铁路隧道抗震计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国地处欧亚地震带和环太平洋地震带之间,地震活动频繁,是世界上最大的大陆浅源强震活动区,具有分布广、强度高、危害大等震害特点,特别是20世纪以来,我国已经经历了4个地震活跃期,现在正在进入第5个地震活跃期。与地震灾害频繁、严重这一基本国情相对应的是,我国当下已经成为世界上铁路隧道建设数量最多、规模最大、发展最快的国家。随着铁路干线进一步向西部山区或重丘地区的延伸,以及高速铁路线路标准的进一步提高,使得铁路干线的隧线比日益增大,隧道工程建设的数量不断增多,其地位越来越重要。由于大量建成、在建和拟建的隧道工程都位于我国高地震烈度区,且隧道作为国家生命线工程的主体结构之一,因此必须对其抗震计算和设计方法给予高度重视。论文依托铁道部重点科技项目:“铁路隧道工程抗震设计标准与方法研究”,以及四川省科技支撑计划“高烈度地震区隧道结构抗震减震关键技术研究”,结合我国《铁路工程抗震设计规范GB50111-2006》的规定和我国隧道抗震设计工作的特点,开展了铁路隧道抗震计算方法的研究,主要工作和研究成果如下。
     (1)隧道震害实例与分析
     在广泛收集5.12汶川大地震隧道震害及其它地震隧道震害实例的基础上,对隧道的震害模式、震害机理及影响因素进行分析和总结。
     (2)隧道抗震计算方法及其特点
     对地震系数法、反应位移法、时程分析法三种目前国内外常用抗震计算方法的特点和适应性,进行了归纳、对比分析及系统研究,就隧道抗震计算方法提出相应的评价和建议。
     (3)铁路隧道地震响应振动台模型试验
     实施了不同衬砌结构形式、不同地震动参数、不同激振方向、不同围岩条件、不同埋深、偏压及非偏压等工况的大型振动台模型试验,对地层和衬砌结构的地震响应特征与规律进行了系统研究,并对衬砌结构设置减震层措施开展了振动台试验,验证其减震效果。
     (4)铁路隧道简明实用的抗震计算方法
     结合我国隧道抗震设计工作的特点,通过典型工况的数值计算和振动台模型试验验证,对《铁路工程抗震设计规范GB50111-2006》规定采用的地震系数法进行了合理修正,提出了根据不同围岩级别和隧道不同跨度,选取不同计算埋深进行抗震计算的简明实用的铁路隧道抗震计算方法,以适应工程设计的需要,并为铁路隧道工程抗震规范的修正提供基础研究支撑。
     论文结合我国高地震烈度区铁路隧道建设中亟待解决的问题和需要,利用资料调研、理论分析、数值模拟、振动台模型试验等综合手段,揭示了隧道场地和衬砌结构在不同工况下的地震动力响应特征及规律;并结合我国隧道抗震设计工作的特点,对《铁路工程抗震设计规范GB50111-2006》规定采用的地震系数法进行了合理修正,取得了一定的技术成果,以期为《铁路工程结构物抗震设计规范》的修正和实际工程提供基础研究支撑。
Located between the Eurasia seismic zone and the circum-Pacific seismic belt, China is the largest continent shallow earthquake area around the world by the frequent earthquake activities. The seismic damage in China has the characteristics of wide distribution, high intensity and great harmfulness. Since the20th century, having experienced four seismic active periods, China is in the fifth period at the present. Despite of serious earthquake disaster by the frequent earthquake activities, China has become a country of the largest number, the largest scale and the fastest growing in tunnel construction. As the main railway lines are further extended to the western mountainous or hilly area, and the standards of high-speed railway are improved, the ratio of tunnel in trunk railway lines will be greatly increased. The tunnel project in railway engineering will become more and more important. And great quantities of tunnels being completed and under construction are located in high earthquake intensity area of China. As one of the main structure of the national lifeline, tunnel seismic calculation and design must be paid high attention. This dissertation is supported by Ministry of Railways key technology projects " Research on aseismic design standard and methods of railway tunnel", and Sichuan province scientific support plan " Key technology research of tunnel in high seismic intensity region ", and has carried out the research on the seismic calculation method of railway tunnel in combination with "Railway engineering aseismic design specification GB50111-2006" and the characteristics of the tunnel seismic design in China. The main work and research results are as follows.
     (1) Seismic damage examples and analysis of tunnels
     On the basis of tunnel damages at5.12Wenchuan earthquake and abundant seismic damage examples of tunnels at home and abroad, the earthquake damage models, the damage mechanisms and the influence factors of the tunnel are analyzed and summarized.
     (2) Tunnel seismic calculation method and their characteristics
     The characteristics and adaptabilities of earthquake coefficient method, seismic deformation method and dynamics time-history analysis of three commonly used seismic methods are concluded and comparatively analyzed as well as systematically studied. The corresponding evaluations and suggestions of tunnel seismic calculation methods are put forward.
     (3) Shaking table tests of tunnel earthquake responses
     The shaking table tests for different structure forms, different earthquake parameters, and different vibration directions, as well as different rock conditions, different buried depths, unsymmetrical loaded and symmetrical loaded tunnels are carried out. The earthquake response characteristics and rules of tunnel and surrounding rock are systematically studied. In addition, the shaking table tests for the isolation seism layer are completed to verify the shock absorption effect.
     (4) The brief and practical seismic calculation method of railway tunnel
     In combination with the characteristics of the tunnel seismic design in China, earthquake coefficient method proposed by "Railway engineering aseismic design specification GB50111-2006" is reasonably modified by a large number of numerical calculations and validations of shaking table tests at typical working conditions. The brief and practical seismic calculation method of railway tunnel is proposed according to the different surrounding rock grade and different tunnel widths to adapt to the need of tunnel design and support the revision of the aseismic design specification of railway tunnel.
     To solve the railway tunnel construction problems in high earthquake intensity area of China, taking advantage of the data collection, theory analysis, numerical simulation, and shaking table test, the earthquake response characteristics and rules of tunnel and surrounding rock is ascertained. The earthquake coefficient method proposed by "Railway engineering aseismic design specification GB50111-2006" is reasonably modified in combination with the characteristics of the tunnel seismic design in China. The results will be useful to revise the aseismic design specification of railway engineering structures as well to provide support for actual project construction.
引文
[1]李杰,李国强.地震工程学导论[M].北京:地震出版社,1992.
    [2]蒋溥,戴丽思.工程地震学概论[M].北京:地震出版社,1993.
    [3]林皋,地下结构抗震分析综述(上)、(下).世界地震工程,1993(2,3)
    [4]《汶川地震灾害地图集》编纂委员会.汶川地震灾害地图集[M].成都:成都地图出版社.
    [5]何川,耿萍,晏启祥.汶川大地震隧道工程震害初步分析[J].汶川大地震隧道工程震害调查分析与研究.科学技术出版社(ISBN 978-7-03-024285-3),2009.4.779-800.
    [6]He Chuan, Geng Ping. Yan Qixiang. Seismic damage of tunnels in the great Wenchuan earthquake[C], ICEE2009, Chengdu, China, Southwest Jiaotong University Press, (ISSN 978-7-5643-0236-8) 2009, 5.
    [7]王明年,崔光耀,林国进,汶川地震灾区公路隧道震害调查及初步分析[J].西南公路.2009.4:41-46.
    [8]JSCE. The 1995 Hyogoken-Nanbu earthquake[J]. Japan Society of Civil Engineers,1996,81(3):38-45.
    [9]王文礼,苏灼谨,林峻弘等.台湾集集大地震山岳隧道受损情形之探讨[J].现代隧道技术,2001,38(2):52-60.
    [10]潘昌实.隧道及地下结构抗震问题的研究概况[J].世界隧道,1996,(5):7-16.
    [11]郑永来,杨林德.地下结构震害与抗震对策[J].工程抗震,1999,(4):23-28.
    [12]中铁二院工程集团有限责任公司.成都至九寨沟线可行性研究报告[R].四川成都.2008.11.
    [13]中铁二院工程集团有限责任公司.大瑞铁路复杂地质艰险山区工程建设成套技术研究年度报告[R].四川成都.2011.1.
    [14]H.H.福季耶娃著,徐显毅译.地震区地下结构支护的计算[M].北京:煤炭出版社,1986.
    [15]Thomas R K.Earthquake design criteria for subway [J] Journal of the structural Division. Proceedings of ASCE.1969, Vol.(6):1213-1231.
    [16]高田至郎.地下生命线的耐震设计[J].隧道译丛.1991,Vol.(7):44-51.
    [17]PWRI. Guideline for seismic design methods of large underground structures (a draft)[R]. Tsukubashi: Technical Memorandum of PWRI, Public Works Research Institute,1992:37-43.
    [18]周德培.地铁抗震设计准则[J].世界隧道.1995,Vol.(2):36-45.
    [19]JSCE. The tunnel standard specifications(for shield tunneling)[S]. Tokyo, Japan Society of Civil Engineers,1996:49-53.
    [20]日本土木工程师学会地震工程委员会.日本沉管隧道抗震设计特点[J].世界隧道,1997,(3):53-62.
    [21]川岛一彦.地下构造物の耐震设计[M].鹿岛出版会(日),1994.
    [22]#12
    [24]日本土木学会.開削卜ソネルの耐震设计[M].丸善(株),1998年.
    [25]日本土木学会地震工学委员会.卜ソネル耐震设计の方法と基本课题[M].日本土木学会,1998年.
    [27]日本土木学会地震工学委员会.实务者のための耐震设计入門[M].日本土木学会,1999年.
    [29]于翔,陈启亮,赵跃堂等.地下结构抗震研究方法及其现状[J].解放军理工大学学报.2000,Vol.1(5):63-69.
    [30]李育枢.山岭隧道地震动力响应及减震措施研究[D].上海:同济大学博士学位输文,2006.
    [31]Duke C M, Leeds D J. Effects of Earthquakes on Tunnels[C]. Paper Presented at the RAND Second Protective Construction Symposium. March,1959, pp 24-26
    [32]Okamoto Shunzo. Introduction to Earthquake Engineering (2nd Ed) [MI. University of Tokyo Press, 1984.
    [33]Dowding C H and Rozen A. Damage to rock runnels from earthquake shaking [J]. J. Geotech. Eng. Div., ASCE.1978, Vol.104 (GT2):175-191
    [34]Sharma S, Judd W R. Underground opening damage from earthquakes [J]. Eng. Geol.1991, Vol. 30(3,4):263-276
    [35]钱七虎,何川等.隧道工程动力响应特性与汶川地震隧道震害分析及启示[J].汶川大地震工程震害调查分析与研究.2009:773-778.
    [36]李天斌.汶川特大地震中山岭隧道变形破坏特征及影响因素分析[J].工程地质学报.2008.03.742-750.
    [37]Chuan He, Jianjing Zhang, Peng Geng. Seismic damage of lifeline engineering in the reat Wenchuan earthquake[C],国际岩石力学SinoRock2009, Hongkong, China.
    [38]Hamada H, Kitahara M. Earthquake observation and BIE analysis on dynamic behavior of rock cavern[C]. Proceedings of the Fifth International Conference on Numerical Methods in Geomechanics. Nagoya,1985.Vol.3 pp1525-1532.
    [39]WANG W L, et al.Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi Earthquake[J]. Tunnelling and Underground Space Technology.2001,16:133-150.
    [40]于翔.地铁建设中应充分考虑抗地震作用.轨道建筑技术,2000(6).
    [41]邵根大,骆文海.强地震作用下铁路隧道衬砌耐展性的研究[J].中国铁道科学.1992,Vol.12(2):92-108.
    [42]周德培.强震区隧道洞口段的动力特性研究[J].地震工程与工程振动,1998,18(1):124-130.
    [43]杨林德,季倩倩,郑永来等.软土地铁车站结构的振动台试验[J].现代隧道技术,2003,40(1):7-11.
    [44]杨林德,王国波,郑永来等.地铁车站结构振动台试验及地震响应的三维数值模拟[J].岩石力学与工程学报,2007,26(8):1538-1545.
    [45]Phillips J S, Luke B A. Tunnel damage resulting from seismic loading [C].Proc.2nd Intern. Conf.on Rec. Adv. in Geot. Earthq. Eng. and soil Dyn. St. Louis, Missouri,1991. pp207-217.
    [46]Youssef MA Hashash, Jeffray J Hook, Birger Schmidt, John I-Chiang Yao. Seismic design and analysis of underground structures. Tunneling and Underground Space Technology,2001,16(4):247-293
    [47]Goto Y, Matsuda Y, Ejiri J, et al. Influence of Distance Between Juxtaposed Shield Tunnels On then-Seismic Responses[C].Proc.9th World Conf. on Earthq. Eng. Tokyo-Kyoto, Japan,1988. pp 569-574.
    [49]He Chuan, Koizumi Atsusrhi. Seismic Behavior in Longitudinal Direction of Shield Tunnel Located at Irregular Ground [J]. First International Conference on Advances in Structural Engineering and Mechanics, Seoul, Korea, August,23-25,1999,1493-1498.
    [50]He Chuan, Koizumi Atsushi.A Study on Seismic Behavior of Shield Tunnels in Longitudinal Direction, Proceedings of the Fourth World Congress on Railway Research, Paper No:DP1-1, Tokyo, Japan, October 19-23,1999.1256-1266.
    [51]Koizumi Atsushi, He Chuan. Dynamic Behavior in Longitudinal Direction of Shield Tunnel Located at Irregular Ground With Considering Effect of Secondary Lining. Proceedings of 12th World Conference on Earthquake Engineering, Auckland, New Zealand, January 30-February4,2000.985-994.
    [52]He Chuan, Koizumi Atsushi. Study on seismic behavior and seismic design methods in transverse direction of shield tunnels [J]. Structural Engineering And Mechanics,11 (6):651-662,2001.6.
    [53]李育枢,李天斌,王栋,徐华.黄草坪2#隧道洞口段减震措施的大型振动台模型试验研究[J].岩石力学与工程学报,2009.06,28(6):1128-1135.
    [54]李育枢,李天斌,王栋.山岭偏压隧道洞口段大型振动台模型试验方案设计[J].铁道建筑,2009.08,61-65.
    [55]申玉生,高波,王峥峥.高烈度地震区山岭隧道模型试验研究[J].现代隧道技术,2008,45(5):38-43.
    [56]申玉生,高波,王英学.强震区山岭隧道洞口段结构动力特性分析[J].岩石力学与工程学报,2009.05,28(1):3131-3136.
    [57]申玉生,高波,王峥峥.强震区山岭隧道振动台模型试验破坏形态分析[J].工程力学,2009.06,26(1):62-66.
    [58]陈国兴,庄海洋,杜修力.土-地铁车站动力相互作用的大型振动台模型试验研究[J].地震工程与工程振动,2007,27(2):171-176.
    [59]陈国兴,庄海洋,程绍革.土-地铁隧道动力相互作用的大型振动台试验:试验方案设计[J].地震工程与工程振动,2006,26(6):178-183.
    [60]陈国兴,庄海洋,杜修力.土-地铁隧道动力相互作用的大型振动台试验:试验结果分析[J].地震工程与工程振动,2007,27(1):164-170.
    [61]TAMARI Y, TOWHATA I. Seismic soil-structure interaction of cross sections of flexible underground structures subjected to soil liquefaction [J]. Soil and Foundation,2003,43(2):69-87.
    [62]杨林德,季倩倩,郑永来,等.软土地铁车站结构的振动台试验[J].现代隧道技术,2003,40(1):7-11.
    [63]杨林德,王国波,郑永来,马险峰.地铁车站接头结构振动台模型试验及地震响应的三维数值模拟[J].岩土工程学报,2007,29(12):1892-1898.
    [64]杨林德,王国波,郑永来等.地铁车站结构振动台试验及地震响应的三维数值模拟[J].岩石力学与工程学报,2007,26(8):1538-1545.
    [65]Jun Chen, Xiaojun Shi, Jie Li.Shaking table test of utility tunnel under non-uniform earthquake wave excitation[J]. Soil Dynamics and Earthquake Engineering,2010,30(11):1400-1416.
    [66]史晓军,陈隽,李杰.非一致地震激励下地下综合管廊振动台模型试验研究(Ⅰ)—试验方法[J].地震工程与工程振动,2010,30(1):147-154.
    [67]陈隽,史晓军,李杰.非一致地震激励下地下综合管廊振动台模型试验研究(Ⅰ)—试验结果[J].地震工程与工程振动,2010,30(2):123-130.
    [68]史晓军,陈隽,李杰.地下综合管廊大型振动台模型试验研究[J].地震工程与工程振动,2008,28(6):116-123.
    [69]Pao, Y. H. Dynamical Stress Concentration in an Elastic Plate [J]. Appl. Mech.,1962, Vol.29, pp.299-305.
    [70]Pao, Y. H, Mow C C. Diffraction of elastic waves and dynamic stress concentrations[M]. New York:Crane Russak and Company,1973.
    [71]Mow C.C, Mente L J. Dynamatic stress and displacement discontinuities due to plane harmonic shear wave [J]. Transactions of the ASME,1963, pp.598-603.
    [72]Lee V W, Trifunac M D. kesponse of tunnels to incident SH-waves [J]. Journal of Engineering Mechanics, ASCE.1979, Vol.105 (4):643-659.
    [73]Wang K C, Shah A H, Datta S K. Diffraction of elastic waves in half-space Ⅱ.Analytical and numerical solutions[J]. Bulletin of the Seismological Society of America.1985, Vol.75:69-92.
    [74]Luco J E, De Barros F C P. Dynamic displacements and stresses in the vicinity of a cylindrical cavity embedded in a half-space [J]. Earthquake Eng. Struct. Dyn.1994, Vol.23:321-340.
    [75]Lee V W, Karl J. On deformation of near a circular underground cavity subjected to incident plane P waves [J]. European Journal of Earthquake Engineering.1993, Vol.7 (1):29-36.
    [76]Lee V W, Karl J. Diffraction of SV waves by underground circular, cylindrical cavities[J]. Soil Dynamics and Earthquake Engineering.1992, Vol.11 (8):445-456.
    [77]Davis C A, Lee V W, Bardet J P. Transverse response of underground cavities and pipes to incident SV waves [J]. Earthquake Engineering and Structural Dynamics.2001, Vol.30 (3):383-410.
    [78]Kuesel, T.R. Earthquake design criteria for subway [J]. Struct. Div., ASCE.1969, ST6, pp.1213-1231.
    [79]St.John, C.M, Zahrah, T.F. Aseismic design of underground structures [J]. Tunnelling and underground Space Technology,1987,2(2),pp.165-197.
    [80]Wang, J.N. Seismic design of tunnels-a simple state-of the art design approach[J]. Parsons Brinckerhoff Inc.1993.
    [81]Penzien J. Seismically induced racking of tunnel linings[J]. Earthquake Engineering and structural Dynamics,2000, Vol.29, pp.683-691.
    [82]Hashash M.A., Hook J. J., Schmidt B., Yao I.C. Seismie design and analysis of Underground Structure[J]. Tunnelling and underground Space Technology,2001,16, pp.247-293.
    [83]Hashash M.A., Park D., Yao I. C. Ovaling deformations of circular tunnels under seismic loading, an update on seismic design and analysis of underground structures [J]. Tunnelling and undergroun Space Te chnology,2005,20, pp.435-441.
    [84]Chopra A K, Dasgupta G. Dynamic stiffness matrix for viscoelastic half plane foundation[J]. ASCE.1976, Vol102(EM3):497-514.
    [85]Bettess P, Zienkiewica O C. Diffraction and Refraction of Surface Wave Using Finite and Infinite elements[J]. Int. J. for Num. Meth. In eng.1977, Vol.11:1271-1290.
    [86]Dasgupta G A. A finite element formulation for unbounded homogeneous continua [J]. J. of Appl. Mech.ASME.1982, Vol.49:136-140.
    [87]Wolf J P, Song C M. Dynamic-stiffness matrix of unbounded soil by finite element multi-cell cloning [J]. Earthquake Eng. Struct. Dyn.1994, Vol.23 (3):232-250.
    [88]Song C M, Wolf J P. Dynamic stiffness of unbounded medium based on damping-solvent extraction [J].EESD.1994, Vol.23 (2):169-181.
    [89]Song C M, Wolf J P. The scaled boundary finite element method-a primer solution procedures [J]. Computers and Structures.2000, Vol.78 (3):211-225.
    [90]陈健云,胡志强,林皋.超大型地下洞室群的随机地震响应分析[J].水利学报.2002 Vol.(1):71-75.
    [91]陈健云,胡志强,林皋.大型地下结构三维地震响应特点研究[J].大连理工大学学报.2003,Vo 1.43(3):344-348.
    [92]雷晓燕.岩土工程数值计算[M].北京中国铁道出版社,1999.
    [93]Daryl L. Logan有限元方法基础教程[M].电子工业出版社,2003.
    [94]姚振汉.边界元法[M].高等教育出版社,2010.
    [95]王泳嘉,刑纪波.离散单元法及其在岩土力学中的应用[M].东北工学院出版社出版,1991.
    [96]王磊,李家宝.结构分析的有限差分法[M].人民交通出版社,1982.
    [97]Lysmer J, Wass G. Shear Wave in Plane Infinite Structure[J]. J. Eng. Mech. Div. ASCE.1972, Vol.98 (1):85-105
    [98]Liao Z P, Wong H L. A Transmitting Boundary for the Numerical Simulation of Elastic Wave Propagation J]. Soil Dyn. and Earth. Eng.1984, Vol.3 (4):178-183
    [99]王优龙,魏琏,李康棋等.隔震技术的研究与应用[M].北京:地震出版社,1991.
    [100]中华人民共和国行业标准.公路工程抗震设计规范(JTJ004-89)[S].北京:人民交通出版社,2003.
    [101]中华人民共和国国家标准.地下铁道设计规范(GB50157-92)[S].北京:中国计划出版社,1999.
    [102]中华人民共和国国家标准.铁路工程抗震设计规范(GB50111-2006)[S].北京:铁道出版社,2006.
    [103]中华人民共和国国家标准.核电厂抗震设计规范GB50267-1997[S].北京:中国计划出版社,1999.
    [104]铁道第二勘察设计院.汶川地震灾害评估[R].2008,成都.
    [105]西南交通大学.铁路工程结构物抗震设计标准与方法研究—铁路隧道工程抗震设计标准与方法研究报告[R].四川成都.2011.1.
    [106]李乔,赵世春等著.汶川大地震工程震害分析[M].2008,成都,西南交通大学出版社
    [108]张建民,张嘎.土体与结构物动力相互作用研究进展[J].岩土力学与工程学报.2001, Vol.20 (A01):854-865.
    [109]黄润秋.汶川8.0级地震触发崩滑灾害机理及其地质力学模式[J].岩石力学与工程学报:2009,28(6):1239-1249
    [110]陳正勳,黄燥辉.筒揩S波作用下之山岳隧道行为初探[C].第十一届大地工程學衍研讨会[C],台湾万里,2005,21:1-8.
    [111]陳正勳,侯嘉松,黄燥辉.山岳隧道受震行为及分析设计模式探讨[J].中华科技,2008,No.77:106-116
    [112]晏启祥,何川,耿萍.盾构隧道联络通道的地震响应分析[J].现代隧道技术(增刊).2008,10,159-164.
    [113]关志诚.紫坪铺高面板坝“5.12”震害修复处理[J].中国水利:2008,20(1):71-76.
    [114]陈贵红,李海清,钟勇等.国道213线都江堰至汶川段隧道震害调查与分析[J].西南公路:2008,4(1):114-119.
    [115]Ping Geng, Chuan He, Qixiang Yan, Chubin Ying. Seismic response analysis in transverse direction of the shield tunnel with seismic deformation method [C], ICEE2009, Chengdu, China, Southwest Jiaotong University Press, (ISSN 978-7-5643-0236-8) 2009,5,563-567.
    [116]耿萍,何川,晏启祥等.盾构隧道横断面方向的广义反应位移法分析[J], 铁道建筑,2009,06,55-58.
    [117]铁道部第二勘测设计院.铁路工程设计技术手册-隧道[M].北京:中国铁道出版社,1999.
    [118]#12
    [119]陈国兴,陈忠汉.工程结构抗震设计原理[M].北京:中国水利水电出版社,2002.
    [120]孙钧等.地下结构有限元法解析[M].上海:同济大学出版社,1988.
    [121]K.J.巴斯.工程分析中的有限元法[M].北京:机械工业出版社,1991.
    [122]李仲人,卢磊.结构动力响应数值计算方法简介[J].山西建筑,2007,33(31):66-67.
    [123]孟宪建.结构抗震时程分析法的计算要点[J].山西建筑,2007,33(16):65-66.
    [124]周维垣,刘怀恒,孙钧等.高等岩石力学[M].北京:中国水利水电出版社,1989.
    [125]POWER M S, ROSIDI D, KANESHIRO J. Screening evaluation and retrofit design of tunnels[R]. Buffalo, New York:National Center for Earthquake Engineering Research,1996:212-215.
    [126]李铭寅,王邦媚,林亚超.结构模型试验[M].北京:科学出版社,1996.
    [127]伍小平,孙利民,胡世德等.振动台试验用层状剪切变形土箱的研制[J].同济大学学报,2002,30(7):781-785.
    [128]陈国兴,王志华,左熹等.振动台试验叠层剪切型土箱的研制[J].岩土工程学报,2010,32(1):89-97.
    [129]Mizuno H, Iiba M. Shaking table testing of seismic building-pile-soil interaction [A]. Proc 8th WCEE[C].San Francisco:[s.n.],1984.649-656.
    [130]叶建庆,苏金蓉,陈慧.汶川8.0级地震动卓越周期分析[J].地震研究,2008,31(S):498-504.
    [131]高速道路技术センター,耐震设计基准检讨编[S].2002.