hRPE细胞表达整合素α_5的调节机制及意义研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的探讨表皮生长因子(EGF)对人视网膜色素上皮细胞(hRPE)表达整合素α5的调节及意义。
     方法1)通过玻璃体切除术采集14例视网膜脱离病例的视网膜下膜标本,用免疫组化方法检测下膜中角蛋白,整合素α5β1及纤维粘连蛋白(FN)的表达。免疫荧光双标记法研究视网膜下膜色素上皮细胞与整合素α5β1表达的关系,荧光定量分析视网膜下膜与正常视网膜下膜组织中整合素α5β1表达的差异。2)人视网膜色素上皮细胞原代、传代培养;分别用0ng/ml、0.1 ng/ml、1 ng/ml、10 ng/ml、20 ng/ml、100 ng/ml浓度EGF诱导hRPE;RT-PCR、免疫组化和流式细胞术观察整合素α5mRNA和蛋白的表达;MTT法检测各实验组细胞增生率,采用直径为8.5mm的Boyden小室实验进行细胞迁移能力的检测。3)将实验分成对照组、10ng/mlEGF组和PD98059组,RT-PCR及流式细胞术观察不同实验组整合素α5 mRNA和蛋白的表达;Western blot法检测各组hRPE细胞中MAPK磷酸化水平。
     结果1)所有14例下膜标本中整合素α5β1纤维粘连蛋白(FN)表达均呈阳性,角蛋白表达均呈阳性的细胞(即RPE细胞)的细胞膜上表达整合素α5β1,与正常视网膜组织比较表达显著增强(P<0.05)。2)与0ng/ml组相比,24h后1ng/ml的EGF促进人hRPE细胞中整合素α5mRNA和蛋白的表达,并呈浓度依赖性,而浓度为10~100ng/ml时促进作用达到高峰。流式细胞术检测显示:10ng/ml的EGF作用时荧光强度最强为3.98±0.67,0ng/ml和0.1ng/ml组分别为1.87±0.22,1.98±0.54(P<0.01)。MTT法检测显示:与对照组相比,EGF组及加入不相关抗体(兔抗人波形蛋白抗体)组细胞增生、迁移明显,而加入兔抗人整合素α5多克隆抗体(1:100)组较弱,与前两组相比差异有显著性(P<0.01)。3)与对照组相比,EGF促进整合素α5 mRNA和蛋白的表达,而PD98059(20μmol/L)可抑制此促进作用;流式细胞术显示24 h后整合素α5荧光强度分别为1.94±0.22,4.56±0.25,2.39±0.14,差异有统计学意义(P<0.05)。Western blot结果显示30 min后EGF组ERK1/2磷酸化激活水平最高,PD98059组抑制ERK1/2的磷酸化激活,对照组ERK1/2的磷酸化激活作用很弱。
     结论在视网膜下膜组织中hRPE细胞整合素α5β1表达上调,其配体FN也显著表达,整合素α5β1与FN参与了视网膜下膜的形成。1ng/ml的EGF开始促进整合素α5mRNA和蛋白的表达,10~100ng/ml时候促进作用达到高峰,整合素α5的表达促进hRPE细胞的增生和迁移。ERK1/2的磷酸化激活参与此过程。EGF激活ERK1/2通路刺激hRPE细胞的整合素α5mRNA的表达是PVR的重要发病机制。
Objective To investigate the significance and regulation of epidermal growth factor (EGF) on human retinal pigment epithelial cells’(hRPE) integrinα5 expression.
     Method 1) We collected 14 subretinal membrane specimens by vitrectomy of retinal detachment cases.And detected the expressions of keratin, integrinα5β1 and fibronectin (FN) by immunohistochemical methods. We studied the relation between retinal pigment epithelial cell membranes and expression of integrinα5β1 by double-labeling immunofluorescence,and analyzed the difference of integrinα5β1 expression of retinal membrane with the membrane compared with normal by fluorescence quantitative. 2)We used human retinal pigment epithelial cells of primary and mass culture.The hRPE cells were induced by EGF of different concentrations (0ng/ml,0.1ng/ml, 1ng/ml, 10ng/ml, 20ng/ml,100ng/ml).We observed the integrinα5 mRNA and protein expression by RT - PCR, immunohistochemistry and flow cytometry .We measured cells proliferation rates of the experimental groups by MTT assay,and tested cells migration with a diameter of 8.5mm Boyden chamber. 3) There were three groups: the control group, the 10ng/mlEGF group and the PD98059 group. We observed the integrinα5 mRNA and protein expression of different groups by RT-PCR and flow cytometry, and tested hRPE cells MAPK phosphorylation level in each group by Western blot.
     Result 1) All 14 cases were positive expression of integrinα5β1 and fibronectin (FN) protein,the RPE cells with keratin expressedα5β1 on the subretinal membrane, compared with the normal the expression significantly enhanced(P <0.01). 2)Compared with 0ng/ml group, the 1ng/ml of EGF promoted integrinα5 mRNA and protein expression in hRPE cells after 24 hours and with a concentration-dependent manner;and the role peaked at concentrations of 10 to 100ng/ml. Flow cytometry showed that the 10ng/ml of EGF played the strongest role in integrinα5 induction;and the fluorescence intensity was 3.98±0.67.When the concentrations were 0ng/ml and 0.1ng/ml,they were1.87±0.22, 1.98±0.54 respectively (P <0.01). MTT assay showed results as follows: compared with the control group,cells proliferated and migrated obviously in EGF-induced group and not-related antibody (rabbit anti-human antibody vimentin) one;the role was weak in rabbit anti-human integrinα5 polyclonal antibody (1:100) group; and the difference was significant (P <0.01). 3) Compared with the control group, EGF could promote expression of integrinα5 mRNA and protein, but PD98059 (20μmol/L) inhibited this role. Flow cytometry showed the integrinα5 fluorescence intensity after 24 hours were 1.94±0.22, 4.56±0.25, 2.39±0.14, and the difference was significant (P <0.05). After 30 minutes: Western blot results showed that the highest phosphate levels of ERK1/2activation in EGF-induced group, and the control group of the ERK1/2 phosphorylation activated weak, but the PD98059 inhibited the activation.
     Conclusion The hRPE cells in the subretinal membranes up-regulated expression of integrinα5β1, and its ligand FN also notably expressed ; and so the integrinα5β1 and FN played the role in the retinal membrane formation. 1ng/ml of EGF promoted integrationα5 mRNA and protein expression and the promotion reached a peak of 10~100 ng/ml; and the expression of integrinα5 in hRPE promoted cells proliferation and migration. ERK1/2 phosphorylation participated in the activation process. EGF stimulated activation of ERK1/2 pathway in hRPE cells, and it promted the integrinα5 mRNA expression in playing an important role in PVR.
引文
[1] Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion[J]. Cell, 1992, 69:11-25
    [2] Stephanie Proulx, Sylvain L. Guerin. Effect of quiescence on integrin expression in human retinal pigment epithelium. Molecular vision 2003:9:473-81.
    [3] Jin M, He S, Worpel V ,et.al. Promotion of adhesion and migration of RPE cells to provisional extracellular matrices by TNF-α. Ivest Ophthalmol Vis Sci 2000;41: 4324-32.
    [4] Chang L, Karin M. Mammalian MAP kinase signalling cascades.Nature , 2001 , 410 :37– 40
    [5] Rincon M. MAP Kinase signaling pathways in T cells[J ] . Curr Opin Immunol , 2001 ,13 : 339–345.
    [6] Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J ,2000 ,351 :289-305.
    [7] Lewis TS, Shapiro PS, Ahn NG. Signal transduction through MAP kinase cascades. Adv Cancer Res ,1998 ,74 :49-139.
    [8]张蕙蓉,曹景泰.视网膜增生性疾病玻璃体中表皮生长因子的放射受体定量测定〔J〕.中华眼底病杂志,1996,12(2):91-93.
    [9] B Patel, P Hicott, D Charteris ,J Mather, D Mcleod , and M boulton. Retinal and local- isation of epidermal growth factor, transforming growth factor alpha, and their receptor in proliferative diabetic retinaopathy. Br.J.Ophthalmol.1994;78:714-718
    [1] Charteris DG. Higcott Robeg HL, Inflamnatory cells in proliferative vitreoretinopathy subretinal membranes. Ophthalmology,1993 100(1):43-46.
    [2] Sax SJ. Grossniklaus HE ,Lopez PF et al. Ultrastructural feature of surgically excised subretinal neovascular membranes in the ocular histoplasmosis syndrome .Arch Ophthalmol .1993 111(1):88-95.
    [3] Hynes Ro. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992;69:11-25.
    [4] Nakamura M, Chikama.T, Nishida T. Up-regulation of integrin alpha 5 expression by combination of substance P and insulin-like growth factor-1 in rabbit corneal epithelial cells. Biochem biophys. Biochem Biophys Res Commun,1998,246:777-82.
    [5] Manabe R, Oh-e N. Sekiguchi K, et al. Alternatively spliced EDA segment regulates fibronectin-dependent cell cycle progression and mitogenic signal transduction. J Biol Chem. 1999 Feb 26;274(9):5919-24..
    [6] Jin M, He S, Worpel V ,et.al. Promotion of adhesion and migration of RPE cells to provisional extracellular matrices by TNF-α. Ivest Ophthalmol Vis Sci 2000;41:4324-32.
    [7] Nagasaki H, Shinagawa k, Mochizuki M, Risk factors for proliferative vitreorefinopathy. Prog Retin Eye Res 1998;17:77-98.
    [8] Pastor JC. Proliferative Vitreoretinopathy: an overview. Surv ophthalmol 1998;43:3-18.
    [9] Elner SG, Elner VM. The integrin superfamily and the eye. Ivest Qphthalmol Vis Sci 1996;37:696-701.
    [10] Immonen I, Tervo k, Virtanen I. Immunohistochemical demonstration of cellular fibronectin and tenascin in human epiretinal membranes. Acta Ophthalmol 1991;69:466-71.
    [11] Goldschild M,Bandouin C .[Role of integrins in ocular physiology and diseases]. J Fr Ophthalmol 1997;20:311-25.
    [12] Brem RB , Robbins SG. Wilson DJ. et. Immunolocalization of integrins in the human retina . Ivest Ophthalmol vis sci 1994;35:3466-74.
    [13] Rizzolo LJ, Zhou S . Li ZQ. The neural retina maintains integrins the apical membrane of the RPE early in development .Invest Ophtalmol Vis Sci 1994;35:2567-76.
    [14] Anderson DH, Guerin CJ, Matsumoto B. Pfeffer BA .Identification and localization of a beta -1 receptor from the integrin family in mammalian retinal pigment epithelial cells. Invest opthalmol vis svi 1990;31:81-93
    [15] Stephanie Proulx, Sylvain L. Guerin. Effect of quiescence on integrin expression in human retinal pigment epithelium. Molecular vision 2003:9:473-81.
    [1] Stephanie Proulx, Sylvain L. Guérin,et al Effect of quiescence on integrinα5β1 express on in human retinal pigment epithelium Molecular Vision 2003; 9:473-8
    [2] Jaccoma EH, Conway BP, Campochiaro PA. Cytotheraphy causes extensive break down of the blood-retinal barrier: a comparison with argon laser photocoagulation. Arch Ophthalmol. 1985:103:1728-1730.
    [3] Heriot WJ,Machemer R.Pigment epithelial repair .Graefes Arch Clin Exp Ophthalmol. 1992;230:91-100.
    [4] Grant MB,Guay C , and Marsh P. Insulin-like growth factor 1 stimulates proliferation, Migration,and plasminogen activator release by human retinal pigment epithelial cells . Curr Eye Res ,1990;9;323-325
    [5] Hiscott P ,Sheridan C,Magee RM,Grierson I. Matrix and the retinal pigment epithelium in proliferative retinal disease. Progress in retinal and Eye Research.1999;18:167-190
    [6] Limb GA, Little BC, Meager A, et al . Cytokines in proliferative vitreoretinaopathy . Eye,1991;5:686-694
    [7] Cowley M, Conway BP, Campochiaro PA, Kaiser D, Gaskin H. Clinical risk factors for proliferative Vitreoretinopathy .Arch Ophthalmol.1989;107:1147-1151
    [8]罗贤民.视网膜下液对培养的人视网膜色素上皮细胞、神经胶质细胞及成纤维细胞生长的刺激作用.中华眼底病杂志.1996;12:233.
    [9] Tang S ,Scheiffarth OF,Wildner G , Thurau SR, Lund OE. Lymphocytes,macrophages and HLA-DR expression in vitreal and epiretinal membranes of proliferative vitreoretino- pathy. An immunohistochemical study. Ger J Ophthalmol.1992;1(3-4): 176-179
    [10] B Patel, P Hicott, D Charteris ,J Mather, D Mcleod , and M boulton. Retinal and local- isation of epidermal growth factor ,transforming growth factor alpha ,and their receptor in proliferative diabetic retinaopathy. Br.J.Ophthalmol.1994;78:714-718
    [11] Takagi H, Tanihara H, Seino Y, et al. Characterization of glucose transporter in cultured human retinal pigment epithelial cells: gene expression and effect of growth factors.Invest Ophthalmol Vis Sci. 1994 Jan;35(1):170-7
    [12] Nagineni CN, Kutty V, Detrick B, Hooks JJ. Expression of PDGF and their receptors in human retinal pigment epithelial cells and fibroblasts: regulation by TGF-beta.J Cell Physiol. 2005 Apr;203(1):35-43.
    [13] Hollborn M, Iandiev I, Seifert M, Expression of HB-EGF by retinal pigment epithelial cells in vitreoretinal proliferative disease. Curr Eye Res.2006 Oct;31 (10):863-74.
    [14]张蕙蓉,曹景泰.视网膜增生性疾病玻璃体中表皮生长因子的放射受体定量测定.中华眼底病杂志,1996,12(2):91-93.
    [15] Hynes Ro. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992;69:11-25.
    [16] Chikama T, Nakamura M, Nishida T. Up-regulation of integrin alpha5 by a C-ter minus four-amino-acid sequence of substance P (phenylalanine-glycine- leucine–methionine- amide) synergistically with insulin-like growth factor-1 in SV-40 transformed human corneal epithelial cells. Biochem Biophys Res Commun, 1999 Feb 24;255(3):692-7.
    [17] Jin M, He S, Worpel V ,et.al. Promotion of adhesion and migration of RPE cells to provisional extracellular matrices by TNF-α. Ivest Ophthalmol Vis Sci 2000;41:4324-32.
    [1] Courchesne WE, Kunisawa R, Thorner J. A putative protein kinase overcomes pheromone-induced arrest of cell cycling in S.cerevisiae. Cell ,1989, 58:1107–1119
    [2] Boulton TG, Yancopoulos GD, Gregory JS, Slaughter C, Moomaw C, Hsu J, Cobb MH. An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science, 1990, 249:64–67
    [3] Elion EA, Grisafi PL, Fink GR. FUS3 encodes a cdc21/CDC28-related kinase required for the transition from mitosis into conjugation. Cell , 1990,60:649–664
    [4] Boulton TG, Nye SH, Robbins DJ, Ip NY, Radziejewska E, Morgenbesser SD, DePinho RA, Panayotatos N, Cobb MH, Yancopoulos GD. ERKs: a family of protein-serine/threonine kinases are activated and tyrosine phosphorylated in response to insulin and NGF. Cell , 1991, 65:663– 675
    [5] Toda T, Shimanuki M, Yanagida M.Fission yeast genes that confer resistance to staurosporine encode an AP-1-like transcription factor and a protein kinase related to the mammalian ERK1/MAP2 and budding yeast FUS3 and KSS1 kinases. Genes , 1991, Dev5:60– 73
    [6] Ray LB, Sturgill TW. Insulin-stimulated microtubule-associated protein kinase is phosphorylated on tyrosine and threonine in vivo. Proc Natl Acad Sci USA , 1988, 85:3753–3757
    [7] Ahn NG, Krebs EG. Evidence for an epidermal growth factorstimulated protein kinase cascade in Swiss 3T3 cells. Activation of serine peptide kinase activity by myelin basic protein kinases in vitro. J Biol Chem , 1990,265:11495–11501
    [8] Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature , 2001 , 410 : 37– 40
    [9] Rincon M. MAP Kinase signaling pathways in T cells . Curr Opin Immunol , 2001 , 13 : 339–345.
    [10] Christiane Hecquet, Gaelle Lefevre,1 Monika Valtink Activation and Role of MAP Kinase-Dependent Pathways in Retinal Pigment Epithelial Cells: ERK and RPE Cell Proliferation. Investigative Ophthalmology & Visual Science, September 2002,Vol. 43, No. 9:3091-3098.
    [11] Stephanie Proulx, Sylvain L. Guérin,et al Effect of quiescence on integrinα5β1 expression in human retinal pigment epithelium Molecular Vision 2003; 9:473-81
    [12] Cano E, Mahadevan LC. Parallel signal processing among mammalian MAPKs. Trends Biochem Sci, 1995, 20:117-122
    [13] Robinson MJ, Cobb MH. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol. 1997, 2:180-186
    [14] Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J ,2000 ,351 :289-305.
    [15] Lewis TS, Shapiro PS, Ahn NG. Signal transduction through MAP kinase cascades. Adv Cancer Res,1998 ,74 :49-139.
    [16] Dudley DT, Pang L, Decker SJ, et al. A synthetic inhibitor of the mitogen-activated protein kinase cascade[J]. Proc Natl Acad Sci USA, 1995, 92:7686-7689
    [17] Yan F, Hui YN, Li YJ. Epidermal growth factor receptor in cultured human retinal pigment epithelial cells. Ophthalmologica. 2007;221(4):244-50.
    [18] Defoe DM, Grindstaff RD. Epidermal growth factor stimulation of RPE cell survival: contribution of phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways. Exp Eye Res. 2004 Jul;79(1):51-9.
    [1] Hynes,R.O.Integrins:Versatility,modulation,and signaling in cell adhesion.cell 1992;69:11-25.
    [2] Cox,Aoki T,Seki J,Motoyama Y,Yoshida k,The pharmacology of the integrins .Med Res Rev.1994;14:195-228.
    [3] Van Waesc.Cell adhesion and requlatory molecules involved in turmor formation hemestasis and wound healing.Head Neck,1995;17(2):140~147.
    [4] OhashiH,Macda T,Mishima H,Otori T,et.al Upregulation of integrinα5β1,expression by IL-6 in rabbit corneal epithelial cells.Exp Cell Res 1995;218(2):418-423.
    [5] Mantin Jin ,Shikun He,Vanessa Worpel .et.al.Promotion of Adhesion and migration of RPE cells to provisional extracellular matrices by TIVF-,Invest ophthalmol vis sci 2000,41:4324-4332.
    [6] Leomil Coeiho LF,Mota BE,Sales PC,et.al Integrin alphall is a novel type 1 interferon stimulated gene .Cytokine ,2006,33(6):352-361.
    [7] Nakamura M,Chikama T ,Nishida T .Up-regulation of integriu alpha 5 expression by combination of substance P and insulin-likd growth factor-1 in rabbit corneal epithell cells.Biochem Biphys Res Commun ,1998;246(3):777-82.
    [8] Raegg C ,Dormond O ,Foletti A.Suppression of fumor angiofenesis throngh the inhibition of integrin function and signaliy in endothelial cells;which side to target Endothelium ,2002;9(3):151-160.
    [9] Price EA, Cooinbie DR ,Murray JC,Beta-1 Integrins mediate tumer cell adhesion to quiescent endothelial cells in Vitro .Br J cancer .1996.74(11):1762-1766.
    [10] Elices MJ,Osborn L, Takada Y,et.al .Vcam-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site .cell 1990;60(4):577-584.
    [11] Seminario MC, Bochner BS.Expresion and function of beta-1 integrins on human eosinophils .Mem Inst Oswaldo Cruz,1997;92:157-164.
    [12] Smits HH, de Jong,EC,Schitemaker J it,et.al .Intercellular adhesion molecule- 1/LFA-1 ligation favors human Th1 develep-ment .J Immunol, 2002;168(4):1710-1716.
    [13] Cook JJ,Trybulec M,Lasz EC,et.al Binding of SlyeoproteinⅢa-derived peptide 217=231 to fibrinog en and Von Willebrand factors and its inhibition by platelet glycoproteinⅡb/Ⅱa complex.Biochim Biophys Acta.1992 Mar12;1119(3):312-21.
    [14] Albelda SM, Mette SA,Elder DE,et.al .Integrin distribution in malignant melanoma:Association of ?subnit with fumor progression.Cancer Res,1990;50: 6757-6764.
    [15] Nikolopoulos SN,Blaikie P ,Yshioka T.etal .Targeted deletion of the integrin beta 4 signaling domain suppresses laminin-5-dependent nuclear entry of mitagen-activatde protein Kinases and NF-Kappa B,causing defects in epidermal growth and migration .Mol cell Biol 2005;25(14):6090-6102.
    [16] Aqace ww, Higgins JM, Sadasivan B,etal.T-lymphocyte-epithelial-cell interactions: integrin alpha(E)(CD103)beta(T).LEEP-CAM and chemokines.Curr Opin cell Bid.2000:12(5):563-568.
    [17] Lider O,Herslikoviz R ,Alon R .Greenspoon N .Structure–function analysis of integrin-mediated cell functions by novel nonpeptidic conformational mimetics of the Arg-Gly-Asp and Leu-Asp-Val amino acid sequences.Ann N Y Acad Sci.1993,696:402-403.
    [18] Tervo K, Tervo T, van Setten GB, Virtanen I. Integrins in human corneal epithelium. Cornea. 1991; 10:461-465.
    [19] Lauweryns B, van den Oord JJ, Volpes R, Foets B, Missotten L.Distribution of very late activation inte-grins in the human cornea. Invest Ophthalmol Vis Sci.1991; 32:2079-2085.
    [20] Zhou F, Yue B. Human trabecular meshwork cell attachment with extracellular matrix proteins: Roles ofintegrin receptors. ARVO Abstracts. Invest Ophthalmol Vis Sci. 1994; 35:1845.
    [21] Brem RB, Robbins SG, Wilson DJ, et al. Immunolocalization of integrins in the human retina. Invest Ophthalmol Vis Sci.. 1994;35:3466-3474.
    [22] Stephanie Proulx ,Sylvainl.Guerin,Christian saleise Effect of quiescence on integrin expression in human retinal pigment epithelium. Molecular vision 2003:9:473-81.
    [23] Jin M,Hes,Worpel V ,et.al.Promotion of adhesion and migration of RPE cells to provisional extracellular matrices by TNF-α.Ivest Ophthalmol Vis Sci 2000;41:4324-32.
    [24] Roth T, Podesta F, Stepp MA, Boeri D, Lorenzi M. Integrin over expression induced by high glucose and by human diabetes: Potential pathway to cell dysfunction in diabetic microangiopathy. Proc Natl Acad Sci USA. 1993; 90:9640-9644.
    [25] Robbins SG, Brem RB, Wilson DJ, et al. Immunolocalization of integrins in proliferative retinal membranes. Invest Ophthalmol Vis Sci. 1994;35:3475-3485.
    [26] Ferguson TA, Grooms M, Kupper TS. Integrin mediated matrix attachment and gel contraction by retinal pigment epithelial (RPE) cells: implications for proliferative vitreoretinopathy (PVR). ARVO Abstracts. Invest Ophthalmol Vis Sci. 1992; 33:
    [27] Reichardt LF, Bossy B, De Curtis I, Neugebauer KM, Venstrom K, Sretavan D. Adhesive interactions that regulate development of the retina and primary visual projection. Cold Spring Harb Symp Quant Biol. 1992;57:419-429.
    [28] Rizzolo LJ. Basement membrane stimulates the polarized distribution of integrins, but not the Na,K-ATPase in the retinal pigment epithelium. Cell Regulation. 1991;2:939-949.
    [1] Courchesne WE, Kunisawa R, Thorner J. A putative protein kinase overcomes pheromone-induced arrest of cell cycling in S.cerevisiae. Cell ,1989,58:1107–1119
    [2] Boulton TG, Yancopoulos GD, Gregory JS, Slaughter C, Moomaw C, Hsu J, Cobb MH. An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science, 1990, 249:64–67
    [3] Elion EA, Grisafi PL, Fink GR. FUS3 encodes a cdc21/CDC28-related kinase required for the transition from mitosis into conjugation. Cell , 1990,60:649–664
    [4] Boulton TG, Nye SH, Robbins DJ, Ip NY, Radziejewska E, Morgenbesser SD, DePinho RA, Panayotatos N, Cobb MH, Yancopoulos GD. ERKs: a family of protein-serine/threonine kinases are activated and tyrosine phosphorylated in response to insulin and NGF. Cell , 1991, 65:663– 675
    [5] Toda T, Shimanuki M, Yanagida M.Fission yeast genes that confer resistance to staurosporine encode an AP-1-like transcription factor and a protein kinase related to the mammalian ERK1/MAP2 and budding yeast FUS3 and KSS1 kinases. Genes , 1991, Dev5:60– 73
    [6] Ray LB, Sturgill TW. Insulin-stimulated microtubule-associated protein kinase is phosphorylated on tyrosine and threonine in vivo. Proc Natl Acad Sci USA , 1988, 85:3753–3757
    [7] Ahn NG, Krebs EG. Evidence for an epidermal growth factorstimulated protein kinase cascade in Swiss 3T3 cells. Activation of serine peptide kinase activity by myelin basic protein kinases in vitro. J Biol Chem , 1990,265:11495–11501
    [8] Rossomando AJ, Payne DM, Weber MJ, Sturgill TW. Evidence that pp42, a major tyrosine kinase target protein, is a mitogen-activated serine/threonine protein kinase. Proc Natl Acad Sci USA, 1989,86:6940–6943
    [9] Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature , 2001 ,410 :37–40
    [10] Rincon M. MAP Kinase signaling pathways in T cells[J] . Curr Opin Immunol, 2001 ,13 : 339–345.
    [11] Kyriakis JM, App H, Zhang X-F, Banerjee P, Brautigan DL, RappUR, Avruch J.Raf-1 activates MAP kinase-kinase. Nature, 1992 ,358:417–421
    [12] Dent P, Haser W, Haystead TAJ, Vincent LA, Roberts TM, SturgillTW. Activation of mitogen-activated protein kinase kinase by v-Raf in NIH 3T3 cells and in vitro. Science , 1992,257:1404–1407
    [13] Force T, Bonventre JV, Heidecker G, Rapp U, Avruch J, Kyriakis JM. Enzymatic characteristics of the c-Raf-1 protein kinase. Proc Natl Acad Sci USA, 1994, 91:1270–1274
    [14] Morrison DK, Cutler RE. The complexity of Raf-1 regulation. Curr Opin Cell Biol , 1997,9:174–179
    [15] Hagemann C, Rapp UR , Isotype-specific functions of Raf kinases. Exp Cell Res, 1999, 253 :34–46
    [16] Whitehurst CE, Owaki H, Bruder JT, Rapp UR, Geppert TD. The MEK kinase activity of the catalytic domain of Raf-1 is regulated independently of Ras binding in T cells. J Biol Chem , 1995,270:5594–5599
    [17] Leevers SJ, Paterson HF, Marshall CJ . Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature, 1994,369:411–414
    [18] Stancato LF, Chow YH, Hutchison KA, Perdew GH, Jove R, Pratt WB. Raf exists in a native heterocomplex with hsp90 and p50 that can be reconsituted in a cell-free system. J Biol Chem , 1993,268:21711–21716
    [19] Fantl WJ, Muslin AJ, Kikuchi A, Martin JA, MacNicol AM, Gross RW, Williams LT. Activation of Raf-1 by 14–3-3 proteins. Nature, 1994 , 371:612–614
    [20] Freed E, Symons M, MacDonald SG, McCormick F, Ruggieri R. Binding of 14–3-3 proteins to the protein kinase Raf and effects on its activation. Science, 1994, 265:1713–1716
    [21] Michaud NR, Fabian JR, Mathes KD, Morrison DK.14–3-3 is not essential for Raf-1 function: identification of Raf-1 proteins that are biologically activated in a 14–3-3- and Ras-independent manner. Mol Cell Biol, 1995 , 15:3390–3397
    [22] Stancato LF, Silverstein AM, Owens-Grillo JK, Chow YH, Jove R, Pratt WB . The hsp90-binding antibiotic geldanamycin decreases Raf levels and epidermal growthfactor signaling without disrupting formation of signaling complexes or reducing the specific enzymatic activity of Raf kinase. J Biol Chem, 1997, 272:4013–4020
    [23] Schulte TW, Blagosklonny MV, Romanova L, Mushinski JF, Monia BP, Johnston JF, Nguyen P, Trepel J, Neckers LM. Destabilization of Raf-1 by geldanamycin leads to disruption of the Raf-1-MEK-mitogen-activated protein kinase signalling pathway. Mol Cell Biol , 1996, 16: 5839–5845
    [24] Tzivion G, Luo Z, Avruch J. A dimeric 14–3-3 protein is an essential cofactor for Raf kinase activity. Nature, 1998, 394:88–92
    [25] Jaiswal RK, Weissinger E, Kolch W, Landreth GE . Nerve growth factor-mediated activation of the mitogen-activated protein(MAP) kinase cascade involves a signaling complex containing B-Raf and HSP90. J Biol Chem, 1996,271: 23626–23629
    [26] Schulte TW, Blagosklonny MV, Ingui C, Neckers L .Disruption of the Raf-1-Hsp90 molecular complex results in destabilization of Raf-1 and loss of Raf-1-Ras association. J Biol Chem, 1995 ,270: 24585–24588
    [27] Zheng C-F, Guan K. Cloning and characterization of two distinct human extracellular signal- regulated kinase activator kinases, MEK1 and MEK2. J Biol Chem, 1993, 268: 11435– 11439
    [28] Robinson MJ, Cheng M, Khokhlatchev A, Ebert D, Ahn N, Guan K, Stein B, Goldsmith E, CobbMH. Contribution of the MAP kinase backbone and phosphorylation lip to MEK specificity. J Biol Chem , 1996,271:29734–29739
    [29] Scott A, Haystead CMM, Haystead TAJ. Purification of a 12,020-dalton protein that enhances the activation of mitogenactivated protein (MAP) kinase by MAP kinase kinase. J Biol Chem, 1995, 270:24540–24547
    [30] Zhang J, Zhang F, Ebert D, Cobb MH, Goldsmith EJ . Activity of the MAP kinase ERK2 is controlled by a flexible surface loop. Structure, 1995, 3:299–307
    [31] Mansour SJ, Candia JM, Matsuura JE, Manning MC, Ahn NG .Interdependent domains controlling the enzymatic activity of mitogen-activated protein kinase kinase 1. Biochemistry , 1996 ,35:15529– 15536
    [32] Whalen AM, Galasinski SC, Shapiro PS, Nahreini TS, Ahn NG. Megakaryocyticdifferentiation induced by constitutive activation of mitogen-activated protein kinase kinase. Mol Cell Biol, 1997, 17:1947–1958
    [33] Boulton TG, Yancopoulos GD, Gregory JS, Slaughter C, Moomaw C, Hsu J, Cobb MH An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science, 1990 ,249:64–67
    [34] Elion EA, Grisafi PL, Fink GR . FUS3 encodes a cdc21/CDC28-related kinase required for the transition from mitosis into conjugation. Cell , 1990, 60:649–664
    [35] Boulton TG, Nye SH, Robbins DJ, Ip NY, Radziejewska E, Morgenbesser SD, DePinho RA, Panayotatos N, Cobb MH, Yancopoulos GD. ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell , 1991, 65: 663– 675
    [36] Lewis TS, Shapiro PS, Ahn NG. Signal transduction through MAP kinase cascades. Adv Cancer Res , 1998,74:49–139
    [37] Atkins CM, Selcher JC, Petraitis JJ, Trzaskos JM, Sweatt JD. The MAPK cascade is required for mammalian associative learning. Nat Neurosci, 1998, 1:602–609
    [38] Yung Y, Yao Z, Hanoch T, Seger R.ERK1b: a 46 kD ERK isoform which is differentially regulated by MEK. J Biol Chem, 2000 , 275:15799–15808
    [39] Gonzalez FA, Seth A, Raden DL, Bowman DS, Fay FS, Davis RJ . Serum-induced translocation of mitogen-activated protein kinase to the cell surface ruffling membrane and the nucleus. J Cell Biol , 1993, 122:1089–1101
    [40] Cobb MH, Goldsmith EJ. Dimerization in MAP-kinase signaling. Trends Biochem Sci , 2000,25:7–9
    [41] Jelinek T, Dent P, Sturgill TW, Weber MJ . Ras-induced activation of Raf-1 is dependent on tyrosine phosphorylation. Mol Cell Biol , 1996, 16:1027–103
    [42] Chaudhary A, King WG, Mattaliano MD, Frost JA, Diaz B, Morrison DK, Cobb MH, Marshall MS, Brugge JS .Phosphatidylinositol 3-kinase regulates Raf1 through Pak phosphorylation of serine 338. Curr Biol , 2000 ,10:551–554
    [43] Frodin M, Gammeltoft S. Role and regulation of 90 kDa ribo2 somal S6 kinase (RSK) in signal transduction. Mol Cell Endocrinol , 1999 , 151 (1) : 65–71
    [44] Bhatt R R , Ferrell J E. The protein kinase p90rsk as an essential mediator ofcytostatic factor activity. Science , 1999 , 286(6) : 1 362–1 365
    [45] Hsiao KM, Chou S Y, Shih S J et al . Evidence that inactive 42 mitogen-ativated protein kinase and inactive rsk exist as aheterodimer in vivo. Proc Natl Acad Sci USA , 1994 , 91(12) : 5480–5484
    [46] Lin L L , Wartmann M, Lin A Y et al . cPLA2 is phosphorylated and activated by MAP kinase. Cell , 1993 , 72(2) : 269–278
    [47] Gupta S, Campbell D, Derijard B, Davis RJ. Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science, 1995,267:389–393
    [48] Hai T, Curran T .Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc Natl Acad Sci USA, 1991 ,88:3720–3724
    [49] Thomson S, Clayton AL, Hazzalin CA, Rose S, Barratt MJ, Mahadevan LC. The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase. EMBO J , 1999,18:4779–4793
    [50] Whitmarsh AJ, Davis RJ. A central control for cell growth. Nature, 2000, 403:255–256
    [51] Rowan BG, Weigel NL, O’Malley BW. Phosphorylation of steroid receptor coactivator-1. Identification of the phosphorylation sites and phosphorylation through the mitogen-activated protein kinase pathway. J Biol Chem , 2000,275:4475–4483
    [52] Kamei Y, Xu L, Heinzel T, Torchia J, Kurokawa R, Gloss B, Lin SC, Heyman RA, Rose DW, Glass CK, Rosenfeld MG . A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell , 1996, 85:403–414
    [53] Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR. PD098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem , 1995, 270:27489–27494
    [54] Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, Van Dyk DE, Pitts WJ, Earl RA, Hobbs F, Copeland RA, Magolda RL, Scherle PA,Trzaskos JM . Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem, 1998,273: 18623– 18632
    [55] Akashi M, Nishida E . Involvement of the MAP kinase cascade in resetting of the mammalian circadian clock. Genes Dev, 2000, 14: 645–649
    [56] Pages G ,Lenormand P ,et al. Mitogen-actived protein kinases p42mapk and p44mapk are required for fibroblast proliferation . Proc Natl Acad Sci USA ,1993;90:8319-8323
    [57] Wang LM , Keegan AD, Paul WE , et al. IL-4 activates a distinct signal transduction cascade from IL-3 in factor-dependent myeloid cells .EMBO J ,1992;11:4899-4908
    [58] Casillas AM ,Amaral K ,Chegili–Farahani S ,et al. Okadaic acid activates p42 mitogen-activated protein kinases in B-lymphocytes but inhibits rather than augments cellular proliferation: contrast with phorbol 12-myristate 13-acetate . Biochem J ,1993 ;290:545-550
    [59] Traverse S, Gomez N, Paterson H ,et al . Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells: comparison of the effects of nerve growth factor and epidermal growth factor. Biochem J ,1992 ;288:351-355
    [60] Dikic I , Schlessinger J , Lax Irit .P12 cells overexpressing the insulin receptor undergo insulin-dependent neuronal differetition .Curr Biol ,1994;4:702-708
    [61] Verlhac MH, de Pennart H ,Maro B ,et al . MAP kinase becomes stably activated at metaphase and is associated with microtubule-organizing centers during meiotic maturation of cocytes.DEV Biol ,1993 ;158:330-340.
    [62] Wang HG , Miyashima T ,Takaayama S ,et al .Apoptosis regulation by interaction of Bcl-2 protein and Raf-1 kinase . Oncogen , 1994 ;9:2751
    [63] Blogokonny MV ,Schulte T , Nguyen P ,et al .Taxol–induced apoptosis and phophorylation of Bcl-2 protein involves c-Raf-1 and represents a novel c-Raf-1 signal transduction pathway .Cancer Res,1996;56:1851