沙袋结构增韧PA6/EPDM/nano-CaCO_3三元复合材料的形态、性能及增韧机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚酰胺6 (PA6)是一种重要的工程塑料,但因其低温韧性较差等缺点而限制了应用。本论文以三元乙丙橡胶(EPDM)和马来酸酐接枝三元乙丙橡胶(EPDM-g-MAH)的复配共混物为橡胶,纳米碳酸钙(nano-CaCO_3)为无机粒子,通过在PA6基体中构建了EPDM包覆nano-CaCO_3团聚体的“沙袋结构”粒子,制得高韧性的PA6三元复合材料,利用扫描电镜(SEM)、动态力学分析(DMA)等手段观察和研究了“沙袋结构”粒子在基体中的形态及在外力作用下的演变,并进一步探讨了“沙袋结构”粒子对PA6的增韧机理。主要研究内容和结果如下:
     1、通过nano-CaCO_3表面处理和EPDM交联,调节EPDM—nano-CaCO_3—PA6间的界面性能,研究了界面性能对PA6/EPDM/nano-CaCO_3三元复合形态与性能的影响。结果表明,采用硬脂酸处理的nano-CaCO_3分散在EPDM相中,形成“沙袋结构”,冲击强度大幅度提高;当过氧化二异丙苯(DCP)含量从0 wt%提高到0.30 wt%时,“沙袋结构”粒子粒径变大,三元复合材料的冲击强度下降。在受到外力作用时,含有均匀分散的“沙袋结构”粒子的三元复合材料通过“沙袋结构”粒子诱发微纤化和“扩张带”耗散外界作用能。
     2、共混工艺与注塑工艺对PA6/EPDM/nano-CaCO_3三元复合材料的分散相形态有显著影响。采用两步法工艺制得的三元复合材料形成“沙袋结构”,而一步法工艺制得的三元复合材料中各组分独立分散。通过基本断裂功(EWF)测试发现“沙袋结构”有利于提高复合材料的断裂韧性和抵抗裂纹扩展能力。注射速率很大程度上决定了PA6/EPDM/nano-CaCO_3三元复合材料皮芯层中“沙袋结构”粒子的完整性,随着注射速率的加快,试样皮层的“沙袋结构”粒子发生破裂,出现nano-CaCO_3团聚体,芯层的“沙袋结构”粒子分散性较差,从而导致三元复合材料的冲击强度降低。
     3、从空洞和基体的塑性形变能力两方面来定量地研究复合材料的能量耗散。通过体积应变测试和平行于拉伸方向的断面SEM图观察,PA6/EPDM/nano-CaCO_3 (两步法)三元复合材料(E4)的空洞体积大于PA6/nano-CaCO_3二元复合材料(E1)、PA6/EPDM二元复合材料(E2)和PA6/EPDM/nano-CaCO_3 (一步法)三元复合材料(E3)。垂直于拉伸方向的断面SEM图表明E4的基体塑性形变能力大于E1、E2和E3,因此,E4的能量耗散能力大于E1、E2和E3。
Polyamide 6 (PA6) is a kind of widely used engineering plastics, but the application is limited because of its poor toghness under low temperature. In this work, ethylene propylene diene terpolymer rubber (EPDM)/maleated ethylene propylene diene terpolymer rubber (EPDM-g-MAH) was employed as rubber, nano calcium carbonate (nano-CaCO_3) was employed as inorigid particles,“sandbag”microstructure particle embedded nano-CaCO_3 agglomerate into EPDM was constructed in PA6/EPDM/nano-CaCO_3 ternary composites. This“sandbag”microstructure could effectively improve the toughness of PA6. Morphology evolution of“sandbag”microstructure particles in PA6 matrix and under the external force was studied by Scanning Electron Microscope (SEM) and Dynamic Mechanical Analysis (DMA). The toughening mechanism of“sandbag”microstructure particles was further discussed. The main works and conclusions were listed as follows:
     1. The effect of interfacial properties controlled by modifing the surface properties of nano-CaCO_3 and crosslinking degree of EPDM on morphology and properties of the ternary composites were studied. It was found that nano-CaCO_3 coated with stearic acid was selectively distributed in EPDM, and“sandbag”microstructure was constructed in the ternary composite of well toughness; When the content of dicumyl peroxide (DCP) in EPDM increased from 0 wt% to 0.30 wt%, the size of“sandbag”microstructure particles dispersed in PA6 matrix became larger, while the impact strength of the ternary composites became smaller. When the ternary composite was impacted, the impact energy applied on the composite was dissipated by the fiber-forming mode and dilataional bands which were induced by“sandbag”microstructure particles finely dispersed in PA6 matrix.
     2. The influence of compounding routes and injection molding conditions on morphology and properties of PA6/EPDM/nano-CaCO_3 ternary composites was studied. It was found that the“sandbag”microstructure particles could be constructed only via two-step compounding route, and“sandbag”microstructure particles were effective to improve the fracture toughness and resist the growth of the crake. The structure integrity of“sandbag”microstructure particles dispersed in PA6 matrix markedly depended on the injection rate, when the injection rate increased, there was nano-CaCO_3 agglomerate present in the skin layer, the dispersion of“sandbag”microstructure particles in the core layer became worse, and the impact strength of the ternary composites became smaller.
     3. The mechanism of energy dissipation which includes voids and plastic deformation of matrix was studyed. Various modes of voids were observed by scanning electron microscope (SEM). The volume of voids in PA6/EPDM/nano-CaCO_3 (two-step) ternary composites (E4) was larger than PA6/nano-CaCO_3 binary composites (E1), PA6/EPDM binary composites (E2) and PA6/EPDM/nano-CaCO_3 (one-step) ternary composites (E3). The fracture surface along the direction perpendicular to the tensile direction observed by SEM resulted that matrix plastic deformation of E4 was larger than E1, E2 and E3. So energy dissipation of E4 was larger than E1, E2 and E3.
引文
[1]黄锐.塑料工程手册(下册)[M].北京:机械工业出版社,2000
    [2] Kelnar I, Kotek J, Kapralkova L, et al. Polyamide Nanocomposites with Improved Toughness[J]. Journal of Applied Polymer Science, 2005, 96(2): 288-293
    [3] Kelnar I, Kotek J, Kapralkova L, et al. Effect of Elastomer Type and Functionality on the Behavior of Toughened Polyamide Nanocomposites[J]. Journal of Applied Polymer Science, 2006, 100(2): 1571-1576
    [4]王炜.原位增容尼龙6/POE共混物的制备与表征[D].山西:中北大学,2009
    [5] Ding XJ, Xu RW, Yu DS, et al. Effect of Ultrafine, fully Vulcanized Acrylate Powdered Rubber on the Mechanical Properties and Crystallization Behavior of Nylon 6[J]. Journal of Applied Polymer Science, 2003, 90(13): 3503-3511
    [6] Omonov TS, Harrats C, Groeninckx G. Co-continuous and Encapsulated Three Phase Morphologies in Uncompatibilized and Reactively Compatililized Polyamide 6/Polypropylene/Polystyrene Ternary Blends Using Two Reactive Precursors[J]. Polymer, 2005, 46(26): 12322-12366
    [7] Winberg P, Eldrup M, Pedersen NJ, et al. Free Volume Sizes in Intercalated Polyamide 6/Clay Nanocomposites[J]. Polymer, 2005, 46(19): 8239-8249
    [8] Garcia-Lopez D, Gobernado-Mitre I, Fernandez JF, et al. Influence of Clay Modification Process in PA6-layered Silicate Nanocomposite Properties[J]. Polymer, 2005, 46(8): 2758-2765
    [9] Tjong SC, Bao SP. Impact Fracture Toughness of Polyamide-6/Montmorillonite Nanocomposites Toughened with a Maleated Styrene/Ethylene Butylene/Styrene Elastomer[J]. Journal of Polymer Science Part B, Polymer Physics, 2005, 43(5): 585-595
    [10] Balamurugan GP, Maiti SN. Influence of Microstructure and Deformation Behavior on Toughening of Reactively Compatibilized Polyamide 6 and Poly(ethylene-co-butyl acrylate) Blends[J]. European Polymer Journal, 2007, 43(5): 1786-1805
    [11]王卫卫.多单体熔融接枝POE的制备及其在改性PA6中的应用[D].山东:青岛科技大学, 2008
    [12] Okada O, Keskkula H, Paul DR. Fracture Toughness of Nylon 6 Blends with Maleated Ethylene/Propylene Rubbers[J]. Polymer, 2000, 41(22): 8061-8074
    [13]宋宏,孟跃中,张国红等. (PE-MA)-g-PA6对PA6/EPDM的共混增容以及形态结构与性能的影响[J].高分子材料科学与工程, 1993, 22(5): 106-110
    [14]李小梅,王磊,武德珍等.增容剂EAA对PA6/POE共混体系的相态及性能的影响[J].中国塑料, 2001, 15(12): 21-25
    [15]宋波,杨丹,黄锐. PA6/POE/POE-g-MAH分散相态与性能的研究[J].塑料科技, 2007, 35(1): 22-26
    [16]李海东,王宇明,白福臣. GMA熔融接枝SBS及其对PA6增容研究[J].工程塑料应用, 2005, 33(2): 8-11
    [17] Keskkula H, Paul DR, McCrcedy KM, et al. Methyl Methacrylate Grafted Rubbers as Impact Modifiers for Styrenic Polymers[J]. Polymer, 1987, 28(12): 2063-2069
    [18] Ke Z, Shi D, Yin J, et al. Facile Method of Preparing Supertough Polyamide 6 with Low Rubber Content[J]. Macromolecules, 2008, 41(20): 7264-7267
    [19]汪晓东,金东吉,金日光.增容剂对“壳-核”型共聚物增韧尼龙6的亚微形态与性能的影响[J].高分子学报, 1996, (4): 494-498
    [20]欧玉春.尼龙基复合材料的增韧和增强[J].工程塑料应用, 1993, (2): 16-19
    [21] Li Y, Yu J, Guo ZX. The Influence of Interphase on Nylon-6/Nano-SiO2 Composite Materials Obtained from in Situ Polymerization[J].Polymer International, 2003, 52(6): 981-986
    [22] Li Y, Yu J, Guo ZX. The Influence of Silane Treatment on Nylon 6/Nano-SiO2 in Situ Polymerization[J].Journal of Applied Polymer Science, 2002, 84(4): 827-834
    [23]吴琳琳,刘文涛,何素芹等.聚酰胺6/纳米二氧化硅复合材料的制备和界面研究[J].中国塑料, 2008, 22(9): 49-52
    [24]宋波,黄锐,魏刚.马来酸酐接技POE对PA6/纳米CaCO_3复合材料性能的影响[J].中国塑料, 2004, 18(1): 30-33
    [25]张志永,冯纳,李书娟等.两种弹性体接技物对PA6/Ma(OH)2复合材料性能的影响[J].工程塑料应用, 2006, 34(11): 21-24
    [26]陈煌,王国全,黄源等. PA6/POE-g-MAH/纳米SiO2复合材料的形态和力学性[J].塑料, 2007, 36(6): 21-24
    [27]王旭波,许向彬,王旭,王晓东. PA6基“沙袋结构”复合材料的形态及力学性能[J].塑料工业, 2008, 36(4): 43-45
    [28]王晓东,徐科杰,王旭等.共混工艺对PA6/EPDM/nano-CaCO_3三元复合材料形态与性能的影响[J].塑料, 2009, 38(5): 11-13
    [29] Zhang BQ, Wong JSP, Shi D, et al. Investigation on the Mechanical Performances of Ternary Nylon 6/SEBS Elastomer/Nano-SiO2 Hybrid Composites with Controlled Morphology[J]. Journal of Applied Polymer Science, 2010, 115(1): 469-479
    [30]史学涛.弹性体包覆无机刚性粒子增韧聚丙烯研究[D].西安:西北工业大学, 2007
    [31]王聪.形变取向的橡胶粒子和有机蒙脱土增韧增强尼龙6的机理[D].四川:四川大学, 2001
    [32] Merz EH, Claver GC, Baer MJ. Studys on Heterogeneous Polymeric Systems[J]. Journal of Polymer Science, 1956(22): 325-329
    [33] Bucknall CB, Smith RR. Stress Whitening in High Impact Polystyrenes[J]. Polymer, 1965(6): 437-446
    [34] Newman S, Strella S. Stress-Strain Behavior of Rubber-Rein Forced Glassy Polymers[J]. Journal of Applied Polymer Science, 1965(9): 2297
    [35] Bucknall CB, Claytion D, Keast WE. Rubber-Toughening of Plastics[J]. Journal of Materials Science, 1972, 7(12): 1443-1453
    [36] Bragaw CG. Nano-silica Bead-filled Polyproplene[J]. Polymer Preprints, 1970, 11: 368-371
    [37] Wu S, Phase Structure and Adhesion in Polymer Blends: A Criterion for Rubber Toughening[J]. Polymer, 1985, 26(12): 1855-1863
    [38] Margolina A, Wu S. Percolation Model for Brittle-Tough Transition in Nylon 6Rubber Blends[J]. Polymer, 1988, 29(12): 2170-2178
    [39] Zheng WG, Li Q, Qi ZN. Percolation Model of Brittle-Transition in PP/EPDM Blends[J]. Journal of Polymer Engineering, 1993, 12(3): 229-238
    [40]刘浙辉,朱晓光,张学东等.聚合物共混物脆韧转变性能研究Ⅲ.分散相形态参数之间的关系[J].高分子学报, 1998, (1): 32-38
    [41] Pearson RA, Yee, AF. Toughening Mechanisms in Elastomer-Modified Epoxies[J]. Journal of Materials Science, 1986, 21(7): 2475-2488.
    [42] Kurauchi T, Ohta T. Energy Absorption in Blends of Polycarbonate with ABS and SAN[J]. Journal of Materials Science, 1984, 19(5): 1699-1709.
    [43]周丽玲,吴其晔,杨文君等.刚性有机粒子对聚氯乙烯/氯化聚乙烯共混体系形态和增韧机理的研究[J].高分子学报, 1996, (1): 87-90
    [44]黎学东.塑料的刚性填料增韧[J].塑料, 1995, (5): 32-38
    [45]李东明,漆宗能.碳酸钙增强聚丙烯复合材料的断裂韧性[J].高分子材料科学与工程, 1991, 7(2): 18-23
    [46] Mcgenity P, Paynter C, Adams J. Filplas BPF/PRI Conference, 1989
    [47]刘立敏,乔放,朱晓光等.熔体插层制备尼龙6/蒙脱土纳米复合材料的性能表征[J].高分子学报, 1998, (3): 304-310
    [48]吕坤.聚合物增韧机理研究进展[J].现代塑料加工应用, 2000, 12(4): 50-53
    [49] Yang H, Zhang XQ, Qu C, et al. Largely Improved Toughness of PP/EPDM Blends by adding Nano-SiO2 Particles[J]. Polymer, 2007, 48(3): 860-869
    [50]黄锐,张玲,王旭.聚合物/弹性体/无机粒子三元复合体系的逾渗规律[J].塑料, 2003, 32(4): 1-6
    [51]宋波.聚酰胺6/POE-g-MAH/无机刚性粒子超韧化研究[D].四川:四川大学, 2005
    [52]王旭,黄锐,金春洪等. PP/弹性体/纳米CaCO_3复合材料的研究[J].中国塑料, 2000, 14(6): 34-38
    [53] Wang X, Sun J, Huang R. Influence of the Compounding Route on the Properties of Polypropylene/Nano-CaCO_3/Ethylene–Propylene–Diene–Terpolymer Tercomponent Composites[J]. Journal of Applied Polymer Science, 2006, 99(5): 2268-2272
    [54]徐科杰,王晓东,傅李丹等. EPDM/纳米CaCO_3预混料动态力学性能及其对聚丙烯基三元复合材料韧性的影响[J].中国塑料, 2009, 23(6): 45-49
    [55] Wang X, Xu KJ, Xu XB, et al. Selective Particle Distribution and Mechanical Properties of Nano-CaCO_3/Ethylene-Propylene-Diene Terpolymer/Polypropylene Composites with High Content of Nano-CaCO_3[J]. Journal of Applied Polymer Science, 2009, 113(4): 2485-2491
    [56]王旭波,许向彬,王旭等. PA6基“沙袋结构”复合材料的形态及力学性能[J].塑料工业, 2008, 36(4): 43-45
    [57]王晓东,徐科杰,王旭等.共混工艺对PA6/EPDM/nano-CaCO_3三元复合材料形态与性能的影响[J].塑料, 2009, 38(5): 11-13
    [58] Wang X, Wang XD, Xu XB. The Construction of Sandbag Microstructure in Polyamide 6/Ethylene-Propylene-Diene Terpolymer/Nanometer Calcium Carbonate Ternary Composite[J]. Journal of Macromolecular Science, Part B, 2009, 48(6): 1212-1221
    [59] Azman H, Norhayani O, Mat U.W, et al. Maleic Anhydride Polyethylene Octene Elastomer Toughened Polyamide 6/Polypropylene Nanocomposites: Mechanical and Morphological Properties[J]. Macromolecular Symposia, 2006, 239, 182-190
    [60] Wang K, Wang C, Li J, et al. Effects of Clay on Phase Morphology and Mechanical Properties in Polyamide 6/EPDM-g-MAH/Organoclay Ternary Nanocomposites[J].Polymer, 2007,48: 2144~2154
    [61] Becker D, Hage E, Pessan LA. Effects of Addition of Acrylic Compatibilizer on the Morphology and Mechanical Behavior of Amorphous Polyamide/SAN Blends[J]. Journal of Applied Polymer Science, 2010, 115(4): 2540-2549
    [62] Kelnar I, Rotrekl J, Kotek J, et al. Effect of Montmorillonite on Structure and Properties of Nanocomposite with PA6/PS/Elastomer Matrix[J]. European Polymer Journal, 2009, 45(10): 2760-2766
    [63] Yoo Y, Cui L, Yoon PJ, et al. Morphology and Mechanical Properties of Rubber Toughened Amorphous Polyamide/MMT Nanocomposites[J]. Macromolecules, 2010, 43(2): 615-624
    [64] Nishitani Y, Yamada Y, Ishii C, et al. Effects of Addition of Functionalized SEBSon Rheological, Mechanical, and Tribological Properties of Polyamide 6 Nanocomposites[J]. Polymer Engineering Science, 2010, 50(1): 100-112
    [65] Ren JF, Wang JQ, Wang HG, et al. Study on the Morphological and Mechanical Properties of Nylon 6/ABS/Nano-SiO2 Composites[J]. Journal of Polymer Science Part B, Polymer Physics, 2009, 48(6): 1069-1080
    [66] Dasari A, Yu ZZ, Mai YW. Electrically Conductive and Super-tough Polyamide-Based Nanocomposites[J]. Polymer, 2009, 50 (16): 4112-4121
    [67] Gonzalez I, Eguiazabal JI, Nazabal J. Toughening and Brittle-Tough Transition in Blends of an Amorphous Polyamide With a Modified Styrene/Ethylene-Butylene/Styrene Triblock Copolymer [J]. Polymer Engineering Science, 2009, 49(7): 1350-1356
    [68] Yin LG, Yin JH, Shi DA, et al. Effects of SEBS-g-BTAI on the Morphology, Structure and Mechanical Properties of PA6/SEBS Blends[J]. European Polymer Journal, 2009, 45(5): 1554-1560
    [69] Yang W, Tang XG, Xie BH, et al. Heterogeneous Dispersion of the Compatibilizer in the Injection Molding of Polyamide 6/Polypropylene Blends[J]. Journal of Applied Polymer Science, 2009, 113(1): 299-305
    [70] Handge UA, Sailer C, Steininger H, et al. Micromechanical Processes and Failure Phenomena in Reactively Compatibilized Blends of Polyamide 6 and Styrenic Polymers. I. Polyamide 6/Acrylonitrile-Butadiene-Styrene Copolymer Blends[J]. Journal of Applied Polymer Science, 2009, 112(3): 1658-1669
    [71] Zhang LY, Wan CY, Zhang Y. Investigation on Morphology and Mechanical Properties of Polyamide 6/Maleated Ethylene-propylene-diene Rubber/Organoclay Composites[J]. Polymer Engineering Science, 2009, 49(2): 209-216
    [72] Mathew L, Narayanankutty SK. Nanosilica as Dry Bonding System Component and as Reinforcement in Short Nylon-6 Fiber/Natural Rubber Composite[J]. Journal of Applied Polymer Science, 2009, 112(4): 2203-2212
    [73] Lim SH, Dasari A, Wang GT, et al. Impact fracture behaviour of Nylon 6-based ternary nanocomposites[J]. Composites Part B-Engineering, 2010, 41(1): 67-75
    [1] Kelnar I, Kotek J, Kapralkova L, et al. Polyamide Nanocomposites with Improved Toughness[J]. Journal of Applied Polymer Science, 2005, 96(2): 288-293
    [2] Kelnar I, Kotek J, Kapralkova L, et al. Effect of Elastomer Type and Functionality on the Behavior of Toughened Polyamide Nanocomposites[J]. Journal of Applied Polymer Science, 2006, 100(2): 1571-1576
    [3] Kelnar I, Rotrekl J, Kotek J, et al. Effect of Montmorillonite on Structure and Properties of Nanocomposite with PA6/PS/Elastomer Matrix[J]. European PolymerJournal, 2009, 45(10): 2760-2766
    [4] van der Wal A, Nijhof R, Gaymans RJ, et al. Polypropylene-rubber Blends: 2. The Effect of the Rubber Content on the Deformation and Impact Behaviour[J]. Polymer, 1999, 40(22): 6031-6044
    [5] Ahn YC, Paul DR. Rubber Toughening of Nylon 6 Nanocomposites[J]. Polymer, 2006, 47(8): 2830-2838
    [6] Wang G, Chen XY, Huang R, et al. Nano-CaCO_3/Polypropylene Composites Made with Ultra-high-speed Mixer[J]. Journal of Materials Science Letters, 2002, 21(13): 985-986
    [7]刘宏治,杨桂生,欧玉春等.核-壳粒子增韧聚合物的研究进展[J].高分子通报, 2006, 9: 1-15
    [8] Yoo Y, Cui L, Yoon PJ, et al. Morphology and Mechanical Properties of Rubber Toughened Amorphous Polyamide/MMT Nanocomposites[J]. Macromolecules, 2010, 43(2): 615-624
    [9] Ren JF, Wang JQ, Wang HG, et al. Study on the Morphological and Mechanical Properties of Nylon 6/ABS/Nano-SiO2 Composites[J]. Journal of Polymer Science Part B, Polymer Physics, 2009, 48(6): 1069-1080
    [10] Zhang BQ, Wong JSP, Shi D, et al. Investigation on the Mechanical Performances of Ternary Nylon 6/SEBS Elastomer/Nano-SiO2 Hybrid Composites with Controlled Morphology[J]. Journal of Applied Polymer Science, 2010, 115(1): 469-479
    [11] Matonis VA, Small NC. A Macroscopic Analysis of Composites Containing Layered Spherical Inclusions[J]. Polymer Engineering and Science, 1969, 9(2): 90-104
    [12] Ke Z, Shi D, Yin J, et al. Facile Method of Preparing Supertough Polyamide 6 with Low Rubber Content[J]. Macromolecules,2008, 41(20): 7264-7267
    [13] Ren JF, Wang JQ, Wang HG, et al. Solid Mechanochemical Preparation of Core-Shell SiO2 Particles and their Improvement on the Mechanical Properties of PVC Composites[J]. Journal of Polymer Science Part B, Polymer Physics, 2008, 46(10): 934-938
    [14]王旭,黄锐,金春洪等. PP/弹性体/纳米CaCO_3复合材料的研究[J].中国塑料,2000, 14(6): 34-38
    [15]王旭,黄锐. PP/纳米级CaCO_3复合材料性能研究[J].中国塑料, 1999, 13(10): 22~25
    [16]王旭.聚合物基纳米粒子复合材料的研究[D].四川:四川大学, 2001
    [17]王旭波,许向彬,王旭等. PA6基“沙袋结构”复合材料的形态及力学性能[J].塑料工业, 2008, 36(4): 43-45
    [18]王晓东,徐科杰,王旭等.共混工艺对PA6/EPDM/nano-CaCO_3三元复合材料形态与性能的影响[J].塑料, 2009, 38(5): 11-13
    [19] Wang X, Wang XD, Xu XB. The Construction of Sandbag Microstructure in Polyamide 6/Ethylene-Propylene-Diene Terpolymer/Nanometer Calcium Carbonate Ternary Composite[J]. Journal of Macromolecular Science, Part B, 2009, 48(6): 1212-1221
    [1] Kelnar I, Kotek J, Kapralkova L, et al. Polyamide Nanocomposites with Improved Toughness[J]. Journal of Applied Polymer Science, 2005, 96(2): 288-293
    [2] Kelnar I, Kotek J, Kapralkova L, et al. Effect of Elastomer Type and Functionality on the Behavior of Toughened Polyamide Nanocomposites[J]. Journal of Applied Polymer Science, 2006, 100(2): 1571-1576
    [3] Wang X, Sun J, Huang R. Influence of The Compounding Route on The Properties of Polypropylene/Nano-CaCO_3/Ethylene-Propylene-Diene Terpolymer Tercomponent Composites[J]. Journal of Applied Polymer Science, 2006, 99(5): 2268-2272
    [4]刘宏治,杨桂生,欧玉春等.核-壳粒子增韧聚合物的研究进展[J].高分子通报, 2006, 9: 1-15
    [5]徐科杰,王晓东,傅李丹等. EPDM/纳米CaCO_3预混料动态力学性能及其对聚丙烯基三元复合材料韧性的影响[J].中国塑料, 2009, 23(6): 45-49
    [6] Wang X, Xu KJ, Xu XB, et al. Selective Particle Distribution and Mechanical Properties of Nano-CaCO_3/Ethylene-Propylene-Diene Terpolymer/Polypropylene Composites with High Content of Nano-CaCO_3[J]. Journal of Applied PolymerScience, 2009, 113(4): 2485-2491
    [7]王旭波,许向彬,王旭等. PA6基“沙袋结构”复合材料的形态及力学性能[J].塑料工业, 2008, 36(4): 43-45
    [8] Zhou YB, Wang SF, Zhang YX. Reinforcement Effect of MAA on Nano-CaCO_3-Filled EPDM Vulcanizates and Possible Mechanism[J]. Journal of Polymer Science Part B, Polymer Physics, 2006, 44(8): 1226-1236.
    [9]周亚斌,王仕峰,张勇等.用甲基丙烯酸原位改性纳米碳酸钙填充三元乙丙橡胶I.交联剂和甲基丙烯酸用量的影响[J].合成橡胶工业, 2007, 30(1): 30-34
    [10] Wang X, Wang XD, Xu XB. The Construction of Sandbag Microstructure in Polyamide 6/Ethylene-Propylene-Diene Terpolymer/Nanometer Calcium Carbonate Ternary Composite[J]. Journal of Macromolecular Science, Part B, 2009, 48(6): 1212-1221
    [11]王晓东,徐科杰,王旭等.共混工艺对PA6/EPDM/nano-CaCO_3三元复合材料形态与性能的影响[J].塑料, 2009, 38(5): 11-13
    [12]王永周,陈美,曾宗强.纳米碳酸钙表面改性研究进展[J].广东化工, 2008, 35(10): 42~45
    [13] Martin G, Barres C, Sonntag P, et al. Morphology Development in Thermoplastic Vulcanizates (TPV) Dispersion Mechanisms of a Pre-crosslinked EPDM Phase[J]. European Polymer Journal, 2009, 45(11): 3257-3268
    [14] Lazzeri A, BucknaIl CB. Applications of a Dilatational Yielding Model to Rubber-toughened Polymers[J]. Polymer, 1995, 36(15): 2895-2902
    [15] Huang J, Paul DR. Comparison of Fracture Behavior of Nylon 6 versus an Amorphous Polyamide Toughened with Maleated Poly(ethylene-1-octene) Elastomers[J]. Polymer, 2006, 47(10): 3505-3519
    [1] Kelnar I, Kotek J, Kapralkova L, et al. Polyamide Nanocomposites with Improved Toughness[J]. Journal of Applied Polymer Science, 2005, 96(2): 288-293
    [2] Kelnar I, Kotek J, Kapralkova L, et al. Effect of Elastomer Type and Functionality on the Behavior of Toughened Polyamide Nanocomposites[J]. Journal of Applied Polymer Science, 2006, 100(2): 1571-1576
    [3] Wang X, Sun J, Huang R. Influence of The Compounding Route on The Properties of Polypropylene/Nano-CaCO_3/Ethylene-Propylene-Diene Terpolymer Tercomponent Composites[J]. Journal of Applied Polymer Science, 2006, 99(5): 2268-2272
    [4]刘宏治,杨桂生,欧玉春等.核-壳粒子增韧聚合物的研究进展[J].高分子通报, 2006, 9: 1-15
    [5]徐科杰,王晓东,傅李丹等. EPDM/纳米CaCO_3预混料动态力学性能及其对聚丙烯基三元复合材料韧性的影响[J].中国塑料, 2009, 23(6): 45-49
    [6] Wang X, Xu KJ, Xu XB, et al. Selective Particle Distribution and Mechanical Properties of Nano-CaCO_3/Ethylene-Propylene-Diene Terpolymer/Polypropylene Composites with High Content of Nano-CaCO_3[J]. Journal of Applied Polymer Science, 2009, 113(4): 2485-2491
    [7]王旭波,许向彬,王旭等. PA6基“沙袋结构”复合材料的形态及力学性能[J].塑料工业, 2008, 36(4): 43-45
    [8]李江.聚丙烯共混体系注塑成型制品多层次结构表征[D].四川:四川大学, 2006
    [9]王晓东,徐科杰,王旭等.共混工艺对PA6/EPDM/nano-CaCO_3三元复合材料形态与性能的影响[J].塑料, 2009, 38(5): 11-13
    [10]王晓东. PA6/EPDM/nano-CaCO_3三元复合材料中沙袋结构的构建及其增韧机理的研究[D].浙江:浙江工业大学, 2009
    [11] Broberg KB. Critical Review of Some Theories in Fracture Mechanics[J]. International Journal of Fracture, 1968, 4(1): 11-19
    [12] Mai YW, Cotterell B. The Essential Work of Fracture for Tearing of Ductile Metals[J]. International Journal of Fracture, 1984, 24(3): 229-236
    [13] Mai YW, Cotterell B, Horlyck R, et al. The Essential Work of Plane Stress Ductile Fracture of Linear Polyethylenes[J]. Polymer Engineering and Science, 1987, 27(11): 804-809
    [14] Mai YW, Cotterell B. Effect of Specimen Geometry on the Essential Work of Plane Stress Ductile Fracture[J]. Engineering Fracture Mechanics, 1985, 21(1): 123-128
    [15] Liu Y, Xie BH, Yang W, et al. Morphology and Fracture Behaviour of Poly(vinyl chloride)/Ethylene-vinyl acetate Copolymer Blends[J]. Polymer Testing, 2007, 26(3): 388-395
    [16] Chen HB, Wu JS. Understanding the Underlying Physics of the Essential Work of Fracture on the Molecular Level[J]. Macromolecules, 2007, 40 (12): 4322-4326
    [17] Gamez-Perez J, Santana O, Martinez AB et al. Use of Extensometers on Essential Work of Fracture (EWF) tests[J]. Polymer Testing, 2008, 27(4): 491-497
    [18] Bureau MN,Perrin-Sarazin F, Ton-That MT. Polyolefin Nanocomposites: Essential Work of Fracyure Analysis[J]. Polymer Engineering and Science, 2004, 44(6): 1142-1151
    [19] Karger-Kocsis J, Csikai I. Skin-Core Morphology and Failure of Injection-Molded Specimens of Impact-Modified Polypropylene Blends[J]. Polymer Engineering and Science, 1987, 27(4): 241-253
    [20] Fellahi S, Favis BD, Fisa B. Morphological Stability in Injection-Moulded High-Density Polyethylene/Polyamide-6 Blends[J]. Polymer, 1996, 37(13): 2615-2626
    [21] Gauthier F, Goldsmith HL, and Mason SG. Particle Motions in Non-Newtonian Media. II. Poiseuille Flow[J]. Journal of Rheology, 1971, 15(2): 297-330
    [1] Kelnar I, Kotek J, Kapralkova L, et al. Polyamide Nanocomposites with Improved Toughness[J]. Journal of Applied Polymer Science, 2005, 96(2): 288-293
    [2] Kelnar I, Kotek J, Kapralkova L, et al. Effect of Elastomer Type and Functionality on the Behavior of Toughened Polyamide Nanocomposites[J]. Journal of Applied Polymer Science, 2006, 100(2): 1571-1576
    [3]王旭波,许向彬,王旭等. PA6基“沙袋结构”复合材料的形态及力学性能[J].塑料工业, 2008, 36(4): 43-45
    [4]徐科杰,王晓东,傅李丹等. EPDM/纳米CaCO_3预混料动态力学性能及其对聚丙烯基三元复合材料韧性的影响[J].中国塑料, 2009, 23(6): 45-49
    [5] Wang X, Xu KJ, Xu XB, et al. Selective Particle Distribution and Mechanical Properties of Nano-CaCO_3/Ethylene-Propylene-Diene Terpolymer/Polypropylene Composites with High Content of Nano-CaCO_3[J]. Journal of Applied Polymer Science, 2009, 113(4): 2485-2491
    [6] Wang X, Wang XD, Xu XB. The Construction of Sandbag Microstructure in Polyamide 6/Ethylene-Propylene-Diene Terpolymer/Nanometer Calcium Carbonate Ternary Composite[J]. Journal of Macromolecular Science, Part B, 2009, 48(6): 1212-1221
    [7]史学涛.弹性体包覆无机刚性粒子增韧聚丙烯研究[D].西安:西北工业大学, 2007
    [8]王聪.形变取向的橡胶粒子和有机蒙脱土增韧增强尼龙6的机理[D].四川:四川大学, 2001
    [9]王旭.聚合物基纳米粒子复合材料的研究[D].四川:四川大学, 2001
    [10] Wang X, Sun J, Huang R. Influence of The Compounding Route on The Properties of Polypropylene/Nano-CaCO3/Ethylene-Propylene-Diene Terpolymer Tercomponent Composites[J]. Journal of Applied Polymer Science, 2006, 99(5): 2268-2272
    [11]王晓东,徐科杰,王旭等.共混工艺对PA6/EPDM/nano-CaCO3三元复合材料形态与性能的影响[J].塑料, 2009, 38(5): 11-13
    [12] Na B, Lv RH. Effect of Cavitation on the Plastic Deformation and Failure of Isotactic Polypropylene[J]. Journal of Applied Polymer Science, 2007, 105(6): 3274-3279
    [13] Na B, Lv RH, Xu WF. Effect of Network Relaxation on Void Propagation and Failure in Isotactic Polypropylene at Large Strain[J]. Journal of Applied Polymer Science, 2009, 113(6): 4092-4099
    [14] G'Sell C, Hiver JM, Dahoun A, et al. Video-controlled Tensile Testing of Polymers and Metals Beyond the Necking Point[J]. Journal of Materials Science, 1992, 27(18): 5031-5039
    [15] G'Sell C, Bai SL, Hiver JM. Polypropylene/Polyamide 6/Polyethylene–octene elastomer Blends. Part 2: Volume Dilatation during Plastic Deformation under Uniaxial Tension[J]. Polymer, 2004, 45(17): 5785-5792