基于风险的石化动设备智能维修决策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油化工生产在我国国民经济发展中具有重要的作用,但其工艺介质具有易燃、易爆、毒性的特点,一旦设备发生事故,不仅造成巨大的经济损失,而且还会影响到人身安全和环境,有时会造成无法估量的损失,甚至会给社会带来灾难性后果。所以采取有效的手段,预防事故的发生和提高设备的可靠性,对于石化企业意义重大。随着石化生产逐渐向大型化、复杂化和自动化方向发展,危险物质的数量和种类都在不断增加,因此对其生产设备的安全性、可靠性就提出愈来愈高的要求。设备维修是安全生产、提高产品质量和增加企业经济效益的重要保证。目前,石油化工企业维修成本占生产总成本的比例越来越高。因此,在确保安全和可靠的前提下,如何有效地降低维修成本,对维修进行有效地决策与优化,已经成为人们关注的焦点,也是目前迫切而且必须解决的问题。
     与静设备相比,动设备一般故障率较高,为了保证整个生产系统的安全、平稳和可靠地运行,必须对动设备进行有效的维修管理,以确保石油化工企业的安全长周期运转。
     本文在总结了各种先进的设备维修管理理念的基础上,对石化动设备维修决策方法进行了研究。具体研究内容主要包括以下几个方面:
     (1)基于风险的动态智能维修系统的建立
     运用先进的计算机技术、网络技术、数据库技术,利用系统工程方法,建立了基于风险的动态智能维修系统。在此系统中,通过基于风险的维修决策指导智能监/检测,同时把智能监/检测与动态风险评价相结合,根据设备状态监测与故障诊断结果确定出设备的动态风险等级,实施风险预警。随着设备状态的变化,维修计划不断更新和调整,从而形成一个动态闭环智能维修系统。
     (2)石化动设备重要度评价方法研究
     设备重要度评价是维修资源合理分配的重要依据,把故障模式和影响分析方法引入设备重要度评价,并且针对设备重要度评价过程中的模糊性、不确定性和多因素的特点,建立了基于模糊综合评价方法的设备重要度评价模型。由于基于误差反向传播(BP:Back—propagation)算法的人工神经网具有很强的学习能力而且结构简单,把模糊综合评价方法与神经网络技术相结合。实例分析表明,该模型能够真实地反映出设备在生产中所处的地位,而且实现了设备重要度的智能评价。
     (3)石化动设备视情维修周期优化研究
     目前,视情维修对石化动设备是一种有效的维修方式。视情维修的成本是设备寿命周期费用的重要组成部分,因此,降低视情维修成本是维修管理追求的一个主要目标。在本研究中建立了视情维修成本优化模型。在模型中,首先提出了视情维修应用的判别条件,然后以单位时间内维修成本最低为目标,把潜在故障与功能故障之间的时间间隔引入维修成本优化模型中,针对故障发生的随机性,开发了蒙特卡罗计算机优化仿真流程。以一台离心泵为分析实例,结果表明:与优化前相比,可节省维修费用14,327元/年,取得明显的经济效益。
     (4)基于风险的石化动设备维修决策方法研究、软件开发及工程应用
     引入了风险评价理论,对石化动设备的维修决策过程进行了研究。建立了适合石化动设备的风险评价准则和基于风险的维修决策方法。以故障根本原因分析为依据,提出故障根治维修措施。
     依据基于风险的石化动设备维修决策的研究成果,开发了计算机辅助分析软件。结果表明,与传统的人工决策方式相比,该软件实现了维修分析决策过程的规范化和流程化,大大提高了维修决策的效率和有效性。
     将基于风险的石化动设备维修决策方法在中石化某乙烯厂进行了工程应用。对乙烯装置141台动设备先后进行了故障模式分析、风险评价和根本原因分析,共得到549种故障模式,高风险故障模式有67个,占12%。依据基于风险的维修决策流程,提出根治维修和状态监/检测建议。应用结果表明,该方法对企业的维修资源进行了合理的分配,充分考虑了生产的安全性与经济性,提高了维修的效益。
The petrochemical industry plays an important role in national economic development. However, its process media are inflammable, explosive and toxic. Therefore, the failure of equipment may cause great economic losses. Furthermore, it may lead to serious personnel injury even death and environment pollution. And social disaster will be a nightmare. So it is of great significance for petrochemical industry to take effective measurements to prevent failures and improve the reliability of equipment. With the production trend of large-scale, complication and automation, dangerous media keep increasing both in species and quantity. Hence, it requires stringent regulations on equipment safety and reliability. Maintenance is extremely essential for ensuring the equipment to keep running safely, improving product quality and increasing economic benefits of plants. Nowadays, the maintenance cost takes a great proportion of the total production cost. How to reduce it and how to effectively make decisions and optimize maintenance have caused great concerns. It is an urgent problem to be solved.
     Compared with static equipment, the failure rate of rotating machinery is generally higher. In order to ensure process safety, stability and reliability, modern industry requires effective maintenance management in rotating machinery so that the safe and long-life running of the petrochemical plant can be achieved.
     Based on the kinds of advanced equipment maintenance management concepts, our particular focus is on maintenance decision-making for petrochemical rotating machinery. The studies in this dissertation include following parts.
     (1) Establishment of a dynamic risk-based intelligent maintenance system
     A dynamic risk-based intelligent maintenance system (RBIMS) was established by using the advanced information science technology, and systems engineering methods. The maintenance decision-making is taken as a guidance of condition monitoring / inspection and monitoring / inspection has been integrated with dynamic risk assessment. Based on the results of condition monitoring and fault diagnosis, the equipment dynamics risk level is determined, and the risk early-warning is carried out. With the changes in equipment condition, the plans are keeping updating and adjusting. In this way, a dynamic closed-loop maintenance system is achieved.
     (2) Research on criticality evaluation method for petrochemical rotating machinery
     Equipment criticality evaluation is an important foundation for reasonable maintenance resources allocation. Aiming at the uncertainty, fuzzy and multivariable of the evaluation factors, an equipment criticality evaluation model based on fuzzy comprehensive evaluation is set up. Benefit from the strong learning ability and simple structure of BP neural network, a fuzzy comprehensive evaluation model with BP neural network is established. The result of case study shows that this model not only truly represents the equipment importance in the whole production process, but also realizes intelligent evaluation of the equipment criticality.
     (3) On Condition Maintenance (OCM) optimization study of petrochemical rotating machinery
     Presently, OCM is an effective predictive method for maintaining petrochemical rotating machinery. Its cost is an important part in the equipment life cycle cost. Therefore, to reduce OCM cost is an important mission in maintenance management. In this study, an OCM cost optimization model is established. First, the judgment conditions are considered as a necessary criterion of the OCM feasibility. Moreover, in order to minimize maintenance costs per unit time, the concept that there must be an interval between the potential failure point (P) and the functional failure point (F) was introduced into the optimization model of OCM. Considering the randomness, a Monte Carlo simulation program for optimizing monitoring period was developed. Finally, an optimization study case on centrifugal pump shows that compared with the existing monitoring plan, the maintenance costs saved 14,327 RMB/year. The economic benefit is obvious.
     (4) Study on risk-based maintenance decision-making for rotating machinery, development of analysis software and engineering application
     With the introduction of risk assessment theory, the maintenance decision-making process of rotating machinery was studied. The risk assessment criteria are set up, which is suitable for petrochemical rotating machinery in China. The method of risk-based maintenance decision-making is established. On the basis of failure root cause analysis, radical maintenance has been proposed.
     Based on the research results of risk-based maintenance decision-making for rotating machinery, computer-aided analysis software has been developed. Compared with traditional manual decision-making methods, the results show that the normalization and ordering analysis of maintenance decision-making process can be achieved and this software takes advantages in efficiency and effectiveness.
     The risk-based maintenance decision-making method for rotating machinery has been applied in a SINOPEC ethylene plant. Failure mode analysis, risk assessment and root cause analysis had been carried out for 141 rotating machinery. 549 failure modes were obtained, including 67 high risk models (12%). Then, according to the process of maintenance decision-making, the radical maintenance and condition monitoring / inspection recommendations were proposed. The results of engineering application shows that this method could realize reasonable allocation of maintenance resources, highly consider the safety and economy, improve maintenance benefits.
引文
[1]Gao J J,Yang J F,Jiang Z N,et al.Risk based dynamic intelligent maintenance system for process industry in China.The third world conference on engineering assets management and intelligent maintenance system[C].2008:76-87
    [2]高金吉.机泵群实时监测网络和故障诊断专家系统[J].中国工程科学,2001,3(9):41-47
    [3]Kwon H-m.The effectiveness of process safety management(PSM) regulation for chemical industry in Korea[J].Journal of Loss Prevention in the Process Industries,2006,19,13-16
    [4]高金吉.石化设备以可靠性为中心的智能维修系统[J].中国设备工程,2008,(1):2-4
    [5]赵艳萍,姚冠新,陈骏.设备管理与维修[M].北京:化学工业出版社,2007.5,89
    [6]魏新利,尹华杰.过程装备维修管理工程[M].北京:化学工业出版社,2005.36-37
    [7]巫世晶.设备管理工程[M].北京:中国电力出版社,2005.169
    [8]李葆文,徐保强.规范化的设备维修管理—SOON[M].北京:机械工业出版社,2006.2-11
    [9]蒋太立.基于RCM理论的维修决策研究[D].武汉理工大学,2006
    [10]戴旭东,赵三星,谢友柏,杨兆建,马亚铃.以可靠性为中心的机械设备针对性维修策略研究[J].机械科学与技术,2002,21(1):89-91
    [11]左洪福.维修管理的研究现状和发展趋势[J].江苏航空,2008,1:25-25
    [12]李红超.TPM在红塔集团设备管理中的应用研究[D].重庆大学,2003
    [13]谭中富,曾鸣,张福伟.关于设备视情维修最优策略的探讨[J].现代电力,1997,14(9):38-42
    [14]左洪福,蔡景,王华伟.维修决策理论与方法[M].北京:航空工业出版社,2008.5-12
    [15]王英.设备状态维修系统结构与决策模型研究[D].哈尔滨:哈尔滨工业大学,2007
    [16]殷苏东,陈旭华.基于状态的维修研究现状与发展趋势[J].科学技术与工程,2008,8(6):1530-1534
    [17]孙有朝,樊蔚勋.以可靠性为中心的维修(RCM)—维修科学的发展趋势[J].机械工程师,1997,4:55-56
    [18]Rausand M.Reliability centered maintenance[J].Reliability Engineering and System Safety.1998,60:121-132
    [19]Moubray J,石磊译.以可靠性为中心的维修[M].北京:机械工业出版社,1995.1-9
    [20]贾希胜.以可靠性为中心的维修决策模型[M].北京:国防工业出版社,2007:1-3.
    [21]丁业成.基于RCM的工程机械维修对策与服务水平的评估[D].南京:南京林业大学,2008
    [22]Deshpande V S,Modak J P.Application of RCM for safety considerations in a steel plant[J].Reliability Engineering and System Safety,2002,78:325-334
    [23]童晟.基于RCM理论的工业设备维修策略和维修管理系统研究[D].杭州:浙江大学,2007
    [24]Pujadas W,Chen F F.A Reliability Centered Maintenance strategy for a discrete part manufacturing facility[J].Computers ind.Engng,1996,31:241-244
    [25]Richet D,Cotaina N,Gabriel M,et al.Application of Reliability Centered Maintenance in the foundry sector[J].Control Eng.Practice,1995,3:1029-1034
    [26]苏春,黄茁.以可靠性为中心的维修成本优化模型及其应用[J].机械科学与技术,2007,26(12):1556-1559
    [27]Cheng Z,Jia X,Wu S,et al.A framework for intelligent Reliability Centered Maintenance Analysis[J].Reliability Engineering and System Safety,2008,93:806-814
    [28]刘乐义,徐鹏,徐宗昌.新的RCM评价准则[J].中国设备工程,2002,7:52-54
    [29]臧铁钢.先进维修技术资源信息支持系统的研究与开发[D].武汉理工大学,2003
    [30]谢小鹏.设备状态识别与维修决策[M].北京:中国石化出版社,2000.9
    [31]董玉亮,王旭丹,顾煜炯.基于风险的维修决策及其在电站设备中的应用[J].现代电力,2008,25(2):51-56.
    [32]李葆文.现代设备资产管理[M].北京:机械工业出版社,2006.7-9
    [33]李亚红.乙烯装置基于风险的检验(RBI)方法应用[D].天津:天津大学,2006
    [34]Chang M K,Chang R R,Shu C M,et al.Application of risk based inspection in refinery and processing piping[J].Journal of Loss Prevention in the Process Industries,2005,18(4-6):397-402
    [35]Santosh,Vinod G,Shrivastava O P,et al.Reliability analysis of pipelines carrying H2S for risk based inspection of heavy water plants[J].Reliability Engineering and System Safety,2006,91:163-170
    [36]戴树和.工程风险分析技术[M].北京:化学工业出版社,2007.158-163
    [37]Tien S W,Hwang W T,Tsai C H.Study of a risk-baed piping inspection guideline system[J].ISA Transactions,2007,46(1):119-126
    [38]Chien C H,Chen C H,Chao Y J.A strategy for the risk-based inspection of pressure safety valves[J].Reliability Engineering and System Safety,2009,94:810-818
    [39]张春燕.输气管道系统RBI定量风险评价研究[D].兰州:兰州理工大学,2008
    [40]Kallen M.J,van Noortwijk J.M.Optimal maintenance decisions under imperfect inspection[J].Reliability Engineering and System Safety,2005,90:177-185
    [41]陈学东,王冰,杨铁成,等.基于风险的检测(RBI)在中国石化装置的应用[C].杭州:第六届全国压力容器学术会议.2005:37-47
    [42]艾志斌,陈炜,周杨,等.基于风险的检验(RBI)技术在合成氨装置的应用[J].压力容器,2007,24(11):35-39
    [43]赵涛.设备维护管理[M].天津:天津大学出版社,2008.95-99
    [44]李葆文.国际设备管理与维修工程的最近进展综述(三)[J].中国设备工程,2008,1:27-29
    [45]陆东,牟善军.欧洲设备风险检查技术发展及应用概况[J].安全、健康和环境,2004,4(1):36-39
    [46]赵爱国.设备运行阶段风险管理研究[D].天津:天津大学,2006
    [47]Bareib J,Buck P,Matschecko B,et al.RIMAP demonstration project.Risk-based life management of piping system in power plant Heilbronn[J].International Journal of Pressure Vessels and Piping,2004,81:807-813
    [48]Jovanovic A.Overview of RIMAP project and its deliverables in the area of power plants[J].International Journal of Pressure Vessels and Piping,2004,81:815-824
    [49]Schroder H-C,Kauer R.Regulatory requirements related to risk-based inspection and maintenance[J].International Journal of Pressure Vessels and Piping,2004,81:847-854
    [50]马世宁.现代设备维修技术[M].北京:中国计划出版社,2006.4-6
    [51]臧铁钢,黄金国,张淑猛等.基于网络的智能维修信息系统的研究与开发[J].机械工程师,2003,5:6-8
    [52]涂忆柳,李晓东.维修工程管理研究与发展综述[J].工业工程与管理,2004,4:7-12
    [53]Bartholomew-Biggs M,Zuo M J,Li X.Modelling and optimizing sequential imperfect preventive maintenance[J].Reliability Engineering and System Safety.In press
    [54]王凌.维修决策模型和方法的理论与应用研究[D].杭州:浙江大学,2007
    [55]Lam Y.A geometric process maintenance model with preventive repair[J].European Journal of Operational Research,2006,182(2):806-819
    [56]苏春,黄茁,许映秋.基于可用度和维修成本的设备维修建模与优化[J].中国机械工程,2007,18(9):1096-1099
    [57]李果,高建发,陈富民.基于可靠性的设备维修优化方法研究[J].中国机械工程,2007,18(4):419-423
    [58]方淑芬,吕文元.利用主观数据建立预防维修的优化模型[J].管理工程学报,2001,15(3):12-14
    [59]Tan J S,Kramer Mark A.A general framework for preventive maintenance optimization in chemical process operations[J].Computers chem.Engng,1997,21(12):1451-1496
    [60]Chen Y H.A number-dependent replacement policy for a system with continuous preventive maintenance and random lead times[J].Applied Mathematical Modelling,in press
    [61]程志君,郭波.基于半Markov决策过程的劣化系统检测与维修优化模型[J].自动化学报,2007,33(10):1101-1104
    [62]Lapa C M F,Pereira C M N A,de Barros M P.A model for preventive maintenance planning by genetic algorithms based in cost and reliability[J].Reliability Engineering and System Safety,2006,91:233-240
    [63]谢庆华,张琦,卢涌.航空发动机单部件视情维修优化决策[J].解放军理工大学学报,2005,6(6):575-578
    [64]Coetzee Jasper L.The role of NHPP models in the practical analysis of maintenance failure data[J].Reliability Engineering and System Safety,1997(56):161-168
    [65]Krivtsov Vasiliy V.Practical extensions to NHPP application in repairable system reliability analysis[J].Reliability Engineering and System Safety,2007(92):560-562
    [66]陈凤腾,左洪福,倪现存.基于方义更新过程的航空备件需求和应用[J].应用科学学报,2007,25(5):526-530
    [67]张秀斌.视情维修决策模型及应用研究[D].长沙:国防科学技术大学,2003
    [68]Wang L,Chu J,Map W J.A condition-based order-replacement policy for a single-unit system[J].Applied Mathematical Modelling,2007,32(11):2274-2289
    [69]李启明.基于价值工程的发电设备维修决策方法研究[D].保定:华北电力大学,2008
    [70]Rodrigo J P F,Adiel T A,Cristiano A V C.A multi-criteria decision model to determine inspection intervals of condition monitoring based on delay time analysis[J].Reliability Engineering and System Safety.In press
    [71]Badia F G,Berrade M D,Campos Clemente A.Optimal inspection and preventive maintenance of units with revealed and unrevealed failures[J].Reliability Engineering and System Safety,2002,78(2):157-163
    [72]高金吉,杨剑锋.工程复杂系统灾害形成与自愈防范原理研究[J].中国安全科学学报,2006,16(9):15-22
    [73]高金吉.高速涡轮机械振动故障机理及诊断方法的研究[D].北京:清华大学,1993
    [74]高金吉.未来装备医工程思维[J].中国工程科学,2003,5(12):30-35
    [75]信江艳,董杰,陈代川.(EAM)企业资产管理系统设计与实施[M].北京:中国铁道出版社,2005,7
    [76]姜立红.基于SOA的电力企业应用集成的研究与应用[D].保定:华北电力大学,2008
    [77]罗云,宫运华,宫宝霖等.安全风险预警技术研究[J].安全,2005,2:26-29
    [78]夏谦谦.研发项目风险预警管理研究[D].武汉:武汉理工大学,2007
    [79]田泽,陈西玲.关于石油企业风险预警与防风险措施初探[J].石油化工技术经济,2003,4:15-20
    [80]郑东良,杜纯.装备维修优化的决策分析[J].空军工程大学学报,2003,4(5):82-86
    [81]李常有,徐敏强,郭耸,王日新,高晶波.维修决策的研究现状与展望[J].热力透平,2008,37(3):46-50
    [82]Sheu D Daniel,Lin Jeff.Equipment management strategy under machine capacity loss[J].Int.J.Production Economics,2006,103,308-315
    [83]Hsiang S H,Lin Y W.Application of fuzzy theory to predict deformation behaviors of magnesium alloy sheets under hot extrusion[J].Journal of materials processing technology,In press
    [84]Liang Z,Yang K,Sun Y,et al.Decision support for choice optimal power generation projects:fuzzy comprehensive evaluation model based on the electricity market[J].Energy Policy,2006,34,3350-3364
    [85]韩旭,郭伟,李猛.基于模糊理论的设备分类决策的研究[J].组合机床与自动化加工技术.2005,(11):102-104
    [86]Feng S,Xu L.An intelligent decision support system for fuzzy comprehensive eyaluatlon of urban development[J].Expert Systems with Application,1999,16,21-32
    [87]Bai Y,Zhang H,Hap Y.The performance of the backpropagation algorithm with varying slope of the activation function[J].Chaos,Solitons and Fractals,In press
    [88]Jiang Y,Xu Z,Yin H.Study on improved BP artificial neural networks in eutrophication assessment of China eastern lakes[J].Journal of Aydrodynamics,Ser.B,2006,18:528-523
    [89]Heng A,Tan A C C,Mathew J,et al.Intelligent condition-based prediction of machinery reliability[J].Mechanical Systems and Signal Processing,2009,23:1600-1614
    [90]谭家磊.矿井通风系统评判及安全预警系统研究[D].青岛:山东科技大学,2005
    [91]汪应洛.系统分析工程[M].北京:机械工业出版社,1994.41
    [92]袁卫国.基于模糊神经网络的钢管混凝土拱桥安全性评价方法研究[D].武汉:武汉理工大学,2003
    [93]王季方,卢正鼎.模糊控制中隶属度函数的确定方法[J].河南科学,2000,18(4):348-351
    [94]肖辞源.工程模糊系统[M].北京:科学出版社,2005.173-184
    [95]Feng S,Xu L.Decision support for fuzzy comprehensive evaluation of urban development[J].Fuzzy sets and systems,1999,105,1-12
    [96]Sheng G,Rong D,Guo H,et al.Fuzzy comprehensive evaluation on the quality of different mixed feeds for fattening lambs by using in vitro method[J].Livestock science,2008,115,137-143
    [97]夏璇.基于科学发展观的区域科技绩效模糊综合评价[D].大连:大连理工大学,2007
    [98]李悄.斜拉桥健康监测中的状态识别技术研究[D].成都:西南交通大学,2007
    [99]姜伟.大型水泵机组维修性研究[D].扬州:扬州大学,2008
    [100]陈君.基于人工神经网络矿井通风系统安全可靠性评价[J].矿业安全与环保,2007,34(3):60-61
    [101]杨建刚.人工神经网络实用教程[M].浙江大学出版社,2001.12-13
    [102]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005.82
    [103]何毅.基于BP神经网络电容法刨花含水率测试仪的研究与开发[D].南京:南京林业大学,2006
    [104]吴昌友.神经网络的研究及应用[D].哈尔滨:东北农业大学,2007
    [105]Piramuthu S.Financial credit-risk evaluation with neural and neurofuzzy systems[J].European Jouranal of Operational Reserch,1999,112,310-321
    [106]飞思科技产品研发中心.神经网络理论与MATLAB7实现[M].北京:电子工业出版社,2005.103
    [107]Zhang L,Wen L,Lu Y,Yang P.Quantitative fuzzy neural network for analytical determination[J].Analytica Chimica Acta,2002,468,105-117
    [108]Tsai Y,Wang K,Tsai L.A study of availability-centered preventive maintenance for multi-component systems[J].Reliability Engineering and System Safety,2004,84,261-270
    [109]杨景辉,康建设.机械设备故障规律与维修策略研究[J].科学技术与工程,2007,7(16):4143-4146
    [110]肖伟,赵嵩正.设备可靠性与维修决策关系研究[J].机械科学与技术,2004,23(1):85-86
    [111]Barata J,Soares C G,Marseguerra M,et al.Simulation modeling of repairable multi-component deteriorating systems for 'on condition' maintenance optimization[J].Reliability Engineering and System Safety,2002;76(3):255-264
    [112]Caldeira Duarte J A,Craveiro J C T A,Trigo T P.Optimization of the preventive maintenance plan of a series components system[J].International Journal of Pressure Vessels and Piping,2006,83:244-248
    [113]张伟,康建设,王亚彬.基于状态的维修及期建模研究[J].计算机仿真,2006,23(1):26-29
    [114]Clavareau J,Labeau P E.Maintenance and replacement policies under technological obsolescence [J].Reliability Engineering and System Safety.In press
    [115]Vatn J,Hokstad P,Bodsberg L.An overall model for maintenance optimization[J].Reliability Engineering and System Safety,1996(51):241-257
    [116]Nahas N,Khatab A,Ait-Kadi D,Nourelfath M.Extended great deluge algorithm for the imperfect preventive maintenance optimization of multi-state systems[J].Reliability Engineering and System Safety,2008(93):1658-1672
    [117]车勇,潘伟峰.数字装备可靠性建模方法的研究[J].机械制造,2007,45(516):1-3
    [118]Cardoso Joao B,de Almeida Joao R,Dias Jose M.Structural reliability analysis using Monte Carlo simulation and neural networks[J].Advaces in Engineering Software,2008,39:505-513.
    [119]肖刚,李天柁.系统可靠性分析中的蒙特卡罗方法[M].北京:科学出版社,2003,2-3
    [120]汤扣林.蒙特卡罗法实现系统可靠性仿真[J].科技资讯,2006,33:209-210
    [121]董玉亮.发电设备运行与维修决策支持系统研究[D].保定:华北电力大学,2005
    [122]徐钟济.蒙特卡罗方法[M].上海:上海科学技术出版社,1985.6-7
    [123]张宁.设备预防维修的故障率与最小费用周期[J].系统工程理论与实践.1998,10:33-37
    [124]张春香.可维修系统的可靠性研究[D].秦皇岛:燕山大学,2001
    [125]吴翠琴,黄艳国,邝先验.基于MC的计算机仿真随机模型分析与设计[J].计算机与现代化.2007,146(10):107-109
    [126]吴波,丁毓峰,黎明发.机械系统可靠性维修及决策模型[M].化学工业出版社,2007.35,97-98
    [127]Vaurio J K.Identification of process and distribution characteristics by testing monotonic and non-monotonic in failure intensities and hazard rates[J].Reliability Engineering and System Safety,1999,64(3):345-357
    [128]Yanez M,Joglar F,Modarres M.Generalized renewal process for analysis of reparable systems with limited failure experience[J].Reliability Engineering and System Safety 2002;77(2):167-180
    [129]Antonov A,Chepurko V,Polyakov A,et al.Application of generalized linear model for time-dependent trend assessment-A case study for the ageing PSA network[J].Reliability Engineering and System Safety.In press
    [130]曹晋华,程侃.可靠性数学引论[M].北京:科学出版社,1986.449,459-461
    [131]张宝锋,夏虹.核电站设备的维修优化[J].核动力工程,2007,28(3):117-120
    [132]Van L C J,Finn B-R,Tom C J F,et al.Risk assessment and management of new and existing chemicals[J].Environmental Toxicology and Pharmacology,1996,2:243-299
    [133]Henselwood F,Philips G.A matrix-based risk assessment approach for addressing linear hazards such as pipelines[J].Journal of Loss Prevention in the Process Industries,2006,19:433-441
    [134]KHAN F I,SADIQ R,HADDARA M M.Risk-based inspection and maintenance(RBIM)multi-attribute decision-making with aggregative risk analysis[J].Process Safety and Environmental Protection,2004,82:398-411.
    [135]Crocker J,Kumar U D.Age-related maintenance versus reliability centred maintenance:a case study on aero-engines[J].Reliability Engineering and System Safety,2000,67,113-118
    [136]王石,王月清.以可靠性为中心的装备维修理论研究[C].成都:舰船电子装备维修理论与应用—中国造船工程学会电子修理学组第四届年会暨信息装备保障研讨会论文集,2005
    [137]刘润良.机械故障诊断在炼化设备管理中的应用研究[D].天津:天津大学,2005
    [138]钟云峰,谭树彬.以可靠性为中心的维修[J].机械工程师,2006,3:80-81
    [139]Parida Aditya,Johansson Daniel,Edelman Martin.梁工谦,邱若娟(译).可靠性维修实施案例研究[J].设备管理与维修.2005,11:45-47
    [140]Guo L,Gao J,Kang J.Investigation on Reliability Centered Maintenance about rotating machine[C].The third world conference on engineering assets management and intelligent maintenance system,2008:583-692
    [141]海川化工论坛.乙烯工艺[EB/OL].http:/bbs.hcbbs.com/thread-317906-1-1.html,2009.03.15
    [142]匡永泰,高维民.石油化工安全评价技术[M].北京:中国石化出版社,2005.171