基于静电吸附作用固定生物分子的免疫传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,由于电化学免疫传感器具有设计制造简单、高灵敏度、价格低廉而被广泛研究并已在生物检测中逐步得到了应用。然而,如何将生物活性组分有效的固定在电极表面的固定方法、降低甚至消除蛋白质在传感器上的非特异性吸附以及免疫传感器的重现性和重复使用性能等方面存在的问题阻碍了电化学免疫传感器的发展和应用。其中有效的生物活性组分的固定方法是构建性能优良的生物传感器的关键步骤。本论文研究的四个工作均采用静电吸附法固定生物分子,构建了四种生物化学传感器。
     1,角叉胶富含磺酸基,是一种具有强负电性的天然聚电解质,通过静电吸附作用将抗体固定到电极表面制得了基于带强负电性物质作电极界面的电流型转铁蛋白免疫传感器。转铁蛋白抗原与响应电流在1.5-60μg mL~(-1)范围内呈准线性关系。线性方程为:
     I=-0.5146c+59.06,相关系数为0.9800。
     2,纳米金用于吸附固定抗体,已在免疫分析中得到广泛应用。近年来的研究发现,纳米金能降低一些物质在电极上发生反应的氧化还原的电位,并催化这些物质在电极上的电化学氧化还原反应。利用纳米金的上述特征,研制了基于壳聚糖-纳米金固定IgG抗体的荧光免疫传感器用于羊抗人IgG免疫球蛋白的测定。以对羟基苯丙酸为荧光底物,酶催化氧化对羟基苯丙酸生成二聚体,导致荧光增强,通过荧光增强与待测抗原含量呈反比而对抗原进行检测,荧光增强与待测抗原在1.12ng mL~(-1)-24.8μg mL~(-1)之间呈准线性关系,线性回归方程为:
     I=-69.04c+133.5,相关系数为0.9860。
     3,第四章,辣根过氧化物酶通过与纳米氧化锆之间的静电吸附作用而被固定在电极表面,以对苯二酚为电子媒介,通过测定酶催化双氧水产生的还原电流的大小来间接测定双氧水的浓度。响应电流与双氧水在3.6×10~(-6)-7.2×10~(-3)mol L~(-1)之间呈准线性关系。线性回归方程为:I=8.488×10~(-4)c+0.4892,相关系数为0.9960。
     4,将含大量磺酸基的天然高分子角叉胶包埋于碳糊电极中制成表面带大量负电荷的电极界面固定辣根过氧化物酶,以对苯二酚为电子媒介,通过测定酶催化双氧水产生的还原电流的大小来间接测定双氧水的浓度。响应电流与双氧水在3.6×10~(-7)-7.2×10~(-3) mol L~(-1)之间呈准线性关系。线性回归方程为:I=2321c+11.85,相关系数为0.9990。
Electrochemical immunosensors are widely used for the assay of biological analytes. The advantages of this approach including their simple-design, high-sensitivity and low-cost attract substantial research efforts directed to the developments of some new electrochemical immunosensors in the last two decades. However, the method of immobilization, the prevention or elimination of nonspecific interactions, the reproducibility and the reusability still remain to be the key steps. The four parts of this thesis were all used electrostatic absorption to immobilizing biomolecules.1, Carrageenan which is the negatively charged natural polyelectrolyte, antibody is aggregated to the surface of the carrageenan-carbon paste electrode by electrostatic adsorption, such an immunosensor based on carrageenan-embedded in carbon paste electrode for transferrin assay has been constructed. The sensor exhibits a linear response to the transferrin in the concentration ranged from 1.5 μg mL-1 to 60 ug ml/-1, the regression equation can be expressed as follows:I = - 0.5146c + 59.06, correlation coefficient is 0.9960.2, It has been shown that gold nano-particles (colloid Au) can be used as a platform to immobilize antibodies by adsorption. Additionally, gold nano-particles can reduce the redox potential and catalyze the electrochemical redox reaction of some compounds on the electrode interface. Considering these characteristics of gold nano-particles, we designed a fluorescence immunosensor by immobilization of IgG antibody to a nano-Au monolayer modified chitosan-entrapped carbon paste. Using HPPA as substrate, HRP catalyze HPPA and form HPPA-dimer, which results in fluorescence increase of the substrate solution. The concentration of IgG antibody can be determined by fluorescence increase of HPPA-dimer. The sensor exhibits a linear response to IgG in the concentration ranged from 1.12 ng mL-1 to 24.8 μg mL-1, the regression equation can be expressed as: I = -69.04c + 133.5, correlation coefficient is 0.9800.3, In chapter IV, HRP was immobilized on electrode surface involving strong electrostatic absorption interaction between the enzyme and nano-zirconia dioxide. The concentration of H2O2 can be detected by determining the redox current of p-hydroquinone, which was oxidized by H2O2 in the presence of HRP. The linear response to hydrogen peroxide ranged from 3.6×10-6 to 7.2×10-3 mol L-1 was obtained.
    
    The equation can be expressed as: I = 8.488 × 10-4c + 0.4892, the correlation coefficient is 0.9960.4, Carrageenan, which is the negatively charged natural polyelectrolyte and HRP enzyme were entrapped in the carbon paste electrode, thus a strong-negatively enzyme electrode has been constructed. The concentration of H2O2 can be detected by determining the redox current of p-hydroquinone, which was oxidized by H2O2 in the presence of HRP. The sensor exhibits a linear response in the concentration ranged from 3.6×10-7 to 7.2×10-3 mol L-1. The regression equation can be expressed as: I = 2321c + 11.85, correlation coefficient is 0.9990.
引文
[1] Masuo A. Preface. Anal. Chim. Acta, 1993, 281(3): 451
    [2] Christa D, Helmut M K S, Georg S. Pesticide-sensitive ISFET based on enzymeinhibition. Anal. Chim. Acta, 1991, 252(1-2): 7-9
    [3] Sheper T, Brandes W, Grau G, et al. Applications of biosensor systems forbioprocess montoring. Anal. Chim. Acta, 1991, 249(1): 25-34
    [4] Pearson J E, Gill A, Vadgama P. Analytical aspects of biosensors. Ann. Clin.Biochem., 2000, 37(2): 119-145
    [5] Books S L, Higgins I J, Newman J D. Biosensor for process control. EnzymeMicrob. Technol., 1991, 13(12): 946-955
    [6] Newman J D, Turner A P F. Biosensors: the analyst's dream. Chem. Ind., 1994, 5(3):374-378
    [7] Jun H Z, Hong C, Rui F Y. DNA based biosensors. Biotechnol. Adv., 1997, 15(1):43-58
    [8] Skladal P. Advances in electrochemical immunosensors. Electroanalysis, 1997, 9(8):737-745
    [9] Janata J. Twenty years ion-selective field effect transistors. Analyst, 1994, 119(12):2275-2278
    [10] 马宝骊, 肖祥熊. 医学免疫学. 第1版. 上海: 同济大学出版社, 1987: 48-51
    [11] Vanderlaan M, Watkins B E, Stanker L. Environmental monitoring by immunoassay. Environ. Sci. Technol., 1998, 22(1-2): 247-254
    [12] Meulenberg E P, Mulder W H, Stoks P G. Immunoassay for pesticides. Environ.Sci. Technol., 1995, 29(4): 553-561
    [13] Frannek M, Kolar V, Eremin S A. Enzyme immunoassay for s-triazine herbicidsand their application in environmental and food analysis. Anal. Chim. Acta, 1995,311(3): 349-356
    [14] Van Emon J P, Lopeaz Avila V. Immunochemical methods for environmentalanalysis. Anal. Chem., 1992, 64(2): 79A-88A
    [15] Sadik O A, Van Emon J M. Applications of electrochemical immunosensors toenvironmental monitoring. Biosens. Bioelectron., 1996, 11(1): i-xi
    [16] Baumner A J, Schmid R D. Development of a new immunosensor for pesticidedetection: a disposable system with liposome-enhancement and amperometricdetection. Biosens. Bioelectron., 1998, 13(5): 519-529
    
    [17] Gonzalez-Martinez M A, Penalva J, Puchades R, et al. An immunosensor for the automatic determination of the antifouling agent irgarol 1051 in natural waters. Environ. Sci. Technol., 1998, 32(21): 3442-3447
    [18] Klotz A, Brecht A, Barzen C, et al. Immunofluorescence sensor for water analysis. Sensors and Actuators B: Chemical, 1998, 51(1-3): 181-187
    [19] Darwish I A, Blake D A. One-step competitive immunoassay for cadmium ions: development and validation for environmental water samples. Anal. Chem., 2001, 73(8): 1889-1895
    [20] Mallat E, Bareló D. Immunosensors for pesticide determination in natural waters. Trends Anal. Chem., 2001, 20(2): 124-132
    [21] Parellada J, Narváez A, López M A, et al. Amperometric immunosensors and enzyme electrodes for environmental applications. Anal. Chim. Acta, 1998, 362(1): 47-57
    [22] Claudia B, Andreas B, Guenter G. Optical multiple-analyte immunosensor for water pollution control. Biosens. Bioelectron., 2002, 17(4): 289-295
    [23] Killard A J, Dasy B, O'kennedy R, et al. Antibodies: production functions and application in biosensors. Trends Anal. Chem., 1995, 149(3): 257-266
    [24] Frtzpatrick J, Fnanning L, Hearty S, et al. Applications and recent developments in the immobilization of antibodies for analysis. Anal. lett., 2002, 33(7): 2563-2609
    [25] 徐宜为.免疫检测技术.北京:科学出版社,1991,24-35
    [26] 李振甲.国内外标记免疫分析技术研究现状.中华医学检验杂志,1999,22(5):278-280
    [27] 高军,李元宗,常文保等.甲基睾酮的控温相分离免疫分析.分析化学,2000,28(1):1-5
    [28] 江世益,张鲁雁.免疫化学.上海:上海医科大学出版社,1996,13-35
    [29] 王重庆.分子免疫学基础.北京:北京大学出版社,1997,8-29
    [30] 陆德源,马宝骊.现代免疫学.上海:上海科技出版社,1995,19-35
    [31] Krica J L. Multianalyte testing. Clin. Chem., 1992, 38(3): 327-328
    [32] Trbojevic-Cepe M, Vogrinc Z, Brinar V. Diagnostic significance of methemoglobin determination in colorless cerebrospinal fluid. Clin. Chem., 1992, 38(8): 1404-1408
    [33] Kakabakos S E, Christopoulos T K, Diamandis E P. Multianalyte immunoassay based on spatially distinct fluorescent areas quantified by laser-exited solid-phase time-resolved fluorometry. Clin. Chem., 1992, 38(3): 338-342
    
    [34] Rongen H A H, Bult A. Vanbennekom W P. Liposomes and immunoassays. J.Immunol. Methods, 1997, 204(2): 105-133
    [35] 杨晓达, 常文保, 慈云祥. 免疫分析法进展. 化学进展. 1995, 7(2): 83-97
    [36] Rogers K R. Principles of affinity-based biosensor. C
    [37] Meusel M, Renneberg R, Spener F, et al. Development of heterogeneousamperometric immunosensor for the determination of apolipoprotein E in serum.Biosens. Bioelectron., 1995, 10(6-7): 577-586
    [38] Kreuzer M P, O'Sulivan C K, Parvda M, et al. Development of an immunosensorfor the determination of allergy (IgE antibody) in blood samples. Anal. Chim.Acta, 2001, 442(1): 45-53
    [39] Abdal Hamid I, Ivnitski D, Atanasov P, et al. Fast amperometric assay for E. coli.O157:H7 using partially immersed immunoelectrodes. Electroanalysis, 1998,10(11): 758-763
    [40] Lopz M A, Ortega F, Dominguze E. Electrochemical immunosensor for thedetection of atrazine. J. Mol. Recognit., 1998, 11(1-6):178-181
    [41] Aboulenein H Y, Stefan R I, Radu G L, et al. The construction of an amperometricimmunosensor for the thyroid hormone(+)-3,3',5-triiodo-L-thyronine (L-T3).Anal. lett., 1999, 32(2): 447-455
    [42] Benkert A, Scheller F, Schosslre W. Development of a cretinine ELISA and anamperometric antibody based cretinine sensor with a detection limit in thenanomolar range. Anal. Chem., 2000, 72(5): 916-921
    [43] Pemberton R M, Hart J P, Mottram T T. An electrochemical immunosensor formilk progesterone using a continuous flow system. Biosens. Bioelectron., 2001,16(9-12): 715-723
    [44] Toppozada A R, Wright J, Eldefrawi A T, Eldefrawi M E. Evaluation of a fiberoptic immunosensor for quantitating cocaine in coca. Biosens. Bioelectron., 1997,12(2): 113-124
    [45] Plowman T E, Reichert W M, Peters C R, et al. Femtomolar sensitivity using achannel-etched thin film waveguide fluoroimmunosensor. Biosens. Bionelectron.,1996, 11(1-2):149-160
    [46] Pulido-Tofino P, Barrero-Moreno J M. Sol-gel glass doped with isoproturonantibody as selective support for the development of a flow-throughfluoroimmunosensor. Anal. Chim. Acta, 2001, 429(2): 337-345
    [47] Rico C M, Fernandez P. Development of a flow fluoroimmunosensor fordetermination of theophylline. Analyst, 1995, 120(10): 2589-2591
    
    [48] Vodinh T, Alarie J P. Evaluation of the fiberoptic antibody-based fluoroimmunosensor for DNA-adducts in human placenta samples. Clin. Chem., 1991, 37(4): 532-535
    [49] Aoyagi S, Miyasaka T, Yoshimi Y, et al. A new reagentless immunosensor formeasuring IgG concentration in human plasma based onfluorescence-enhancement immunoassay. J. Artific. Organ., 2002, 5(1): 60-63
    [50] Bart J C, Judd L J, Kusterbeck A W. Environmental immunoassay for the explosive RDX using a fluorescent dye-labeled antigen and the continuous flow immunosensor. Sensors and Actuators B, 1997, 39(2): 411-418
    [51] Huang Z, Olson N A, You W, et al. A sensitive competitive ELISA for 2, 4-dinitrophenol using 3,6-fluorescein diphosphate as a fluorogenic substrate. J. Immunol. Meth., 1992, 149(2): 261-266
    [52] Ci Y X, Qin Y, Chang W B, et al. Fluorometric mimetic enzyme immunoassay ofmethotrexate. Fresenius J. Anal. Chem., 1994, 349(4): 317-319
    [53] Li Q D, Xu J G, Huang X Z, et al. The effects of media properties on thehorseradish peroxidase-catalyzed fluorogenic reaction. Talanta, 1994, 41(12):2049-2054
    [54] Tuuminen T, Palomak P, Rakkolainen A, et al. 3-p-(hydroxyphenyl) propionic acida sensitive fluoro-genic substrate for automated fluorometric enzymeimmunoassay. J. Immunoassay, 1991, 12(1): 29-46
    [55] Petrea R D, Sepaniak M J, Vo-Dinh T. Fiber-optics-based time-resolvedfluorimetry for immunoassays. Talanta, 1988, 35(1): 139-144
    [56] Jorg M, Uwe K. Enzyme-linked immunosorbent assay based on peroxidase labelsand enzyme-amplified lanthanide luminescence detection. Analyst, 2001, 126(2):175-178
    [57] Suleiman A A, Guibault G G. Recent development in piezoelectric immunosensors.Analyst, 1994, 119(11): 2279-2285
    [58] Guibult G G, Hock B. The quartz crystal microbalance as biosensor. Anal. Lett.,1995, 28(5): 749-764
    [59] Geddes N J, Paschinger M B, Lubrano G J, et al. Piezoelectric detection ofimmuno-reaction in buffer solutions. Sensors and Actuators B, 1994, 157(17):125-131
    [60] Carter R M, Jacobs M B, Lubrano G J, et al. Piezoelectric detection of ricin andaffinity purified goat anti-ricin. Anal. Lett., 1995, 28(8): 1379-1386
    [61] Pizziconi V B, Page D L. A cell based immunobiosensor with engineered molecular recognition design feasibility. Biosens. Bioelectron., 1997, 13(5):
    287-299
    
    [62] Xie B, Meckklenburg M, Danielesson B, et al. Development of an intergratedthermal biosensor for the simultaneous determination of multiple analytes.Analyst, 1995, 120(1): 155-159
    [63] 巴德, 福克纳著, 谷林瑛译. 电化学方法. 北京: 化学工业出版社, 1986, 9-11
    [64] Gebbert A, Alvarez-Icaza A, Stocklein W, et al. Real-time monitoring ofimmunochemical interactions with a tantalum capacitance flow-through cell. Anal.Chem., 1992, 64(9): 997-1003
    [65] Mencil C J, Athey D, Ball M, et al. Electrochemical sensors based on impendancemeasurement of enzyme-catalyzed polymer dissolution: theory and applications.Anal. Chem., 1995, 67(21): 3928-3935
    [66] Bataillard P, Gardies F, Jaffrezic-Renault N, et al. Direct detection ofimmunospecies by capacitance measurement. Anal. Chem., 1988, 60(21):2374-2379
    [67] Bain C D, Troughton E B, Tao Y T, et al. Formation of monolayer films by thespontaneous assembly of organic thiols from solution onto gold. J. Am. Chem.Soc, 1989, 111(1): 321-335
    [68] Parikh A N, Allara D L, Azouz I B, et al. An Intrinsic relationship betweenmelecular structure in self-assembled n-alkylsiloxane monolayers and depositiontemperature. J. Phys. Chem., 1994, 98(31): 7577-7590
    [69] Porter M D, Bright T B, Allara D L, et al. Spontaneously organized molecularassemblies .4. structural charaterization of n-alkyl thiol monolayers ongold byoptical ellipsometry, infrared spectroscopy and electrochemistry. J. Am. Chem.Soc, 1987, 109(12): 3559-3568
    [70] Troughton E B, Bain C D, Itesides G M, et al. Monolayer films prepared by thespontaneous self-assembly of symmetrical and unsymmetrical dialkyl sulfidesfrom solution onto gold substrates: structure, properties, and reactivity ofconstituent functional groups. Langmuir, 1988, 4(2): 365-385
    [71] Nuzzo R G, Allara D L. Prelunularic acid, a probable immediate precursor oflunularic acid, first example of a "prearomatic" intermediate in thephenylpropanoid-polymalonate pathway. J. Am. Chem. Soc, 1983, 105(13):4480-4483
    [72] Doblhofer K. Stability and electrochemical behaviour of "self-assembled"adsorbates with terminal ionic groups. Langmuir, 1992, 8(7): 1811-1816
    
    [73] Rickert J, Weiss T, Gopel W. Self-assembled monolayers for chemical sensors:molecular recognition by immobilized supramolecular structures. Sensors andActuators B, 1996, 31(1-2): 45-50
    [74] Treloar P H, Nkohkwo A T, Kane J W, et al. Electrochemical immunoassay:simple kinetic detection of alkaline phosphate enzyme labels in limited andexcess reagent systems. Electroananlysis, 1994, 6(4): 561-566
    [75] Athey D, Ball M, Mcneil C J. Avidin based electrochemical immunosensor forthyrotrophin. Ann. Clin. Biochem. 1993, 30(4): 570-577
    [76] Segeyeva T A, Lavrik N V, Rachkov A E, et al. An approach to condrctometricimmunosensor based on phthalocyanine thin film. Biosens. Bioelectron., 1998,13(3-4): 359-369
    [77] Kanungo M, Srivastava D N, Kumar A, et al. Conductimetric immunosensor basedon poly(3,4-ethylenedioxythiophene). Chem. Commun., 2002, 8(4): 680-681
    [78] Kim J H, Cho J H, Cha G S, et al. Conductimetric membrane strip immunosensorwith polyaniline-bound gold colloid as signal generator. Biosens. Bioelectron.,2000, 14(12): 907-915
    [79] Sandberg R G. A conductive polymer based immunosensor for the analysis ofpesticide residues. Am. Chem. Soc. Symp. Ser., 1992, 511(1): 81-88
    [80] Thompson J C, Mazoh J A, Hochberg A, et al. Enzyme amplified ratecondutimetric immunoassay. Anal. Biochem., 1991, 194(2): 295-301
    [81] Yagiuda K, Hemmi A, Ito S, et al. Development of a conductivity-basedimmunosensor for sensitive detection of methamphetamine (stimulant drug) inhuman urine. Biosens. Bioelectron., 1996, 11(8): 703-707
    [82] Ozge M, Christopher J B. Stable sensor layer-assembled onto surfaces usingazobenzene-containing polyelectrolytes. Analyst, 2001, 126(11): 1861-1865
    [83] Lei C H, Deng J Q. Hydrogen peroxide sensor on coimmobilized methylene greenand horseradish peroxidase in the same montmorillonite bovine serumalbumin-glutaraldehyde matrix on a glassy carbon electrode surface. Anal. Chem.,1996, 68(19): 3344-3349
    [84] 陈丹, 刘宝红, 孙继烈. 三氧化二铝溶胶-凝胶固定过氧化氢生物传感器. 分析化学, 2003, 30(8): 958-961
    [85] Karyakin A A, Presnova G V, Rubtsova M Y, et al. Oriented immobilization ofantibodies onto the gold surfaces via their thiol groups. Anal. Chem., 2000,72(16): 3805-3811
    [86] Barisci J N, Hughes D, Minett A, et al. Characterisation and analytical use of a polypyrrole electrode containing anti-human serum albumin. Anal. Chim. Acta, 1998, 371(1): 39-48
    
    [87] Bordes A, Linoges B, Brossier P, et al. Simultaneous homogeneous immunoassayof phenytoin and phenobarbital using a nafion-loaded carbon paste electrode and two redox cationic labels. Anal. Chim. Acta, 1997, 356(2-3): 195-203
    [88] Alegret S. Rigid carbon-polymer biocomposites for electrochemical sensing.Analyst, 1996, 121(12): 1751-1758
    [89] Santaudreu M, Alegret S, Efa'bregas. Determination of P-HCG usingamperometric immunosensors based on a conducting immunocomposite. Anal.Chim. Acta, 1999, 396(2-3): 181-188
    [90] Djane S de Jesus, Cristina M C M Couto, Alberto N, et al. Amperometricbiosensor based on onoamine oxidase (MAO) immobilized in sol- gel film forbenzydamine determination in pharmaceuticals. J. Pharm. Biomed. Anal., 2003,33(5): 983-990
    [91] Lu B, Iwuoha E I, Smyth M R, et al. Development of an "electrically wired"amperimetric immunosensor for the determination of botin based on anon-diffusinal redox osmium polymer film containing an antibody to the enzyme label horseradish peroxidase. Anal. Chim. Acta, 1997, 345(1-3): 59-66
    [92] Khayyami M, Pita M T P, Garcia N P, et al. Development of an amperometricbiosensor based on acetylcholine esterase covalently bound to a new supportmaterial. Talanta, 1998, 45(3): 557-563
    [93] Peula J M, Hidalgo-Alvarez A, Nieves F J, et al. Covalent binding of proteins toacetal-functionalized latexes. II. colloidal stability and immunoreactivity. J.Colloid Interface Sci., 1998, 201(2): 139-145
    [94] Lu B, Smyth M R, O'Kennedy R, et al. Development of an amperometricimmunosensor based on flow injection analysis for the detection of red bloodcells. Anal. Chim. Acta, 1997, 340(1-3): 175-180
    [95] Gonzalez-Martinez M A, Puchades R, Maquieira A, et al. Reversibleimmuonsensor for the automatic determination of atrazine, selection andperformance of three polyclonal antisera. Anal. Chim. Acta, 1999, 386(3):201-210
    [96] Katz E, Willner I. Amperometric amplification of antigen-antibody association atmonolayer interfaces: design of immunosensor electrodes. J. Electroananl. Chem.,1996, 418(1-2): 67-72
    [97] Wang M J, Wang L Y, Wang G, et al. Application of impedance spectroscopy for monitoring colloid Au-enhanced antibody immobilization and antibody-antigen
    reactions. Biosens. Bioelectron., 2004, 19(6): 575-582
    
    [98] Padeste C, Grubelnik A, Tiefenauer L. Silver (I) ion-selection transport acrosspolymer inclusion membranes containing new pyridino- and bipytidno-podands.Anal. Chim. Acta, 1998, 374(2-3): 167-176
    [99] Willner I, Shabtai V H. Electrical wiring of glucose oxidase by reconstitution ofFAD-modified monolayers assembled onto an electrode. J. Am. Chem. Soc,1996, 118(42): 10321-10322
    [100] Kata E, Andress F. Self-powered enzyme-based biosensors. J. Am. Chem. Soc,2001, 123(43): 10752-10753
    [101] Lin L, Brown C W. Attenuated total reflectance spectroscopy of polymers: theoryand practice. Anal. Chem., 1997, 69(5): 200A-202A
    [102] Blonder R, Levis S, Iddo B, et al. Development of amperometric andmicrogravimetric immunosensors and reversible immunosensors using antigen andphotoisomerizable antigen monolayer electrodes. J. Am. Chem. Soc, 1997,119(43): 10467-10478
    [103] Liu G D, Wu Z Y, Wang S P, et al. Renewable amperometric immunosensor basedon paraffin-graphite-transferrin antiserum biocomposite for transferrin assay. Anal.Chem., 2001, 73(14): 3219-3226
    [104] Zhou Y M, Liu G D, Wu Z Y, et al. An amperometricimmunosensor based on aconducting immunocomposite electrode for the determination ofschistosoma-japonicum antigen. Anal. Sci., 2002, 18(2): 155-159
    [105] Santandreu M, Cespedes F, Alegret S, Martinez-Fabregas E. et al. Amperometricimmunosensors based on rigid conducting immunocomposites. Anal. Chem., 1997,69(11): 2080-2085
    [106] Sole S, Alegret S, Cespedds F, et al. Flow injection immunoanalysis based on amaynetoimmunosensor system. Anal. Chem., 1998, 70(8): 1462-1467
    [107] Liu G D, Hu K S, Li W, et al. Renewable amperometric immunosensor based onparaffin-graphite-transferrin antiserum biocomposite for transferring assay.Analyst, 2000, 125(9): 1595-1599
    [108] 应太林, 孙康, 刘海英等. 用Nafion膜固定的N-甲基吩嗪为介体的过氧化氢生物传感器. 上海大学学报 (自然科学版). 1997, 3(2): 188-193
    [109] Bossuty X, Bogaerts A, Schiettekatte G, et al. Detection and classificationparaproteins by capillary immuonfixation. Clin. Chem., 1998, 44(4): 760-764
    [110] Pankratov I, Lev O. Sol-gel derived renewable-surface biosensors. J. Electroanal. Chem., 1995, 393(1-2): 35-41
    
    [111] Erika K R, Butterworth H. Instrumentation and sensor for the food industry.Trends Food Sci. Technol., 1994, 5(6): 206-209
    [112] Marc J P, Leiner. Luminescence chemical sensor for biomechical application:scope and limitations. Anal. Chim. Acta, 1991, 255(2): 209-222
    [113] Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetric detection ofpolynucleotides based on the distance-de. Science, 1997, 277(5329): 1078-1081
    [114] Ludgor J, Alfons N, Ulf W. Electron density imaging of protein films on gold-particle surfaces with transmission electron microscopy. Cytometry, 1999, 37(2): 87-92
    [115] Dou X M, Jung Y M, Cao Z Q, et al. Surface-enhanced raman scattering ofbiological molecules on metal colloid: effects of aggregation of gold colloid andcomparison of effects of pH of glycine solutions between gold and silver colloids.Appl. Spectrosc, 1999, 53(2): 133-138
    [116] Li H, Wen J X, Cai Q, et al. A novel nano-Au-assembled gas sensor foratmospheric oxygen determination. Analyst, 2001, 126(10): 1747-1750
    [117] Crumbliss A L, Perine S C, Stonehuerner J, et al. Colloidal gold as a biocompatible immobilization matrix suitable for the fabrication of enzyme electrodes by electrodeposition. Biotechnol. Bioeng., 1992, 40(4): 483-490
    [118] Zhao J, Henkens R W, Stonehuerner J, et al. Direct electrotransfer at horseradish peroxidase-colloidal gold modified electrodes. J. Electroanal. Chem., 1992, 327(1-2): 109-119
    [119] Xiao Y, Ju H X, Chen H Y. Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilization on gold electrode surface by cysteamine monolayer. Anal. Chim. Acta, 1999, 391(1): 73-82
    [120] Grabar K C, Freeman R G, Hommer M B, et al. Preparation and characterizationof Au colloid monolayers. Anal. Chem., 1995, 67(4): 735-743
    [121] Thomas K G, Kamat P V. Making Gold Nanoparticles Glow: Enhanced Emission from a Surface-Bound Fluoroprobe. J. Am. Chem. Soc, 2000, 122(11): 2655-2656
    [122] Zaitsu K, Ohkura Y. New fluorogenic substrates for horseradish peroxidase: rapid and sensitive assays for hydrogen peroxide and the peroxidase. Anal. Biochem., 1980,109(1): 109-113
    [123] Zaitsu K, Nakashima K, Akiyama S, et al. Sensitive fluorogenic substrate for peroxidase and its application to enzyme immunoassays. J. Pharmacobio-Dyn., 1982, 5(2): S20-S21
    
    [124] Zaitsu K, Nakashima K, Akiyama S, et al. Rapid enzyme immunoassay forhuman chjorio gonadotropin in serum using horseradish peroxidase as a lable.Chem. Pharm. Bull., 1982, 30(11): 4114-4119
    [125] Zaitsu K, Nakayama M, Ohkura Y. Useful horseradish peroxidase-labeled insulinfor competitive enzyme immunoassay. J. Pharm. Sci., 1987, 76(1): S21-S22
    [126]王冬媛,许金钩,郭祥群等.对位取代酚类物质的光化学荧光测定研究.分析化学, 1995, 23(8): 870-874
    [127] Topglidis E, Cass A E G, Gilardi G, et al. Protein adsorption on nanocrystallineTiO2 films: an immobilization strategy for bioanalytical devices. Anal. Chem.,1998, 70(23): 5111-5113
    [128] Topglidis E, Cass A E G, O'Regan B, et al. Immobilisation andbioelectrochemistry of proteins on nanoporous TiO2 and ZnO2 films. J.Electroanal. Chem., 2001, 517(1-2): 20-27
    [129] Cosnier S, Senillou A, Gratzel M, et al. A glucose biosensor based on enzymeentrapment within polypyrrole films electrodeposited on mesoporous titaniumdioxide. J. Electroanal. Chem., 1999, 469(2): 176-181
    [130] Klimova T, Ramirez J, Calderon M, et al. New Mo and NiMo catalysts supportedon MCM-41/alumina for thiophene hydrodesulfurization. Stud. Surf. Sci. Catal.,1998, 117(Mesporous molecular sieves 1998): 493-500
    [131] Aramendia M A, Borau V, Jimenez C, et al. Vapour-phase reaction ofacetophenone with methanol or dimethyl carbonate on magnesium oxide andmagnesium phosphates. J. Catal., 1999, 183(1): 119-127
    [132] Wang J, Pamidi P V A, Jing M. Low-potential stable detection of β-NADH atsol-gel derived carbon composite eledtrodes. Anal. Chim. Acta, 1998, 360(1-3):171-178
    [133] Dong S, Kuwana T. Activation of glassy carbon electrodes by dispersed metaloxide particales. I. ascorbic acid oxidation. J. Electrochem. Soc, 1984, 131(4):813-818
    [134] Tatsuma T, Okawa Y, Wata nabe T. Enzyme monolayer- and bilayer-modifiedtinoxid electrodes for the determination of hydrogen peroxide and glucose. Anal.Chem., 1989, 61(21): 2352-2355
    [135] Qian J H, Liu Y C, Liu H Y, et al. Charaterization of regenerated silk fibroinmembrance for immoblilizing peroxidase and construction of an amperometrichydrogen peroxide sensor employing methosulphate as electron shutte. J. Electroanal. Chem., 1995, 397(1-2): 157-162
    
    [136] Deng Q, Dong S. Mediatorless hydrogen peroxide electrode based on horseradishperoxidase entrapped in poly (o-phenylenediamine). J. Electroanal. Chem.,1994, 377(1-2): 191-195
    [137] Tian F M, Xu B, Zhu L D, et al. Hydrogen peroxide biosensor with enzymeentrapped within electrodeposited polypyrrole based on mediated sol-gelderived composite carbon electrode. Anal. Chim. Acta, 2001, 443(1): 9-16
    [138] Chen X H, Ruan C M. Characterization of the direct electron transfer andbioelectrocatalysis of horseradish peroxide in DNA flim at pyrolytic graphiteelectrode. Anal. Chim. Acta, 2000, 412(1-2): 89-98
    [139] Yabuki S, Mizutani F. Hydrogen peroxide determination based on a glassycarbon electrode covered with polyion complex membrane containing peroxideand mediator. Sensors and Actuators B, 2000, 65(1-3): 49-51
    [140] Sun J J, Fang H Q, Chen H Y. Immuoblization of horseradish peroxide on aslef-assembled monolayer modified gold electrode for the detection of hydrogenperoxide. Analyst, 1998, 123(6): 1365-1366
    [141] Ruzgas T, Csoregi E, Emneus J, et al. Peroxidase-modified electrodes:fundamentals and application. Anal. Chim. Acta, 1996, 330(2-3): 123-138
    [142] Oungpipat W, Alexander P, Southwell-Keely P. A reagentless amperometricbiosensor for hydrogen peroxide determination based on asparagus tissue andferrocene mediation. Anal. Chim. Acta, 1995, 309(1-3): 35-45
    [143] Lopez Leiva M, Traegaordh G. Einsatzbereiche under perspektivenmembrantechnik in biotechnologie. Chem. Tech., 1983, 35(8): 381-385
    [144] Wolfbeis O S. Optical sensing based on analyte recognition by enzymes, carriersand molecular interaction. Anal. Chim. Acta, 1991, 250(1): 181-201