紫铜厚板GTAW热裂纹形成机理及抑制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热裂纹是紫铜厚大结构件GTAW时的主要缺陷之一,严重影响和制约紫铜构件的使用。本文首先在普洛霍洛夫热裂纹理论基础上完善了热裂纹形成的判据。建立了基于刚性拘束热裂纹试验的紫铜厚板GTAW接热力耦合有限元模型,从而对热裂纹形成的原因进行了分析及对采用不同合金焊材时焊缝金属的热裂纹倾向进行了预测。最后研究了气体保护焊时采用不同合金焊材对热裂倾向的影响。
     首先通过紫铜厚板GTAW刚性拘束热裂纹有限元模型对紫铜焊接热裂纹的产生原因进行了分析。其原因是HS201焊缝金属在BTR内的抗拉强度小于焊接过程中母材对焊缝金属的拉伸应力,并且焊接时焊缝金属所发生的内部变形率将大于HS201焊缝金属在BTR内的延性,从而使焊缝金属的热裂倾向较大。当裂纹形成后,随着裂纹的扩展,由于毛细作用共晶液相向裂纹尖端聚集,在1066℃以下时在α-Cu晶界上形成固态(Cu2O+Cu)共晶组织。但是由于共晶组织抗变形能力较差,在两侧变形的α-Cu晶粒拉伸作用下被拉断,裂纹沿固态共晶组织内部继续扩展,最终形成焊接热裂纹。
     通过紫铜GTAW刚性拘束热裂纹有限元模型对在焊材中添加Ti后的铜钛焊缝金属的热裂倾向进行了预测。研究表明,在焊材中添加脱氧元素Ti后,由于Ti对焊缝金属的强化作用,焊缝金属在BTR范围内的抗拉强度有所提高,大于在不预热焊接条件下母材对焊缝焊缝金属的拉伸应力,使得在焊接中焊缝不易变形,内部变形率小于焊缝金属的延性,因此热裂倾向显著降低。提出了Ti抑制熔池氧化的物理模型。研究了不同Ti含量的添加对热裂倾向的影响规律。Ti含量为2%时生成弥散分布的点状β-TiCu4包晶组织,从而有效抑制热裂纹的出现。当Ti含量增加到3%以上时,在α-Cu晶界上形成了连续分布的点划线状的TiCu2和β-TiCu4低熔共晶组织,使得焊缝金属的热裂倾向又有所提高。
     为了在抑制热裂纹的基础上同时保证焊接接头的导电导热性能,提出了在焊材中添加元素Al的方法。首先通过紫铜GTAW刚性拘束热裂纹有限元模型对在焊材中添加Al后的铜铝焊缝金属的热裂倾向进行了预测。研究发现虽然Cu6Al焊缝金属在BTR内的抗拉强度与HS201相比没有得到提高,但是由于Al抑制了由于氧化而形成的裂纹源,使得焊缝金属的BTR延性得到改善,从而使焊接时焊缝金属的变形并未超过材料本身的延性,因此热裂倾向显著降低。研究了不同Al含量的添加对焊接热裂纹的影响规律。当焊材中Al含量超过7.4wt%,如S214和S215焊缝金属在凝固过程中在1036℃左右会形成(α+β)的低熔共晶组织,这种低熔共晶组织在晶界上形成液态薄膜,从而增大了焊缝金属热裂纹敏感倾向。当焊材中Al降到7.4wt%以下时,如采用Cu6Al焊材,焊缝均由α-Cu(Al)组织组成。焊缝金属凝固时由于固液区间较窄,且凝固过程无低熔共晶组织生成,因此焊缝金属的热裂纹向明显降低。
     提出了利用焊材中的合金元素P来抑制紫铜厚板焊接热裂纹的方法。采用Cu-P合金进行低温GTAW能够抑制热裂纹的主要原因:一是脱氧元素P元素存在,可以抑制熔池的氧化,从而抑制由于氧化引起的裂纹源;二是降低母材进入熔池的温度,使得熔池凝固时避开了紫铜的BTR区间。建立了变温条件下,Cu-P和Cu-Ag合金与母材Cu反应的物理模型。模型揭示了母材铜在Cu-Ag、Cu-P液态合金中的反应速度是实现低温GTAW的主要原因。通过对物理模型的推导,得到Cu在Cu-Ag、Cu-P合金中的反应速度常数,并存在着如下关系:kCu-P (T)=10kCu-Ag (T)。说明P元素是实现低温GTAW工艺必不可少的元素。通过对焊缝的微观组织和力学性能测试可知,P元素的添加增大了焊缝硬度、降低韧性,影响焊件的应用。Ag元素的添加可以提高焊缝的韧性,降低硬度。因此采用Cu-P-Ag系钎料既实现了溶解钎焊工艺又可以获得较好性能的焊缝金属及接头。
The hot cracking is one of the major defects in the fusion welding of copper structures components with large dimension, which always restricts the usage of copper. In general, the formation of hot cracking is considered as the combined results of the metallurgical factors and the mechanical factors during the solidification of the welds. From the metallurgical considerations, the liquid film when the welds metal crystallize will form as the origination of hot cracking, which is the internal conditions of hot cracking; from the mechanical considerations, the tensile strain of the welds which is in the brittle temperature range (BTR) is the external conditions of the hot cracking. In this paper, based on the characteristics of GTA Welding of copper, the formation causes of hot cracking is researched from the view of metallurgical aspect and mechanical aspect respectively, and three methods to suppress the hot cracking in copper welding is proposed from the metallurgical point of view.
     The formation causes of the hot cracking in GTA Welding of copper were studied. The mechanical reason of hot cracking formation is mainly shown in two aspects. On the one hand, the strength of HS201 weld metal in the BTR is less than the tensile stress during the welding process; on the other hand,Δεof weld metal will be greater than the ductility of HS201 weld metal in the BTR. The metallurgical reason of hot cracking formation is mainly due to the oxidation of molten pool in the welding process. The liquid film composed of low melting point of Cu2O and Cu will form at the grain boundary ofα-Cu, which will be the origination of hot cracking. With the expansion of the cracking, the liquid film will gather at the tip of the cracking under the function of capillary to form the solid eutectic during the solidification. As the less resistance to deformation, the eutectic will be pulled down under the tension of theα-Cu grains on both sides, which results in the crack expand in the inner of the eutectic organization, and ultimately, the hot cracking will be formed.
     Based on the above analysis, a suppress methods of hot cracking in copper welding is proposed from the metallurgical point of view. The method is achieved by adding element Ti into the welding material in order to inhibit the formation of Cu2O. Moreover, adding element Ti can strengthen the weld metal, which increases the strength of the welds material in the BTR. When the value of the strength to deformation is greater than the tensile stress of the weld metal in the conditions of without preheating andΔεof weld metal will be less than the ductility of HS201 weld metal, the welds will not easy to be deformed. The influence of different content of Ti addition on hot cracking is researched. Results show that in order to suppress the hot cracking, the amount of Ti must be precisely controlled. If the level exceeds 4wt%, a higher level of low-melting point eutectics (β-TiCu4 and TiCu2) will be formed in the weld. Welds made with ERCuTi-2 filler metal are mainly composed of the solid solution ofα-Cu (Ti) and the peritectic ofβ-TiCu4 in form of spots distributed among columnar dendritic grains, which effectively decreases the susceptibility of cracking. Welds made with ERCuTi-4 filler metal are composed of the solid solution ofα-Cu (Ti) and the eutectic ofβ-TiCu4 and TiCu2, observed as intermittent lines among the dendrites. The micro-cracks appear again among the dendrites ofα-Cu and the susceptibility of cracking is increased.
     In order to ensure the conductive thermal and conductivity of the welded joints, a suppress methods of hot cracking in copper welding is proposed by adding element Al into the welding material. It is found that the high-temperature ductility of Cu6Al weld metal in the high-temperature BTR is greater than the internal deformation rate of the welding process, although the strength of Cu6Al weld metal in the high-temperature BTR is similar to that of HS201 weld metal. So there are no mechanical conditions to make the hot cracking form. From the metallurgical point of view, the influence of different content of Al addition on hot cracking is researched. It is found that the content of Al addition has to do with the formation of hot cracking. When the level exceeds 7.4wt%, the liquid film composed of (α+β) eutectics will form at the grain boundary at the temperature of 1036℃during the solidification process when using S214 or S215 as weld metal. The eutectic formation will increase the susceptibility of hot cracking. When the lever is less than 7.4%, the welds structure is identified asα-Cu(Al) when using Cu6Al as welding material. As the narrow liquid-solid temperature range and no low melting eutectic structures formation during the solidification process, the hot cracking susceptibility of weld metal is decreased obviously.
     A weld brazing process has been achieve through adding element P and Ag into welding material to suppress the hot cracking. By adding the element P and Ag, the reaction temperature of base metal can be decreased to the range out of the BTR. Weld brazing process can achieve a large number of base metal dissolution at lower temperatures and obtain the welding joint similar to the GTA welding. The characteristics of weld brazing process determined the short reaction time and rapid temperature change in single thermal cycle, so the key factor influence the dissolving amount of base mental is the dissolution rate of Cu in liquid Cu-Ag and Cu-P alloys. The dissolution rate constant of Cu in liquid Cu-Ag and Cu-P alloys is determined, which is following the relations, kCu-P (T)=10 kCu-Ag (T). It can be conclude that the main reason that a large dissolving amount of Cu in of Cu-P alloy is the higher dissolution rate. The test results of microstructure and mechanical properties of the welds show that, the addition of element P will increase the hardness and decrease the ductility of the welds, which will impact the application of welding parts. The addition of element Ag can increase the ductility of the welds, so using Cu-P-Ag filler metal can both realize the weld brazing process and obtain the joints with better performance.
引文
1 E. G. West.铜和铜合金.陈兆盈.长沙:中南工业大学出版社. 1987:2~14
    2季杰,马学智.铜及铜合金的焊接性.焊接技术. 1999, (2): 13~15
    3邹增大.焊接材料、工艺及设备手册.北京:化学工业出版社. 2001: 604
    4申有才.大界面紫铜母线钨极氩弧焊焊接工艺.化工建设工程. 2001, 23(4): 25~34
    5范金友,刘靖涛,韩廷忠,等.紫铜板的焊接.机械工程师. 2001, 12: 60~61
    6陈军.小口径紫铜管的焊接.焊接技术. 1997, (4): 44
    7韩英参,赵立普.厚壁紫铜管氩弧焊工艺研究.施工技术. 2003, 32(5): 31~32
    8 K. R. Spiller. Welding Copper by the Gas Shielded Arc Processes. Metal Constr Brit Weld J. 1970, 2(2): 45~53
    9程秀芳,陶文.高炉紫铜套的补焊工艺.焊接技术. 1997, (6): 45
    10杨凌川,杨文柱,赵献金.导电紫铜牌手工电弧焊.安装. 1997, 10: 22~46
    11符志刚,符志琦.紫铜通电通水导线的焊接.维护与修理. 2002, (1): 13
    12 J. Wegrzyn. Welding with Coated Electrodes of Thick Copper and Steel-copper Parts. Welding International. 1993, 7(3): 2~5
    13温可端.紫铜管的煨弯和焊接探讨.江苏煤炭. 1994, (1): 44~45
    14于霖清.高压电机转子紫铜短路环的气焊.焊接技术. 1995, (6): 43
    15杨凌川,赵献金.紫铜玻纤焊接修复工艺.焊接技术. 1997, (6): 17~18
    16 J. Littliton, M. F. Jordan. Steam Porosity Formation in Tungsten Inert Gas Arc Welding of Copper. Metals Technology. 1975, 2(6): 268~278
    17 R. J. Dawson. Selection of Shielding Gases for the Gas Shielded Arc Welding of Copper and Its Alloys. Welding in the World. 1973, 11(3~4): 50~55
    18 W. S. Pellini. The Mechanism of the Solidification Crack. Welding J. 1958, 8(3): 151~153
    19胡永旺,刘学明.插接母线铜排的GTAW焊工艺.焊接技术. 1996, (5): 13~14
    20 A. Salahaddin, D. Lutz. Metallophysical Processes in the Welding of Copper and Copper Alloys-welding Methods. Welding and Cutting. 1988, (9): 139~143
    21邓子刚.紫铜管的氩弧焊焊接工艺.河北电力技术. 1994, (1): 51~53
    22梅福欣, Y. P. Le.混合气体保护电弧焊接紫铜.华南工学院学报. 1987, 15(1): 101~105
    23 G. K. Hichen. Gas Tungsten Arc Welding Oxygen-free High Conductivity Copper. 66th AWS Annual Meeting, USA, 1985: 230~232
    24 Hiraoka Kazuo, Okada Akira, Inagaki Michio. Effects of Helium Gas on Arc Characteristic in Gas Tungsten Arc Welding. Transactions of National Research Institute for Metals. 1986, 28(2): 37~43
    25李明利,刘占民.氩-氦和氩-氮TIG常温焊接厚板紫铜的试验分析.电焊机. 2006, (12): 47-59
    26张鹏,马金萍.氩氮混合保护GTAW焊在紫铜厚大件上的应用.焊接. 2001, (7): 38
    27 J. Littliton, J. Lammas, M. F. Jordan. Nitrogen Porosity in Gas Shielded Arc Welding of Copper. Welding Journal. 1974, 53(12): 561~565
    28 T. Kuwana. Effects of Nitrogen and Titanium on Mmechanical Properties and Annealed Structure of The Copper Weld Metal By Ar-N2 Gas Metal Arc Welding. Quarterly Journal of the Japan Welding Society. 1986, 4(4): 753-759
    29 T. Kuwana.. Effects of Nitrogen and Titanium on Blow Hole Formation and Microstructure in Copper Weld Metal by Ar-N2 Gas Metal Arc Welding. Quarterly Journal of the Japan Welding Society. 1984, 2(4): 91~98
    30 T. Kuwana. Effects of Nitrogen and Titanium on Porosity and Microstructure in Ar-N2 Gas Metal Arc Welded Copper. Transactions of the Japan Welding Society. 1987, 18(2): 69~76
    31 T. Kobayashi, T.Kuwana, M.Ando. Gas Metal-arc Welding of Copper. Transactions of the Japan Welding Society. 1970, 1(1): 61~71
    32崔西会. Ni、Ti对紫铜氮氩气体保护GTAW焊接缺陷及微观组织影响.哈尔滨工业大学. 2005:14~50
    33刘欢龙,崔全合.紫铜管钎焊工艺.山西机械. 2000, (4): 20~21
    34吴慧娟.铁路制冷空调设备中换热器钎焊工艺的改进.焊接技术. 1997, (5): 14~15
    35薛松柏,杜东. 600MW气轮发电机定子引线水管接头中频感应钎焊工艺研究.焊接. 1995, (4): 17~19
    36杨生昌.大型发电机转子线圈接头电阻钎焊.焊接. 1994, (2): 14~16
    37白津生,林嘉明.铜的GTAW钎焊工艺探讨.焊接技术. 1994, (2): 24~25
    38 W. B. Lee, S. B. Jung. The Joint Properties of Copper by Friction Stir Welding. Materials Letters. 2003,58(6): 1041~1046
    39 C. G. Andersson, R.E. Andrews. Fabrication of Containment Canisters for Nuclear Waste by Friction Stir Welding. Proceedings of the First International Symposium on Friction Stir Welding, Thousand Oaks, California. 1999
    40 K. Okamoto, M. Doi, S. Hirano, K. Aota, H. Okamura, Y. Aono, T.C. Ping, Proceedings of the Third International Symposium on Friction Stir Welding, Kobe, Japan. 2001
    41 H. J. Liu, J.J Shen, Y.X Huang. Effect of Tool Rotation Rate on Microstructure and Mechanical Properties of Friction Stir Welded Copper. Science Technology of Welding Joining. 2009, 14(6):577~583
    42 K. Nakata. Friction Stir Welding of Copper and Copper Alloys. Weld Int. 2005, 19(12): 929~933
    43 J. J Shen, H.J. Liu, F. Cui. Effect of Welding Speed on Microstructure and Mechanical Properties of Friction Stir Welded Copper. Materials and Design. 2010 online:
    44 G. M. Xie Z. Y. Ma, L. Geng. Development of a Fine-grained Microstructure and the Properties of a Nugget Zone in Friction Stir Welded Pure Copper. Scripta Mater. 2007, 57(2):73~76
    45 K. Okamoto, M. Doi, S. Hirano. Fabrication of Backing Plate of Copper Alloy by Friction Stir Welding. In: 3rd International symposium on friction stir welding, Kobe, Japan, 2001, 9: 27~28
    46 T. Sakthivel, J. Mukhopadhyay. Microstructure and Mechanical Propertiesof Friction Stir Welded Copper. Journal of Material Science. 2007,
    42(19):8126~8129
    47 C. G Andersson, R.E Andrews, B. G. I. Dance. A Comparison of Copper Canister Fabrication by the Electron Beam and Friction Stir Processes. In: 2nd International symposium on friction stir welding, Gothenburg, Sweden, 2000, 6: 26~28
    48 R. S. Mishra, Z.Y. Ma. Friction Stir Welding and Processing. Mater Sci Eng R. 2005: 50(1–2):1~78
    49刘小文,鄢君辉等.铜板搅拌摩擦焊接头金相组织及力学性能.焊接学报. 2003,24(6):47~50
    50王希靖,达朝炳等.紫铜的搅拌摩擦焊工艺与接头性能分析. 2006, 32(4): 25~28
    51 W. J. Arbegast. Friction Stir Welding after a Decade of Development—It’s Not Just Welding Anymore. Weld J 2006, 85(3): 28~35
    52 R. Nandan, T. DebRoy. Recent Advances in Friction-Stir Welding - Process, Weldment Structure and Properties. Program Material Science. 2008, 53(6): 980~1023
    53邢丽,孙德超,柯黎明,等.紫铜搅拌摩擦焊接工艺研究及接头组织分析.机械科学与技术. 2003, 11: 986~988
    54刘方军,王世卿.大厚度紫铜电子束焊接的研究.中国机械工程. 1997, 7(3): 101~102
    55 L. D. Johnson. Some Observations on the Electron Beam Welding of Copper. Welding Journal. 1970, 49(2): 55s~60s
    56 T. A. Siewart. Mechanical Properties of Electron Beam Welds in Thick Copper. Advances in Cryogenic Engineering. 1990, 36(pt B): 1185~1192
    57 A. Durocher, M. Lipa. TORE SUPRA Experience of Copper Chromium Zirconium Electron Beam Welding. Journal of Nuclear Materials. 2002,307-311(2): 1554~1557
    58 A. Durocher, D. Ayrault. CuCrZr Alloy Hot Cracking during Electron Beam Welding. Journal of Nuclear Materials. 2007, 367-370(2): 1208-1212
    59 I. Magnabosco, P. Ferro. An Investigation of Fusion Zone Microstructures in Electron Beam Welding of Copper–Stainless steel. Materials Science and Engineering A. 2006, 424(1-2): 163-173
    60 I. Tomashchuk, P. Sallamand. The Simulation of Morphology of Dissimilar Copper–Steel Electron Beam Welds Using Level Set Method. Computational Materials Science. 2010 online
    61 W. I. Pumthrey, P. H. Jennings. A Consideration of the Nature of Brittleness at Temperatures above the Solidus in Casting and Welds in Aluminum Alloys. Journal of Institute of Metals. 1948, 75:235~256
    62《铸造工艺》联合编写组.铸造工艺基础.北京出版社. 1979: 186~188
    63牛俊民.钢中缺陷的超声波定性探伤.冶金工业出版社. 1990: 79~82
    64黎文献.有色金属材料工程概论.冶金工业出版社. 2007: 240~242
    65 H. W. Lee, J. H. Sung. Effect of Weld Metal Copper Content on HAZ Cracking in Austenitic Stainless Steel Welded with Al brass. Science and Technology of Welding and Joining. 2005, 10(2):145~148
    66 C. M. Cheng, C. P. Chou. Hot Cracking of Welds on Heat Treatable Aluminium Alloys. Science and Technology of Welding and Joining. 2005, 10(3): 345~347W. S. Pellini. Strain Theory of Hot Cracking. The Foundry. 1952, 80(11): 125~133
    67 Y. S. Wang, Q. D. Wang. Hot Cracking susceptibility of Mg-9Al-xZn Alloy. Materials Letters. 2002, 57(4): 929~934
    68 J. N. Dupont, C. V. Robino, A. R. Marder. Modelling Mushy Zone in Welds of Multicomponent Alloys: Implications for Solidification Cracking. Science and Technology of Welding and Joining. 1999, 4(1): 1362~1718
    69 W. Osterle, S. Krause. Influence of Heat Treatment on Microstructure and Hot Crack Susceptibility of Laser-Drilled Turbine Blades Made from Rene
    80. Materials Characterization. 2008, 59(11): 1564~1571
    70安阁英.铸件形成理论.机械工程出版社. 1990: 228~231
    71丁浩,傅恒志.凝固过程对热裂纹形成的影响.铸造技术. 1994,9: 33~36
    72 J. A. Willimas, A. R. E. Singer. Deformation, Strength, and Fracture above the Solidus Temperature. J Inst Metals. 1968, 96(5): 5~12
    73 J. C. Borland. Fundamentals of Solidification Cracking in Welds. Pt. 1. Welding and Metal Fabrication. 1979, 41(1): 19~21, 23~26,28~29
    74 J. C. Borland. Generalized Theory of Super-solidus Cracking in Welds (and castings). British Welding. 1960, 8: 579~585
    75 T. W. Clyne, G. J. Davies. Influence of Composition on Solidification Cracking Susceptibility in Binary Alloys System. British foundryman. 1980, 74:65~73
    76 T. W. Clyne, G. J. Davies. A Quantitative Solidification Cracking Test for Casting and evalution of Cracking in Aluminum-Magnesium Alloys. British Foundryman. 1975, 68: 238~244
    77 W. Kurz, D. J. Fisher. Fundamentals of Solidification, 3rd ed. Transaction Technology Publications, Aedermannsdorf, Switzerland, 1989
    78 A. J. Simon, J. Bechhoefer. Solitary Modes and Eckhaus Instability in Directional Solidification. Physical Review Letters. 1988, 61(22): 2575~2577
    79 Y. S. Wang, B. D. Sun. An Understanding of the Hot Tearing Mechanism in AZ91 Magnesium Alloys. Materials Letters. 2002, 53(1-2): 35~39
    80 G. Cao, S. Kou. Hot Cracking of Binary Mg-Al Casting. Materials Science and Engineering A. 2006, 416(1-2): 230~238
    81 D. Fabregue, A. Deschamps. Non-isothermal Tensile Test during Solidification of Al-Mg-Si-Cu Alloys: Mechanical Properties in Relation to the Phenomenon of Hot Tearing. Acta Materialia. 2006, 54(19): 5209~5220
    82 F. M. Ghaini, M. Sheikhi. The Relation between Liquation and Solidification Cracks in Pulsed Laser Welding of 2024 Aluminium Alloy. Materials Science and Engineering A. 2009, 519(1-2): 161~171
    83 D. Fabregue, A. Deschamps. Two- and Three- Dimensional Characterizations of Hot Tears in a Al-Mg-Si Alloys Laser Weld. Scripta Materialia. 2008, 59(3): 324~327
    84 E. Cicala, G. Duffet. Hot Cracking in Al-Mg-Si Alloys Laser Welding-Operating Parameters and Their Effects. Materials Science and Engineering A. 2005, 395(1-2): 1~9
    85 J. C. Borland. Fundamentals of Solidification Cracking in Weld. Welding and Metal Fabrication, 1979, 3: 99~107
    86 M. Rappaz, J. M. Drezet. A New Hot-Tearing Criterion. Materials Science and Engineering A. 1999, 30(2): 449~455
    87 T. S Piwonka, M. C. Flemings. Pore Formation in Solidification. Aime MetSoc trans. 1966, 236(8): 1157~1165
    88 J. Ampuero, A.F.A. Hoadley. Modeling of Microporosity Evolution during the Solidification of Metallic Alloys. In Materials Processing in the Computer Age, V.R. Voller, M.S. Stachowicz, and B.G. Thomas, eds., TMS, Warrendale, PA, 1991: 377~388
    89 C. Y. Wang, C. Beckermann. A Multiphase Solute Diffusion Model for Dendritic Alloy Solidification. Materials Science and Engineering A. 1993,24A (1): 2787~2802
    90 E. Niyama, T. Uchida, M. Morikawa. A Method of Shrinkage Prediction and Its Application to Steel Casting Practice. AFS Int. Cast Met. J. 1982, 7(3): 52~63
    91 P. Rousset, M. Rappaz, and B. Hannart. Modeling of Inverse Segregation and Porosity Formation in Directionally Solidified Aluminum Alloys. Metallurgical and Materials Transactions A. 1995, 26(9): 2349~2358
    92 U. Feurer. Influence of Alloy Composition and Solidification Conditions on Dendrite Arm Spacing, Feeding, and Hot Tearing Properties of Aluminium Alloys. Quality Control of Engineering Alloys and the Role of Metals Science, Delft University of Technology, Netherlands, 1977: 131~145
    93 E. Niyama, Some Considerations on Internal Cracks in Continuously Cast Steel. Japan–US Joint Seminar on Solidification of Metals and Alloys, Japan Society for Promotion of Science, Tokyo. 1977: 271~280
    94 H. Zhao, D.R. White, T. DebRoy. Current Issues and Problems in Laser Welding of Automotive Aluminium Alloys. International Materials Review. 1999,44 (6): 238~266
    95 X. Cao, W.Wallace, J.P. Immarigeon, C. Poon. Research and Progress in Laser Welding of Wrought Aluminum Alloys. II. Metallurgical Microstructures, Defects, and Mechanical Properties. Materials and Manufacturing Processes. 2003, 18 (1): 23~49
    96 U. Feurer. Mathematisches Modellder Warmrissneigung Von Bninren Alluminium legierungen. Gessereiforschung. 1976, 28: 75~80
    97 Suyitno, D.G. Eskin, L. Katgerman. Structure Observations Related to Hot Tearing of Al-Cu Billets Produced by Direct-Chill Casting. MaterialsScience and Engineering A. 2006, 420(1-2): 1~7
    98 Suyitno, D.G. Eskin, V.I. Savran, L. Katgerman. Effects of Alloy Composition and Casting Speed on Structure Formation and Hot Tearing during Direct-Chill Casting of Al-Cu Alloys. Metallurgical and Materials Transactions A. 2004, 35A (7): 3551~3561
    99 D.G. Eskin, J. F. Mooney, L. Katgerman. Contraction of Aluminum Alloys during and after Solidification. Metallurgical and Materials Transactions A. 2004, 35A(4): 1325~1335
    100 Q. Han, S. Viswanathan. The Nature of Surface Cracking in Direct Chill Cast Aluminum Alloy Ingots. Metallurgical and Materials Transactions A. 2001, 32A(7): 2908~2910
    101 Y. Ju, L. Arnberg, Measurement of Grain Bridging in Some Al-Cu and Al-Sn Alloys. International Journal of Cast Metals Research. 2003, 16 (6) 522~530
    102 W. Rostoker, J.M. McCaughey, H. Markus, Embrittlement by Liquid Metals, Reinhold Publishing Corp., New York, USA. 1960
    103 H. Fredriksson, M. H. Sabzevar. Theory of Hot Crack Formation. Materials Science and Technology. 2005,21(5): 521~529
    104 B. Chalmers. Principles of Solidification. New York, John Wiley. 1964: 4~6
    105 S. Berg, J. Dahlstrom, H. Fredriksson. The Influence of Lattice Defects on the Solidification Process of Al-Cu Alloys. The Iron and Steel Institute of Japan. 1995, 35(7): 876~885
    106 J. Mahmoudi and H. Fredriksson. Modelling of Solidification for Copper-Base Alloys During Rapid Solidification Processing. Materials Science and Engineering A. 1997, 22(6): 226~228
    107 H. Fredriksson, T. Emi. Effect of Vacancies and Alloying Ordering on the Thermodynamics during Solidification Processing. Materials Transaction - JIM. 1998, 39(2), 292~203
    108 M. H. Sabzevar, H. Fredriksson. Rapidly Solidified Ribbons of Fe-2C-
    13Cr-1Si-Mo Alloys Produced by the Planar Flow Melt Spinning Process. Materials Science and Engineering A, 1993, 173A(1-2), 401~405
    109 K. Hansson, H. Fredriksson. On the Behavior of Hot Crack FormationDuring Solidification in Fe-Ni Alloys. Advanced Engineering Materials. 2003, 5(1-2): 11~17
    110 J. Dahlstrom. On the Solidification of Al-base Alloys. Thesis, Dept. of Materials Processing, KTH, Stockholm 1999
    111 J. Fjellstedt. H. Fredriksson. On the Crystallization Process of Hypoeutectic Al-6%Cu, Unmodified and Sr-Modified Al-2%Si Solidification Alloys. Advanced Engineering Materials. 2003, 5(1-2): 66–77
    112 R. C. Gifkins. Collection Atomic Mechanism of Fracture. Metallurgizdat. 1963: 595
    113 M. F. Ashby. A First Report on Deformation-Mechanism Maps. Acta Metallurgica. 1972, 20(7): 887~897
    114 H. Fredriksson, K. Hansson. A. Olsson. On the Mechanism of Liquid Copper Penetration into Iron Grain Boundaries. Scandinavian Journal of Metallurgy. 2001, 30(1), 41~50
    115 S. K. Kim, Y. D. Lee, K. Hansson and H. Fredriksson. Influence of Cooling Rate on the Hot Cracking Formation of Nickel Rich Alloys. The Iron and Steel Institute of Japan. 2002, 42, 512–519
    116方洪渊,董志波,许文立.随焊锤击防止薄板焊接热裂纹的工艺研究.焊接. 2002,(3):17~20
    117范成磊,方洪渊,陶军.随焊冲击碾压减小应力变形防止热裂纹应变场分析.焊接学报. 2004,25(6): 47~50
    118彭云,田锡唐,钟国柱.随焊碾压防止铝合金焊接热裂纹的云纹模拟和试验研究.物理测试. 1995, 2: 8~11
    119范成磊,方洪渊,陶军,王萧腾.随焊冲击碾压减小应力变形防止热裂纹应变场分析.焊接学报. 2004, 25(6):47~50
    120王者昌.局部快冷在熔化焊中的应用.第九次全国焊接会议论文集.天津,1999: 66~69
    121田锡唐,郭绍庆,许文立.随焊激冷对LY12CZ铝合金焊接热裂纹倾向影响的研究.宇航材料工艺. 1998, 5: 45~52
    122郭绍庆,许文立,李晓红,田锡唐.随焊激冷防止高强铝合金焊接热裂纹的数值模拟.材料科学与工艺. 1999,7(增刊):116~120
    123 Y. P. Yang, P. Dong. A Hot-cracking Mitigation Technique for WeldingHigh-strength Aluminum Alloy. Welding Journal. 2000, 79(1): 9~17
    124 H. Sekiuchi, H. Miyake. Prevention of Welding Cracks through a Local Heating Progress. Journal of Japan Welding Soc. 1980, 6(1):59~64
    125 I. E. Hernandez, D. H. North. The Influence of External Local Heating in Preventing Cracking during Welding of Aluminum Alloy Sheet. Welding Journal. 1984, 3:84~90
    126王者昌,崔岩,高季明.逆向焊接温度场原理及应用.宇航材料工艺. 1996, 1:22~26
    127 W. Xu, H. Y. Fang, J. G. Yang. New Technique to Control Welding Hot Cracking with Trail Impactive Electromagnetic Force. Materials Science and Engineering A. 2008, 488: 39~44
    128 W. Xu, H. Y. Fang, D. Xu. Control Hot Cracking Based on Electromagnetic Force. Science and Technology of Welding and Joining. 2007, 12(7): 659~663
    129徐达,许威,许文立,方洪渊.电磁力随焊控制焊接应力装置的研制及应用.焊接学报. 2008, 29(1): 9~12
    130 J. Li, J. G. Yang, D. J. Yan, Y. H. Fang. Rotating Extrusion Technique and Its Effect on Quality of Aluminum Alloy Thin-plate Weldments. Transactions of Nonferrous Metals Society of China. 2010, 20(2): 183~188
    131李军,杨建国,闫德俊,方洪渊. 2A12T4铝合金焊接时拘束条件对热裂纹的影响.焊接学报. 2009, 30(7): 69~72
    132李军,杨建国,翁路露,方洪渊.用旋转挤压方法控制薄板的焊接变形.焊接学报. 2008, 29(11): 25~28
    133李军,杨建国,翁路露,方洪渊.随焊旋转挤压对铝合金焊接接头组织和性能的影响.焊接学报. 2008, 29(6): 101~104
    134 G. T. Zhou, X. S. Liu. Welding Deformation Controlling of Aluminum-alloy Thin plate by Two-direction Pre-stress Method. Materials Science and Engineering A. 2009, 499(1-2): 147~152
    135周广涛,刘雪松,杨建国,陆浩,方洪渊.综合控制焊接变形和防止热裂纹的新方法—双向预置应力法.焊接学报. 2009, 45(9): 296~300
    136周广涛,刘雪松,杨建国,闫德俊,方洪渊.预置横向挤压载荷法防止铝合金薄板焊接热裂纹.中国有色金属学报. 3009, 19(4): 613~618
    137周广涛,刘雪松,杨建国,闫德俊,方洪渊.纵向预拉伸增大铝合金焊接热裂纹倾向的分析.焊接学报. 2009, 30(1): 105~108
    138 J. Zhang. Effect of Ti and Ta on Hot Cracking Susceptibility of Directionally Solidified Ni-based Superalloys IN792. Scripta Materialia. 2003, 48(6): 677~681
    139 B. Tang, S. S. Li. Effect of Ca/Sr Composite Addition into AZ91D Alloy on Hot-crack Mechanism. Scripta Materialia. 2005, 53(9):1077~1082
    140 B. Hu, I. M. Richardson. Mechanism and Possible Solution for Transverse Solidification Cracking in Laser Welding of High Strength Aluminum Alloys. Materials Science and Engineering A. 2006, 429(1-2): 287~294
    141 M. Li , H. W. Wang, Z.J.Wei, Z. J. Zhu. The Effect of Y on the Hot-tearing Resistance of Al-5 wt% Cu Based Alloy. Materials and Design. 2010, 31:2483~2487
    142 J. X. Zhang, A. H. Gao, Y. F. Xie. The Influences of Micro-Sc on Texture and Property of 6063 Aluminum Alloy. Foundry 2006, 55: 847~849
    143 M. G. Mousavimg, C. E. Cross. Effect of Scandium and Titanium-boron on Grain Rrefinement and Hot cracking of Aluminum Alloy. Sci Technol J 1999, 4(6): 383~386
    144 Z. K. Zhang, Y. Che, D. E. Zhang. The Effect of Rare-earth on the Structure of ZL205A Alloy. Guizhou Science. 2008, 26: 52~56
    145 W. Ploshikhin, A. Prikhodovsky. Influence of the Weld Metal Chemical Composition on the Solidification Cracking Susceptibility of AA6056-T4 Alloys. Welding Journal. 2006, 50(11-12):46~50
    146 G. D. J. Ram, T. K. Mitra. Use of Inoculants to Refine Weld Solidification Structure and Improve Weldability in Type 2090 Al-Li Alloy. Materials Science and Engineering A. 2000, 276(4): 48~57
    147高大路,贺运佳,王引真.铈含量对2090合金焊缝结晶裂纹倾向的影响.第七届全国焊接学术会议(第四册). 1993:295~299
    148凌泽明.含稀土钇的LY12CZ焊接接头热裂纹和应力腐蚀开裂性能.哈尔滨工业大学硕士学位论文. 1988 : 46~51
    149 B. Kuznicka, K. Junik. Intergranular Stress Corrosion Cracking of Copper-A Case Study. Corrosion Science. 2007, 49(10): 3905~3916
    150 V. V. Presedsky, V. M. Vinogradov. Fragmentation of Diffusion Zone in High-temperature Oxidation of Copper. Journal of Solid State Chemistry.2004,177(2): 4258~4268
    151 A. I. Tsvetkov. Effect of Alloying Elements on the Properties of Iron-Copper Joints. Welding Production. 1975, 22(20):37~ 39
    152 N. Kikuchi. S. Nabeshima. Effect of Ti De-oxidation on Solidification and Post-solidification Microstructure in Low Carbon High Manganese Steel. ISIJ International. 2007,47 (9): 1255~1264
    153 N. Kikuchi. S. Nabeshima. Micro-structure Refinement in Low Carbon High Manganese Steels through Ti-deoxidation– Inclusion Precipitation and Solidification Structure. ISIJ International. 2008,48 (7): 934~943
    154 G.R Salter, S.A Dye. Selecting gas mixtures for MIG welding. Metal Constr Brit Weld J 1971; 3: 230-233.
    155 Anon. Gas Discharges,3rd International Conference, Proceedings, 1974. IEE Conf. Pub. London, UK, September 1974, page 652.
    156张颖.电机转子紫铜环焊接接头失强破坏原因分析及工艺优化.哈尔滨工业大学硕士论文. 2007
    157 N. Kikuchi, S. Nabeshima. Effect of Ti De-oxidation on Solidification and Post-solidification Microstructure in Low Carbon High Manganese Steel. Isij Int 2007; 47: 1255-1264
    158 N. Kikuchi, S. Nabeshima. Micro-structure Refinement in Low Carbon High Manganese Steels through Ti-deoxidation-Inclusion Precipitation and Solidification Structure. Isij Int 2008; 48: 934-943
    159 S. Nagarjuna, M. Srinivas. High Temperature Tensile Behaviour of Cu-
    1.5wt%Ti Alloys. Materials Sciense and Engneering A. 2004, 335(1-2): 89~93
    160 S. Nagarjuna, U. C. Babu, P. Ghosal. Effect of Cryo-rolling on Age Hardening of Cu-1.5Ti Alloys. Materials Sciense and Engneering A. 2008, 491(1-2): 331~337
    161 S. Nagarjuna, M. Srinivas. On the Variation of Mechanical Properties with Solute Content in Cu-Ti Alloys. Materials Sciense and Engneering A. 1999, 259(1): 34~42