res.1990,25:147-150.
    [283]Villalobos A E, Pelaez D V. Influence of temperature and water stress on germination and establishment of Prosopis caldenia burk[J]. Journal of Arid Environments,2001,49: 321-328.
    [284]Wong S C, Cowan I R, Farquhar G D. Stomatal conductance correlates with photosynthetic capacity[J]. Nature,1979,282:424-426.
    [285]Wong S C, Cowan I R, Farquhar G D. Leaf conductance in relation to rate of CO2 assimilation.Ⅱ. Influences of water stress and photoinhibition[J]. Physiol Plant,1985,78: 830.
    [286]Ward D A, Bunce J A. Abscisic acid simultaneously decreases carboxylation efficiency and quantum in attached soybean leaves[J]. J Exp Bot,1987,38:1182.
    [287]Willekens H, Van CW, Van M M, et al. Ozone, sulfur dioxide, and ozone ultravio let-B have similar effect on mRNA accumulationof antioxidant genes in Nicotiana plum bag inifoliaL. [J]. Plant Physiol.,1994,106:1007-1014.
    [288]Waiting J R, Press M C, Quick W P. Elevated CO2 induces biochemical and ultrastructural changes in leaves of the C4 cereal sorghum [J]. Plant Physiology,2000,123 (3): 1143-1152
    [289]Wang Q C, Sun Z H, Zhang H, et al. Adaptive responses of Acer ginnala,Pyrus ussuriensis and Prunus davidiana seedlings to soil moisture stress[J]. Journal of Forestry Research,2003,14(4):280-284.
    [290]Yu G R, Nakayama K, Matsuoka N, et al. A combination model for estimating stomatal conductance of maize (Zea mays L.) leaves over a long term[J].A gric. For. Mete.,1998,92: 9-28.
    [291]Yu Q, Zhang Y Q, Liu Y F, et al. Simulation of the stomatal conductance of winter wheat in response to light, temperature and CO2 changes[J]. Annals of Botany,2004,93: 435-441.
    [292]Yun J Y, Yang J D, Zhao H L. Research p rogress in the mechanism for drought and high temperature to affect plant photosynthesis[J]. Acta Botanica Boreal Occident Sinica, 2006,26 (3):0614-064.
    [293]Ziska L H, Teramura A H. Intraspecific variation in the response of rice(Oryza sativa)to increased CO2-photosynthetic, biomass and reproductive characteristics[J]. Physiologia Plantarum,1992,84(2):269-274.
    [294]Zhang J, Kirkham M B. Drought-stress-induced changes in activities of superoxidedismutase, catalase, and peroxidase in wheat species[J]. Plant and Cell Physiology, 1994,35(5):785-791.
    [295]Zhao D, Oosterhuis D. Influence of shade on m ineral nutrient status of field grown cotton [J]. Plant Nutrient,1998,21:1681-1692.
    [296]Zhao D, Oosterhuis D. Physiologic and yield responses of shaded cotton to the plant growth regulator PGR-IV [J]. Plant Growth Regulation,1998,17(1):47-52.
    [297]Zheng W J, Zheng X P, Zhang C L. A survey of photosynthetic carbon metabolism in 4 ecotypes of Phragmites australis in Northwest China:leaf anatomy,ultrastructure, and activities of ribulosel,5-bisphosphate carboxylase, phosphoenolpyruvate carboxylase and glycollate oxidase[J]. Physiologia Plantarum,2000,110:201-208