HMG-CoA还原酶抑制剂瑞舒伐他汀对实验性自身免疫性心肌炎作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     心肌炎广义是指心脏的炎症状态,是心脏病学最具代表性和挑战性的临床课题之一。其发病机制复杂,临床上可有轻度呼吸困难、急性心衰,甚至猝死等多种临床表现形式。年青人发病率较高,其中包括无症状患者,占40岁以下猝死病例的12%。虽然大多数心肌炎患者能够恢复健康,但是部分遗传易感性患者可逐步进展为慢性心肌炎和扩张性心肌病(DCM),并伴有充血性心力衰竭。虽然心肌炎定义看似简单,但是其诊断和治疗仍然是临床面临的重大课题。
     构建一种好的心肌炎实验动物模型是进一步研究其分子和免疫学发病机制的关键。用心肌肌球蛋白或心肌α-肌球蛋白重链的肽段或用心肌肌钙蛋白Ⅰ与完全弗氏佐剂乳化后免疫遗传易感性小鼠,构建实验性自身免疫性心肌炎(EAM)动物模型。该模型能够很好的模拟人类急性发病期爆发性心肌炎和慢性发病期扩张性心肌病心脏病理损害,并为研究心脏特异性免疫反应和心肌炎症损害提供了极好的实验动物模型。这些实验模型能够为研究新的诊断方法和治疗策略提供帮助。
     目的
     本研究中,选用BALB/c小鼠构建实验性自身免疫性心肌炎动物模型,
     方法
     六周龄雌性BALB/c小鼠(野生型;体重13-18g,购自山东大学实验动物中心)饲养在专门的无病原微生物的实验动物中心。所有实验动物操作流程均获得实验动物保护权威机构的批准,并遵循山东大学医学院动物实验指导准则。
     所有BALB/c小鼠被随机分成4组,其中包括C组:正常对照组;L组:低剂量短肽组;M组:中剂量短肽组;H组:高剂量短肽组。后3组小鼠共45只用特异的短肽免疫2次构建实验性自身免疫性心肌炎动物模型,特异的短肽来自小鼠心肌α-肌球蛋白重链(MyHc-a614-629[Ac-S LKLM ATLFSTYAS AD-OH])。该短肽具有抗原性(纯度≥98.75%,上海吉尔生物化学有限公司),先将其溶解在生理盐水中,再与等体积完全弗氏佐剂(美国Sigma公司)充分乳化。每只小鼠分别在试验第0天和第7天背部皮下注射上述含有短肽的乳化剂共2次。首次免疫后的第16天、21天和26天做心脏超声检察,心肌组织切片行苏木素-伊红染色及组织病理学评分;63天行Masson三原色染色,对间质纤维化进行评估。
     结果
     在实验性自身免疫性心肌炎动物模型中,用小鼠心肌α-肌球蛋白重链来源的短肽和完全弗氏佐剂的乳化液免疫BALB/c小鼠诱导的心肌炎,其炎症高峰期是在首次免疫后的第21天。第63天心肌组织中的炎症基本消退,但是病理性重塑仍持续存在。
     结论
     尽管实验行自身免疫性心肌炎动物模型是人为构建,但是该模型为在活体内且无外源病原微生物感染的情况下,研究心肌炎发病机制和自身免疫损伤机制提供了很大的便利条件。通过研究实验性自身免疫性心肌炎动物模型,我们不仅可以了解自身免疫机制在心肌炎发病发展中所起到的作用,同时也为研究炎症性心脏病的病理生理改变和开展新的免疫调节治疗提供了可能性。另外,实验行自身免疫性心肌炎也为提高炎症性心肌病当前及未来影像学检查诊断的准确性提供了潜在的研究工具。
     背景
     心肌炎是心肌炎症病变并伴随后续的心肌组织损害性疾病,它可导致心源性猝死。其中大约10-20%有心肌炎组织病理学证据,临床表现无特异性,部分患者甚至没有临床症状,由于病情迁延不愈最终转化为扩张型心肌病(dilated cardiomyopathy, DCM)。心肌炎病因复杂,但在多数情况下是与肠道病毒感染有关,常见有柯萨奇病毒B3、腺病毒与细小病毒B19。用心肌肌球蛋白皮下注射免疫易感啮齿类动物,构建实验性自身免疫性心肌炎动物模型(experimental autoimmune myocarditis, EAM),该模型是人类心肌炎和扩张型心肌病实验动物模型。在病毒诱导的小鼠心肌炎模型中,心肌肌球蛋白是小鼠体内主要的自身抗原。实验表明,用纯化的小鼠心肌肌球蛋白免疫诱导易感小鼠心肌炎发病(在没有合并肠道病毒感染的情况F),与用肠道病毒感染诱导的心肌炎心脏组织病理损害相似。由BALB/c小鼠构建的实验性自身免疫性心肌炎模型为探讨心肌炎发病机制和研发有效的治疗药物提供了良好的实验平台。他汀是一类羟甲基戊二酸单酰辅酶A (HMG-CoA)还原酶抑制剂药物,不仅具有降脂作用,而且还有多功能免疫调节作用,通过抑制可诱导的MHC二类分子和抗原递呈细胞共刺激分子的表达,以及促进辅助性T淋巴细胞由Th1向Th2分化,可有效治疗T淋巴细胞介导的炎症性疾病。他汀类药物也能保护内皮细胞功能和微血管系统的完整,增加一氧化氮生物利用度和抗氧化作用。基于他汀类药物诸多的有益作用,该实验选用BABL/c小鼠构建实验性自身免疫性心肌炎模型,来研究瑞舒伐他汀对心肌炎症反应程度、心肌细胞凋亡及心功能等方面的影响作用。
     目的
     1.研究瑞舒伐他汀对急性期心肌炎的影响作用。
     2.研究瑞舒伐他汀对心肌炎小鼠心肌细胞凋亡的影响作用。
     3.研究瑞舒伐他汀对心肌炎小鼠心功能的影响。
     方法
     1.实验性自身免疫性心肌炎动物模型和药物治疗
     雌性六周龄BABL/c小鼠饲养在特定无病原微生物的实验动物中心内,所有小鼠被随机分成4组,分别是正常对照组(group C),低剂量瑞舒伐他汀组(groupL),高剂量瑞舒伐他汀组(group H)和非药物治疗的EAM组(group N)。其中group L, group H, group N三组小鼠分别在试验开始的首日和第七天,给予背部皮下注射200μg/200μl心肌肌球蛋白短肽,构建实验性自身免疫性心肌炎模型。在小鼠首次免疫当天,两个药物治疗组group L和group H开始接受瑞舒伐他汀药物治疗。Group N组小鼠仅接受生理盐水灌胃,替代瑞舒伐他汀药物灌胃治疗。首次免疫后的第21天,进行心肌炎急性期实验分析研究。
     2.超声心动图
     测量完每只小鼠体重后,再将这些小鼠先麻醉,后经胸做超声心动图检测,分别测量收缩末期和舒张末期左室内径,通过仪器计算自动获取左室内射血分数和左室短袖缩短率。
     3.组织学检查和心肌炎严重程度评估
     做完上述检查后,安乐死所有实验小鼠,测量小鼠心脏重量并计算心脏重量/体重(HW/BW)比值,将心脏标本浸泡在福尔马林中24小时,后经石蜡包理、切片,行苏木素和伊红染色,镜检发现有单核细胞浸润和心肌细胞坏死区域为心肌炎病变区,用半定量分析法评价心肌炎症区域占整个心脏的百分比。
     4.酶联免疫吸附试验检测炎症细胞因子
     酶联免疫吸附试验试剂盒检测各组小鼠血清中的白介素-6(IL-6)和肿瘤坏死因子-α(TNF-α)水平。
     5.血清脂质水平
     检测21天血清中总胆固醇(TC)、甘油三酯(TGs)、低密度脂蛋白(LDL)、高密度脂蛋白(HDL)浓度。
     6. TUNEL检测
     TUNEL检测心肌组织中的凋亡细胞。
     7.免疫组化染色
     免疫组化检测活化的caspase3的表达。
     8. Western blotting实验分析
     Western blotting检测活性的caspase8and caspase9的表达水平。
     结果
     1.瑞舒伐他汀对心脏重量/体重比值和血清脂质水平的影响
     与正常对照组相比,在group N组心脏重量/体重比值明显增加;而在group L、group H组该比值明显下降,说明瑞舒伐他汀治疗能够明显抑制心脏重量的相对增加,并且治疗效果呈剂量依赖性增强。21天各实验组血清脂质水平无统计学差异。
     2.瑞舒伐他汀改善心功能情况
     首次免疫后第21天,心脏超声图像分析显示,心肌炎小鼠心功能不全,经瑞舒伐他汀治疗可延缓心衰进程。
     3.瑞舒伐他汀对炎症范围的影响和组织病理学评分
     首次免疫后第21天,实验结果显示,瑞舒伐他汀能抑制炎症细胞浸润,减轻炎症反应程度和范围,瑞舒伐他汀治疗效果呈剂量依赖性加强。
     4.抑制炎症因子的表达
     用ELISA试剂盒检测4组血清细胞因子,结果显示瑞舒伐他汀能抑制心肌炎小鼠血清中炎性细胞因子的表达,且该作用呈剂量依赖性增强。
     5.心肌细胞凋亡和心肌活性caspase3表达
     用TUNEL试剂盒检测凋亡细胞的数量;免疫组化染色显示,含有活性的caspase3蛋白表达的阳性细胞分布在炎症区域,另外,许多淋巴细胞核内也有活性的caspase3蛋白的表达。两种染色方法均显示,相对group C, group N、groupL和group H三组检测到的凋亡细胞数量依次递减,group C组未见到两种染色方法的阳性细胞。该结果显示瑞舒伐他汀能抑制细胞凋亡。
     6.瑞舒伐他汀对细胞内caspase表达的影响作用
     在心肌炎症反应高峰期也即首次免疫后第21天,检测具有活性的caspase8和caspase9蛋白表达情况。结果发现相对治疗组和正常对照组,上述两种活性蛋白分子在非治疗组小鼠的心肌组织中高表达,瑞舒伐他汀能呈现剂量依赖性下调这两种活性蛋白分子的表达水平。
     结论
     本研究首次表明,瑞舒伐他汀能够通过抑制心肌炎性细胞的浸润及促炎细胞因子的释放、减少心肌细胞的凋亡来显著干预实验性自身免疫性心肌炎的进程,改善左心室功能,减缓左心室重塑。
     背景
     心肌炎是指心肌炎症性病变及伴随而来的心肌组织损伤,其病理损害表现为炎症细胞浸润、心肌细胞凋亡、坏死和心肌组织间质纤维化。心肌炎后期常常进展为扩张型心肌病(DCM),临床症状以心衰为主。多临床观察和动物实验结果均显示自身免疫反应在心肌炎的发病中起着重要的作用。
     实验性自身免疫性心肌炎是感染后心肌炎实验动物模型,该模型是通过给遗传易感性小鼠免疫心肌肌球蛋白或者心肌α肌球蛋白重链来源的短肽或者心肌肌钙蛋白诱发免疫性心肌炎发病而构建的一类实验动物模型。该动物模型已被证实其慢性期心肌病理损害和扩张性心肌病临床病理损害相似,也表现为心脏扩大、心室腔扩张、弥漫性心肌纤维化、心肌细胞肥厚和萎缩性表现,类似于人类心肌病临床表现和病理损害。我们选用易感的BALB/c小鼠构建实验性自身免疫性心肌炎动物模型,来研究由免疫诱导的心肌炎其慢性期的发病机制。
     3-羟基-3甲基戊二酰辅酶A(HMG-CoA)还原酶抑制剂,通常称为“他汀类药物”,是一类众所周知的强效调脂药物。除了降脂作用外,他汀类药物目前还被证实具有多种心血管保护作用,其中包括疫调节,抗炎、抗氧化、保护内皮细胞、延缓细胞衰老、改善心肌重塑。基于上述他汀类药物对心血管的有益作用,本研究旨在探讨瑞舒伐他汀是否改善由BALB/c小鼠构建的实验性自身免疫性心肌炎慢性期病理损害和心肌重塑,进而阐明该药物的作用机理。
     目的
     1.评价瑞舒伐他汀对慢性期实验性自身免疫性心肌炎的影响作用。
     2.探讨瑞舒伐他汀对心肌炎心功能的影响作用。
     3.探讨瑞舒伐他汀对心肌重塑,尤其是心肌细胞肥大、间质纤维化发挥治疗作用的分子机制。
     方法
     1.实验性自身免疫性心肌炎动物模型
     用心肌肌球蛋白α重链上具有抗原活性的短肽(MyHc-α614-629[Ac-SLKLMATLFSTYASAD-OH])免疫六周龄BALB/c小鼠构建实验性自身免疫性心肌炎动物模型(具体步骤同第一部分),将构建好的动物模型分组:非药物治疗组(group N);低剂量瑞舒伐他汀药物治疗组(group L);高剂量瑞舒伐他汀药物治疗组(group H);剩余的BALB/c小鼠(既没有接受免疫诱导构建心肌炎模型,也没用药物治疗)被划分到正常对照组中(group C)。
     2.瑞舒伐他汀药物治疗
     瑞舒伐他汀药物治疗与首次免疫诱导心肌炎同步进行,也即从实验开始的当天到实验结束的第63天,前后共9周时间,通过鼻饲管给小鼠灌胃注入瑞舒伐他汀,非药物治疗组和正常对照组小鼠予生理盐水代替药物灌胃。
     3.心脏超声检查
     各组小鼠是在首次免疫后的第21天和第63天分别进行心脏超生检查,用二维M超获取各组小鼠心脏超声图像和测量数据,胸骨旁长轴和短轴图像分别在二尖瓣和左室乳突肌水平获取。测量左心室舒张末期内径、左心室收缩末期内径、舒张末期室间隔厚度和舒张末期左室后壁厚度,每个测量数值是通过测量3个心动周期取平均值而获得。射血分数和短轴缩短率通过计算获得。
     4.心肌炎组织学评价
     心肌炎病理损害的严重性是在首次免疫后的第21天进行评估,用苏木素和伊红复染心脏组织切片,用半定量图像分析法评估心肌炎症损害程度。
     5.酶联免疫吸附试验测量炎症细胞因子的表达水平
     首次免疫后的第21天和第63天,用IL-6和TNF-α酶联免疫吸附试验试剂盒测量实验小鼠血清中的IL-6和TNF-α浓度。
     6.心肌细胞肥厚和心肌组织纤维化的组织学评估
     在试验第63天,也即实验性自身免疫性心肌炎慢性期,将小鼠安乐死,制备心脏标本,取5μm厚的心肌组织切片脱蜡进行组织学分析,HE染色评估心肌细胞肥厚,Masson三原色染色评估纤维化程度,天狼星红染色评估胶原沉积。
     7. Western blotting分析
     在心肌炎症高峰期的第21天,采用Western blotting分析法检测pERK1/2. tERK1/2、pJNK、tJNK、p-p38及t-p38;在心肌炎症慢性期的第63天用同样方法检测TGF-β1及pSmad2/3各蛋自表达水平的变化情况。
     结果
     1.瑞舒伐他汀对心肌结构和功能的影响
     心脏超声显示,心肌炎后左心室功能紊乱并伴有心肌重构,相对于低剂量药物治疗组,高剂量瑞舒伐他汀药物治疗可明显改善实验性自身免疫性心肌炎小鼠左心室重构并减缓心衰的进程,而且连续治疗63天能进一步改善心肌炎小鼠的心功能。
     2.瑞舒伐他汀改善小鼠实验性自身免疫性心肌炎的进程
     在group N组中,能够观察到严重的心肌炎症损害。而在group L和group H组中,心肌炎症细胞浸润明显减少,组织病理学评分进一步证实基于瑞舒伐他汀药物治疗能抑制心肌炎症反应,而且这种抑制作用呈剂量依赖性增强。
     3.瑞舒伐他汀对血清中炎症细胞因子的影响用作
     ELISA方法检测四组小鼠血清中细胞因子的表达水平,两组瑞舒伐他汀药物治疗组(group L、group H)小鼠血清中IL-6和INF-α较group N[明显下降,而且这种抑制细胞因子产生的作用随瑞舒伐他汀药物剂量的增加而增加。
     4.瑞舒伐他汀对心肌重塑的影响
     显著的间质纤维化及胶原沉积在实验性自身免疫性心肌炎各实验组均能观察到,然而瑞舒伐他汀药物治疗组较group N组能明显减少心肌间质纤维化及胶原沉积的程度,且药物剂量越大上述作用越强。
     5.瑞舒伐他汀对细胞内信号激酶和分子的影响作用
     瑞舒伐他汀能呈剂量依赖性减少心脏p-ERK1/2、p-JNK、p-p38、TGF-β1和p-Smad2/3的表达,该结果显示瑞舒伐他汀能抑制实验性自身免疫性心肌炎小鼠心肌组织丝裂原激活蛋白激酶和TGF-β1-Smad2/3信号通路的激活。
     结论
     该研究首次证实瑞舒伐他汀能改善实验性自身免疫性心肌炎心肌重塑,主要表现在抑制心肌细胞肥厚和间质纤维化,进而改善左心室功能,这些有益的作用部分与下调丝裂原激活蛋白激酶和TGF-β1-Smad2/3信号通路的表达相关。当然,在临床实践中是否也可获得相似的治疗效果还需进一步的临床研究去证实。
Background
     Myocarditis (see Glossary) is broadly defined as an inflammatory condition of the heart. It represents one of the most challenging clinical problems in cardiology, associated with a broad spectrum of pathological triggers and a wide range of clinical presentations that vary from mild dyspnea to acute heart failure and sudden death. It frequently affects young, previously healthy individuals and has been estimated to account for up to12%of sudden deaths in patients under40years of age. Although most individuals recover from acute myocarditis, genetically susceptible individuals may go on to develop chronic myocarditis and dilated cardiomyopathy (DCM) resulting in congestive heart failure. Despite this simplistic definition, the diagnosis and treatment of myocarditis continue to present clinical problems.
     Developing good animal models for myocarditis is crucial to advance understanding of molecular and immunological disease mechanisms. Experimental autoimmune myocarditis (EAM) in genetically susceptible mice may be elicited by immunization of cardiac myosin or a myocardiotogenic peptide derived from the cardiac a-myosin heavy chain or cardiac troponin I emulsified in complete Freund's adjuvant, and EAM in mice mimics human fulminant myocarditis in the acute phase and human DCM in the chronic phase. The animal models of experimental autoimmune myocarditis offer an excellent tool to study heart-specific autoimmune responses and cardiac inflammation. These models hopefully will aid in the development of new diagnostic and therapeutic strategies.
     Aims
     In our study, we will construct an EAM derived from BALB/c mice.
     Methods
     Female BALB/c mice (wild-type;13~18g body weight, purchased from the animal experiment center of Shandong University, China) were housed under specific pathogen-free conditions at the Laboratory Animal Center. Six-week-old mice were used in all experiments. All of the animal procedures were approved by the Institutional Authority for Laboratory Animal Care and were performed in accordance with the Guidelines for Animal Experiments of Medical College of Shandong University.
     All BALB/c mice were divided into four groups randomly, including normal control group, low-dose peptide group, middle-dose peptide group and high-dose peptide group. Forty-five mice were immunized twice to establish LAM. A specific peptide derived from murine cardiac u-myosin heavy chain (MyIIc-u614-629[Ac-SLKLMATLFSTYASAD-OH|) was used as an antigen. The peptide (purity≥98.75%; GL Biochem (Shanghai) Ltd, China) was dissolved in physiological saline and emulsified in an equal volume of Freund's complete adjuvant (Sigma-Aldrich. St Louis. MO, USA). Lach mouse was injected subcutaneously in the back with peptide on days0and7respectively. On days16,21.26and63after immunization, echocardiography was carried out. the severities of myocarditis and interstitial fibrosis were detected by histopathological evaluation.
     Results
     In the LAM model, immunization of susceptible mice with a myocardiotogenic peptide derived from the α-cardiac heavy chain emulsified in complete Fround's adjuvant (FCA) induces myocarditis in mice with a peak of inflammation in the heart around day21. On day63, inflammation largely resolve, but the process of pathological remodelling continues and many animals develop ventricular dilation and heart failure on follow-up.
     Conclusion
     Despite the fact that the EAM models are rather artificial, they offer the great advantage to study disease pathogenesis and autoimmune mechanisms in vivo in the absence of an infective agent. From the EAM model we can not only learn about autoimmune mechanisms contributing to disease development, but the model also allows us to study the pathophysiology of inflammatory heart disease and helps us in the design of novel, immunomodulating treatment strategies. In addition, the EAM model might offer a potential tool to refine the diagnostic accuracy of currently available and future imaging modalities in inflammatory cardiomyopathy.
     Background
     Myocarditis is defined as inflammation of the myocardium with consequent myocardial injury. It can lead to sudden death, and about10-20%of patients with histological evidence of myocardial inflammation, even when asymptomatic, will develop a chronic disease eventually leading to dilated cardiomyopathy (DCM). Many cases are associated with enteroviruses infections such as cardiotropic coxsackievirus B3, adenoviruses, or parvovirus B19. EAM induced in susceptible rodent animals by injection of cardiac myosin is an animal model of human myocarditis and post-myocarditis DCM. Cardiac myosin is one of the dominant autoantigens in virus-induced myocarditis in mice. The later phase of enteroviruses-induced heart disease can be mimicked by immunization of mice with purified murine cardiac myosin in the absence of viral infection. An EAM derived from BALB/c mice was constructed to understand the mechanisms of myocardial injury and to develop an effective therapeutic strategy for myocarditis. Statins, a class of HMG-CoA reductase inhibitors, display pleiotropic immunomodulatroy effects that are independent of their lipid-lowering capacity and may be beneficial as therapeutic agents for T cell-mediated inflammatory diseases. Published studies suggest they may be beneficial for T cell-mediated diseases by suppressing inducible class II MHC expression and costimulator on APCs, favoring Th2versus Thl differentiation of helper T cell. Statins can also protect endothelial function and the integrity of the microvasculature, increase nitric oxide (NO) bioavailability and exert antioxidant effects. Based on these beneficial effects of statins, this study tested whether rosuvastatin in an RAM BALB/c mouse model can affect the progression of myocarditis and apoptosis of the myocardium cell in vivo, and further enhance cardiac function.
     Aims
     1.To investigate the effect of rosuvastatin on the acute phase of myocarditis.
     2.To test the effect of rosuvastatin on the progression of apoptosis of the myocardium cell in vivo.
     3.To investigate the effect of rosuvastatin on cardiac function.
     Methods
     1.ModeI of EAM and medication
     Female BALB/c mice were housed under specific pathogen-free conditions at the Laboratory Animal Center, six-week-old mice were used in all experiments. All BALB/c mice were divided into four groups randomly, including normal control group (group C). low-dose rosuvastatin group (group L), high-dose rosuvastatin group (group H) and non-treated LAM group (group N). Group L. group H and group N mice were immunized twice to establish LAM. Lach mouse was injected subcutaneously in the back with200ug/200μ1of peptide on days0and7respectively. Rosuvastatin therapy started at the same time of immunization. Group N received physiological saline instead of drugs. The acute phase of LAM was analyzed on day21after the first immunization.
     2.Echocardiography
     Lchocardiographie studies were performed in40mice. After determination of body weight, transthoracie echocardiography was recorded under anaesthesia. Left ventricular internal dimensions at end-systole and end-diastole (LVLDs and LVLDd) were measured digitally on the M-mode tracings. Left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVF'S) were then both calculated.
     3.Histologic examination and assessment of severity of myocarditis
     All mice were sacrificed under pentobarbital sodium anesthesia on day21. Heart and body weights were measured, and the ratio of heart weight to body weight (HW/BW) was calculated. The heart was removed, fixed in formalin for24h, embedded in paraffin, and stained with hematoxylin and eosin. Myocarditis was determined by identifying both infiltrating mononuclear cells and myocyte necrosis. The percentage of myocardial inflammation was determined by semi-quantitative image analysis.
     4. Enzyme-linked immunosorbent assay of inflammatory cytokines
     ELISA assay was performed to determine serum levels of IL-6and TNF-a in mice. Serum IL-6and TNF-α levels were quantified with the use of IL-6and TNF-α kits.
     5. Serum lipids levels
     On day21, the levels of serum total cholesterol (TC) and triglycerides (TGs) were determined with an automated enzymatic technique, and low-density lipoprotein (LDL) cholesterol and high-density lipoprotein (HDL) cholesterol levels were detected with an automated chemically modified technique.
     6. TUNEL assay
     Apoptotic cells in myocardium were detected by the terminal transferase-mediated DNA nick end labeling (TUNEL) assay following the manufacturer's protocol (Roche Diagnostics GmbH, Germany).
     7. Immunohistochemisty staining
     Immunohistochemistry were performed for detecting the expressions of active caspase3, according to the instructions of the manufacturer.
     8. Western blotting analysis
     Western blotting was performed to detect activation of caspase3,8, and9.
     Results
     1. Effects of rosuvastatin on heart weight/body weight ratio and serum lipids levels
     The heart weight/body weight ratio was significantly increased in group N, compared with that in group C. The heart weight/body weight ratio of group H and group L was lower than that of group N. Rosuvastatin treatment suppressed the increase in that value in a dose-dependent manner. On day21, there was no significant difference in the serum lipids level among the four groups.
     2.Improvement of cardiac function by rosuvastatin
     After immunization on day21, the echocardiographic analyses exhibited the left ventricular dysfunction following myocarditis, and that the rosuvastatin treatment significantly prevented the progression of heart failure.
     3.Effects of rosuvastatin on myocarditis-affected areas and histoscore
     On day21after immunization, Histopathological scores of the myocarditis revealed that treatment with rosuvastatin suppressed the prevalence and severity on inilammation and that the effect of rosuvastatin tended to be dose-dependent.
     4.Suppression of expression of inflammatory cytokines
     KLISA was performed for serum cytokines of the four groups. Rosuvastatin suppressed the increased inflammatory cytokine production on myocarditis mice in a dose-dependent manner. These results suggest that treatment with rosuvastatin on myocarditis mice inhibits pro-inflammatory cytokine production.
     5. Apoptosis of cardiomyocyte and active caspase3in myocardium
     The number of apoptotic cells was determined by TUNKL immunolluorescence assay, and the apoptotic cells were stained green. The positive staining cells with active Caspase-3protein were mostly distributed in the myocardium around the areas of inilammation. In addition, some infiltration lymphocytes were stained positively. Similarly, large amounts of apoptotic cardiomyocytes and the positive staining cells with active Caspase-3protein were detected in group N, compared with that of other groups. A few apoptotic cardiomyocytes and the positive staining cells with active Caspase-3protein were seen in the mice receiving low-dose rosuvastatin. Only very few apoptotic cardiomyocytes and the positive staining cells with active C'aspase-3protein were found in group H. No TUNEL-positive cardiomyocytes and no activation of caspase-3were found in group C. These results showed that rosuvastatin treatment suppressed cardiomyocyte apoptosis
     6.Effects of rosuvastatin on Intracellular Molecules
     Activated caspase8and activated caspase9were analyzed at the peak of disease on day21, and theirvlevels were significantly up-regulated in group N compared with group C, group L and group H. Treatment with rosuvastatin dose-dependently decreased the myocardial levels of activated caspase8and activated caspase9significantly.
     Conclusion
     The present study demonstrated for the first time that rosuvastatin administration markedly interfered with the progression of experimental autoimmune myocarditis through inhibiting cardiac inflammatory infiltration, suppressing release of proinflammatory cytokines, and resisting apoptosis of cardiomyocyte, all of which can contribute to the improvement of LV function and the attenuation of progressive LV remodeling in HAM.
     Background
     Myocarditis is defined as inflammation of the myocardium with consequent myocardial injury. Myocarditis often progresses to dilated cardiomyopathy (DCM), a major cause of heart failure. This condition is characterized hy infiltration of inflammatory cells into the myocardium with consequent loss of myocytes and development of fibrosis and necrosis. Clinical observations and animal experiments suggest that autoimmunity plays an important role in myocarditis.
     Experimental autoimmune myocarditis is a mouse model of postinfectious myocarditis that can be induced in susceptible mouse strains by immunization with cardiac myosin or a myocardiotogenic peptide derived from the cardiac α-myosin heavy chain or cardiac troponin I. It has been demonstrated to progress into the clinieopathological state similar to DCM in the chronic phase, and has been found to be characterized by the enlargement of the heart, dilatation of ventricles, diffuse and extensive myocardial fibrosis, and hypertrophie and atrophic changes of myocardial fibers, resembling human cardiomyopathy. We constructed an HAM derived from BALB/c mice to investigate the pathogenesis of myocarditis induced by autoimmune mechanism.
     The3-hydroxy-3-methylgutaryl coenzyme A (HMG-CoA) reduetase inhibitors, commonly referred to as "statins", are well-known potent lipid lowering agents. In addition to their primary effects, the statins have been shown to have pleiotropic effects on the cardiovascular system, including immunomodulation, antiinflammatory, antioxidative, endothelial protective effects, cellular senescence and cardiac remodeling. Based on these beneficial effects of statins, this study was designed to examine whether rosuvastatin in an EAM BALB/c mouse model can affect the myocarditis progression and cardiac remodeling in vivo, and to elucidate the probable mechanisms.
     Aims
     1. To assess the effect of rosuvastatin on the chronic phase of EAM.
     2. To investigate the effect of rosuvastatin on cardiac function.
     3. To elucidate the molecular mechanisms of rosuvastatin therapentic effects on cardiac remodeling, especially cardiac myocyte hypertrophy, and interstitial fibrosis in the EAM.
     Methods
     1. Model of EAM
     BALB/c mice were immunized at6weeks of age with a peptide derived from murine cardiac α-myosin heavy chain (MyHc-α614-629[Ac-SLKLMATLFSTYASAD-OH]), as described previously. Mice with EAM were divided into three groups:non-treated EAM group (group N); low-dose rosuvastatin group (1mg/kg/day, group L), and high-dose rosuvastatin group (10mg/kg/day, group H). The other BALB/c mice, received neither immunization nor statins therapy, were used as normal controls (group C).
     2. Rosuvastatin treatment
     Rosuvastatin therapy started at the same time of immunization. They were administered orally by gastric gavage for9weeks from day0to day63after immunization. Group N and group C received physiological saline instead of drugs.
     3. Echocardiography
     Echocardiography was performed on days21and63after the first immunization. Echocardiographic images were taken from2D M-mode, parasternal long axis views, and short axis views at the mitral valve and mid-papillary muscle levels, the left ventricular (LV) end diastolic dimension (LVEDD), LV end systolic dimension (LVESD), LV septal wall thickness at end diastole (IVSED) and LV posterior wall thickness at end diastole (PWTED) were measured digitally on the M-mode tracings and averaged from at least three cardiac cycles. FS and EF were then calculated.
     4. Histological assessment of severity of myocarditis
     Mice were evaluated for the development of EAM at the peak of disease on day 21. The heart sections were stained by haematoxylin and eosin. The percentage of myocardial inflammation was determined by semi-quantitative image analysis.
     5. Enzyme-linked immunosorbent assay of inflammatory cytokines
     Serum concentrations of IL-6and TNF-α were quantified with the use of IL-6and TNF-α ELISA kits on days21and63, according to the manufacturer's instructions.
     6. Histological assessment of cardiac myocyte hypertrophy and fibrosis
     Mice were euthanized in chronic stage of KAM on day63after immunization. Histological analysis was performed on deparaffinized5-μm-thick tissue sections, which were stained with H&E to assess cardiomyocyte hypertrophy, with Masson trichrome for evaluation of fibrosis and with picrosirius red for evaluation of collagen deposition and orientation.
     7. Western blotting analysis
     The protein levels of p-ERK1/2, t-ERK1/2, p-JNK, t-JNK, p-p38and t-p38were analyzed by Western blot measurement at the peak of disease on day21. TGF-β and p-Smad2/3protein were analyzed by Western blot measurement In chronic stage of KAM on day63.
     Results
     1.Effects of rosuvastatin on cardiac structure and function
     The echocardiographic analyses exhibited the left ventricular dysfunction and remodeling following myocarditis. Treatment with high-dose rosuvastatin which of effectiveness was better than low-dose rosuvastatin prevented the left ventricular remodeling, dysfunction and the progression of heart failure. And rosuvastatin administration from day0to day63further improved cardiac function and suppressed cardiac remodeling compared with that administration from day0to day21in group H and group L
     2.Rosuvastatin ameliorated myocarditis progression in EAM mice
     Severe inflammatory lesions were observed in the hearts of group N mice. In contrast, area of cellular infiltration into the myocardium was significantly decreased in both group L and group H, compared with group N. Histopathological scores of the myocarditis also revealed that treatment with rosuvastatin suppressed the prevalence and severity on inflammation and that the effect of rosuvastatin tended to be dose-dependent.
     3.Effects of rosuvastatin on serum inflammatory cytokines
     ELISA was performed for serum cytokines of the four groups on day21and63. The serum levels of IL-6and TNF-a were significantly lower in the two rosuvastatin-treated groups than that in group N, and rosuvastatin also suppressed the increased inflammatory cytokine production on myocarditis mice in a dose-dependent manner.
     4. Effect of rosuvastatin on myocardial Fibrosis and remodeling
     Marked interstitial fibrosis and collagen deposition were detected in the hearts of mice in each group on day63. Rosuvastatin treatment significantly reduced the areas of fibrosis and collagen deposition in a dose-dependent manner compared with those in group N. The myocyte size was significantly increased in group N. and dose-dependently reduced in the treatment with rosuvastatin groups compared with those in group N.
     5. Effects of rosuvastatin on Intracellular Signaling Kinases and Molecules
     Treatment with rosuvastatin dose-dependently decreased the myocardial levels of pERK1/2, pJNK, p-p38, TGF-β1and pSmad2/3protein significantly. These results showed that rosuvastatin treatment down-regulated Mitogen-activated protein kinase, and TGF-β1-Smad2/3signaling pathways in the hearts of EAM mice.
     Conclusion
     This investigation demonstrates for the first time that rosuvastatin attenuates cardiac remodeling, especially cardiac myocyte hypertrophy, and interstitial fibrosis in the EAM mice, all of which can contribute to the improvement of LV function. These beneficial effects of rosuvastatin treatment are related partially to down-regulated Mitogen-activated protein kinase, TGF-β1-Smad2/3and caspase-mediated signaling pathways. Further clinical studies are needed to clarify whether this beneficial effect can be translated into clinical practice.
引文
[1]Afanasyeva M, Wang Y, Kaya Z, Park S, Zilliox MJ, Schofield BH, et al. Experimental autoimmune myocarditis in A/J mice is an interleukin-4-dependent disease with a Th2 phenotype. Am J Pathol.2001;159:193-203.
    [2]Afanasyeva M, Georgakopoulos D, Belardi DF, Bedja D, Fairweather D, Wang Y, et al. Impaired up-regulation of CD25 on CD4+T cells in IFN-gamma knockout mice is associated with progression of myocarditis to heart failure. Proc Natl Acad Sci U S A.2005;102:180-5.
    [3]Afanasyeva M, Georgakopoulos D, Belardi DF, Ramsundar AC, Barin JG, Kass DA, et al. Quantitative analysis of myocardial inflammation by flow cytometry in murine autoimmune myocarditis:correlation with cardiac function. Am J Pathol. 2004;164:807-15.
    [4]Morita H, Seidman J, Seidman CE. Genetic causes of human heart failure. J Clin Invest.2005;115:518-26.
    [5]Goser S, Andrassy M, Buss SJ, Leuschner F, Volz CH, Ottl R, et al. Cardiac troponin I but not cardiac troponin T induces severe autoimmune inflammation in the myocardium. Circulation.2006; 114:1693-702.
    [6]Goser S, Ottl R, Brodner A, Dengler TJ, Torzewski J, Egashira K, et al. Critical role for monocyte chemoattractant protein-1 and macrophage inflammatory protein-1 alpha in induction of experimental autoimmune myocarditis and effective anti-monocyte chemoattractant protein-1 gene therapy. Circulation.2005; 112:3400-7.
    [7]Taqueti VR, Mitchell RN, Lichtman AH. Protecting the pump:controlling myocardial inflammatory responses. Annu Rev Physiol.2006;68:67-95.
    [8]Feldman AM, McNamara D. Myocarditis. N Engl J Med.2000;343:1388-98.
    [9]Hufnagel G, Pankuweit S, Richter A, Schonian U, Maisch B. The European Study of Epidemiology and Treatment of Cardiac Inflammatory Diseases (ESETCID). First epidemiological results. Herz.2000;25:279-85.
    [10]Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, et al. Contemporary definitions and classification of the cardiomyopathies:an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation. 2006; 113:1807-16.
    [11]Abdel-Aty H, Boye P, Zagrosek A. Wassmuth R, Kumar A, Messroghli D, et al. Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: comparison of different approaches. J Am Coll Cardiol. 2005;45:1815-22.
    [12]Cooper LT, Baughman KL, Feldman AM, Frustaci A, Jessup M, Kuhl U, et al. The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. Endorsed by the Heart Failure Society of America and the Heart Failure Association of the European Society of Cardiology. J Am Coll Cardiol. 2007;50:1914-31.
    [13]Kindermann I. Kindermann M. Kandolf R, Klingel K, Bultmann B. Muller I. et al. Predictors of outcome in patients with suspected myocarditis. Circulation. 2008; 118:639-48.
    [14]Fairweather D, Kaya Z, Shellam GR. Lavvson CM. Rose NR. From infection to autoimmunity. J Autoimmun. 2001; 16:175-86.
    [15]Cihakova D, Rose NR. Pathogenesis of myocarditis and dilated cardiomyopathy. Adv Immunol. 2008;99:95-l 14.
    [16]Kuhl U, Pauschinger M, Seeberg B, Lassner I). Noutsias M. Poller W, et al. Viral persistence in the myocardium is associated with progressive cardiac dysfunction. Circulation. 2005; 112:1965-70.
    [17]Neu N, Beisel KW, Traystman MD. Rose NR. Craig SW. Autoantibodies specific for the cardiac myosin isoform are found in mice susceptible to Coxsackievirus B3-induced myocarditis. J Immunol. 1987; 138:2488-92.
    [18]Neumann DA, Burek CL, Baughman KL, Rose NR, Herskowitz A. Circulating heart-reactive antibodies in patients with myocarditis or cardiomyopathy. J Am Coll Cardiol. 1990;16:839-46.
    [19]Caforio AL, Vinci A, Iliceto S. Anti-heart autoantibodies in familial dilated cardiomyopathy. Autoimmunity.2008;41:462-9.
    [20]Rose NR, Beisel KW, Herskowitz A, Neu N, Wolfgram LJ, Alvarez FL, et al. Cardiac myosin and autoimmune myocarditis. Ciba Found Symp.1987; 129:3-24.
    [21]Neumann DA, Lane JR, Wulff SM, Allen GS, LaFond-Walker A, Herskowitz A, et al. In vivo deposition of myosin-specific autoantibodies in the hearts of mice with experimental autoimmune myocarditis. J Immunol.1992;148:3806-13.
    [22]Caforio AL, Grazzini M, Mann JM, Keeling PJ, Bottazzo GF, McKenna WJ, et al. Identification of alpha-and beta-cardiac myosin heavy chain isoforms as major autoantigens in dilated cardiomyopathy. Circulation.1992;85:1734-42.
    [23]Lauer B, Schannwell M, Kuhl U, Strauer BE, Schultheiss HP. Antimyosin autoantibodies are associated with deterioration of systolic and diastolic left ventricular function in patients with chronic myocarditis. J Am Coll Cardiol. 2000;35:11-8.
    [24]Fairweather D, Frisancho-Kiss S, Yusung SA, Barrett MA, Davis SE, Steele RA, et al. IL-12 protects against coxsackievirus B3-induced myocarditis by increasing IFN-gamma and macrophage and neutrophil populations in the heart. J Immunol. 2005;174:261-9.
    [25]Rose NR, Hill SL. Autoimmune myocarditis. Int J Cardiol.1996;54:171-5.
    [26]Neu N, Rose NR, Beisel KW, Herskowitz A, Gurri-Glass G, Craig SW. Cardiac myosin induces myocarditis in genetically predisposed mice. J Immunol. 1987;139:3630-6.
    [27]Gauntt CJ, Arizpe HM, Higdon AL, Wood HJ, Bowers DF, Rozek MM, et al. Molecular mimicry, anti-coxsackievirus B3 neutralizing monoclonal antibodies, and myocarditis. J Immunol.1995; 154:2983-95.
    [28]Cunningham MW. T cell mimicry in inflammatory heart disease. Mol Immunol. 2004;40:1121-7.
    [29]Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A, et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science. 2001;291:319-22.
    [30]Okazaki T, Tanaka Y, Nishio R, Mitsuiye T, Mizoguchi A, Wang J, et al. Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat Med. 2003;9:1477-83.
    [31]Fairweather D, Frisancho-Kiss S, Njoku DB, Nyland JF. Kaya Z, Yusung SA, et al. Complement receptor 1 and 2 deficiency increases coxsackievirus B3-induced myocarditis, dilated cardiomyopathy, and heart failure by increasing macrophages, IL-lbeta, and immune complex deposition in the heart. J Immunol. 2006; 176:3516-24.
    [32]Manabe 1, Shindo T, Nagai R. Gene expression in flbroblasts and fibrosis: involvement in cardiac hypertrophy. Circ Res. 2002;91:1103-13.
    [33]Chow LH, Radio SJ, Sears TD, McManus BM. Insensitivity of right ventricular endomyocardial biopsy in the diagnosis of myocarditis. J Am Coll Cardiol. 1989; 14:915-20.
    [34]Hauck AJ, Kearney DL. Edwards WD. Evaluation of postmortem endomyocardial biopsy specimens from 38 patients with lymphoeytic myocarditis: implications for role of sampling error. Mayo Clin Proc. 1989;64:1235-45.
    [35]Mahrholdt H, Wagner A, Deluigi CC, Kispert E, Hager S. Meinhardt G, et al. Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation. 2006; 114:1581-90.
    [36]Dec GW. Noninvasive imaging techniques for the diagnosis of myocarditis. Heart Fail Clin. 2005; 1:377-89.
    [37]Martin MB, Moya-Mur JL, Casanova M, Crespo-Diez A, Asin-Cardiel E, Castro-Beiras JM, et al. Role of noninvasive antimyosin imaging in infants and children with clinically suspected myocarditis. J Nuel Med. 2004;45:429-37.
    [38]Cooper IT, Jr. Myocarditis. N Engl J Med. 2009:360:1526-38.
    [39]Cooper LT, Jr., Marc JM, Tazclaar HD, Edwards WD, Starling RC, Deng MC, et al. Usefulness of immunosuppression for giant cell myocarditis. Am J Cardiol. 2008; 102:1535-9.
    [1]Sagar S, Liu PP, Cooper LT, Jr. Myocarditis. Lancet.2012;379:738-47.
    [2]Cooper LT, Jr. Myocarditis. N Engl J Med.2009;360:1526-38.
    [3]Esfandiarei M, McManus BM. Molecular biology and pathogenesis of viral myocarditis. Annu Rev Pathol.2008;3:127-55.
    [4]Blauwet LA, Cooper LT. Myocarditis. Prog Cardiovasc Dis.2010;52:274-88.
    [5]Dennert R, Crijns HJ, Heymans S. Acute viral myocarditis. Eur Heart J. 2008;29:2073-82.
    [6]Kuhl U, Pauschinger M, Seeberg B, Lassner D, Noutsias M, Poller W, et al. Viral persistence in the myocardium is associated with progressive cardiac dysfunction. Circulation.2005; 112:1965-70.
    [7]Kim KS, Tracy S, Tapprich W, Bailey J, Lee CK, Kim K, et al.5'-Terminal deletions occur in coxsackievirus B3 during replication in murine hearts and cardiac myocyte cultures and correlate with encapsidation of negative-strand viral RNA. J Virol.2005;79:7024-41.
    [8]Neu N, Beisel KW, Traystman MD, Rose NR, Craig SW. Autoantibodies specific for the cardiac myosin isoform are found in mice susceptible to Coxsackievirus B3-induced myocarditis. J Immunol.1987; 138:2488-92.
    [9]Neu N, Rose NR, Beisel KW, Herskowitz A, Gurri-Glass G, Craig SW. Cardiac myosin induces myocarditis in genetically predisposed mice. J Immunol. 1987;139:3630-6.
    [10]Smith SC, Allen PM. Myosin-induced acute myocarditis is a T cell-mediated disease. J Immunol.1991; 147:2141-7.
    [11]Yuan ZY, Liu Y, Zhang JJ, Kishimoto C, Wang YN, Ma AQ, et al. PPAR-gamma ligands inhibit the expression of inflammatory cytokines and attenuate autoimmune myocarditis. Chin Med J (Engl).2004; 117:1253-5.
    [12]Liao L, Sindhwani R, Rojkind M, Factor S, Leinwand L, Diamond B. Antibody-mediated autoimmune myocarditis depends on genetically determined target organ sensitivity. J Exp Med.1995; 181:1123-31.
    [13]Gauntt CJ, Arizpe HM, Higdon AL, Wood HJ, Bowers DF, Rozek MM, et al. Molecular mimicry, anti-coxsackievirus B3 neutralizing monoclonal antibodies, and myocarditis. J Immunol. 1995; 154:2983-95.
    [14]Cunningham MW. T cell mimicry in inflammatory heart disease. Mol Immunol. 2004:40:1121-7.
    [15]Horwitz MS, La Cava A, Fine C, Rodriguez E, llic A, Sarvetnick N. Pancreatic expression of interferon-gamma protects mice from lethal coxsackievirus B3 infection and subsequent myocarditis. Nat Med. 2000;6:693-7.
    [16]Afanasyeva M, Wang Y, Kaya Z, Stafford HA, Dohmen KM, Sadighi Akha AA, et al. Interleukin-12 receptor/STAT4 signaling is required for the development of autoimmune myocarditis in mice by an interferon-gamma-independent pathway. Circulation. 2001:104:3145-51.
    [17]Cihakova D, Barin JCi Afanasyeva M. Kimura M, Fairweather D. Berg M, et al. Interleukin-13 protects against experimental autoimmune myocarditis by regulating macrophage differentiation. Am .1 Pathol. 2008; 172:1195-208.
    [18]Fairweather D. Frisancho-Kiss S. Yusung SA. Barrett MA. Davis SE, Steele RA. et al. 11,-12 protects against coxsackievirus B3-induced myocarditis by increasing IFN-gamma and macrophage and neutrophil populations in the heart. J Immunol. 2005; 174:261-9.
    [19]Hriksson U, Kurrer MO. Schmitz N. Marsch SC, Fontana A, Kugster HP, et al. Interleukin-6-defieient mice resist development of autoimmune myocarditis associated with impaired upregulation of complement C3. Circulation. 2003:107:320-5.
    [20]Rangaehari M, Mauermann N, Marty RR, Dirnhofer S, Kurrer MO, Komnenovic V, et al. T-bet negatively regulates autoimmune myocarditis by suppressing local production of intcrleukin 17. J Exp Med. 2006;203:2009-19.
    [21]Fairweather D, Kaya Z. Shellam GR, Lawson CM. Rose NR. From infection to autoimmunity. J Autoimmun. 2001;16:175-86.
    [22]Fairweather D, Frisancho-Kiss S. Njoku DB, Nyland JF, Kaya Z. Yusung SA, et al. Complement receptor 1 and 2 deficiency increases coxsackievirus B3-induced myocarditis, dilated cardiomyopathy, and heart failure by increasing macrophages, IL-lbeta, and immune complex deposition in the heart. J Immunol. 2006; 176:3516-24.
    [23]Kaya Z, Afanasyeva M, Wang Y, Dohmen KM, Schlichting J, Tretter T, et al. Contribution of the innate immune system to autoimmune myocarditis:a role for complement. Nat Immunol.2001;2:739-45.
    [24]Youssef S, Stuve O, Patarroyo JC, Ruiz PJ, Radosevich JL, Hur EM, et al. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature.2002;420:78-84.
    [25]Azuma RW, Suzuki J, Ogawa M, Futamatsu H, Koga N, Onai Y, et al. HMG-CoA reductase inhibitor attenuates experimental autoimmune myocarditis through inhibition of T cell activation. Cardiovasc Res.2004;64:412-20.
    [26]Zhou Q, Liao JK. Statins and cardiovascular diseases:from cholesterol lowering to pleiotropy. Curr Pharm Des.2009; 15:467-78.
    [27]Leung BP, Sattar N, Crilly A, Prach M, McCarey DW, Payne H, et al. A novel anti-inflammatory role for simvastatin in inflammatory arthritis. J Immunol. 2003;170:1524-30.
    [28]Barsante MM, Roffe E, Yokoro CM, Tafuri WL, Souza DG, Pinho V, et al. Anti-inflammatory and analgesic effects of atorvastatin in a rat model of adjuvant-induced arthritis. Eur J Pharmacol.2005;516:282-9.
    [29]McCarey DW, McInnes IB, Madhok R. Hampson R, Scherbakov O, Ford I, et al. Trial of Atorvastatin in Rheumatoid Arthritis (TARA):double-blind, randomised placebo-controlled trial. Lancet.2004;363:2015-21.
    [30]Lawman S, Mauri C, Jury EC, Cook HT, Ehrenstein MR. Atorvastatin inhibits autoreactive B cell activation and delays lupus development in New Zealand black/white Fl mice. J Immunol.2004; 173:7641-6.
    [31]Pahan K, Sheikh FG, Namboodiri AM, Singh I. Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages. J Clin Invest.1997; 100:2671-9.
    [32]Stanislaus R, Gilg AG, Singh AK, Singh I. Immunomodulation of experimental autoimmune encephalomyelitis in the Lewis rats by Lovastatin. Neurosci Lett. 2002;333:167-70.
    [33]Tleyjeh IM, Kashour T, Hakim FA, Zimmerman VA, Erwin PJ, Sutton AJ, et al. Statins for the prevention and treatment of infections: a systematic review and meta-analysis. Arch Intern Med. 2009; 169:1658-67.
    [34]Genest J, McPherson R, Frohlich J, Anderson T, Campbell N, Carpentier A, et al. 2009 Canadian Cardiovascular Society/Canadian guidelines for the diagnosis and treatment of dyslipidemia and prevention of cardiovascular disease in the adult - 2009 recommendations. Can J Cardiol. 2009;25:567-79.
    [35]Greenland P. Alpert JS. Beller GA, Benjamin EJ, Budoff MJ, Fayad ZA, et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2010;122:e584-636.
    [36]Joshi PH. Jacobson TA. Therapeutic options to further lower C-reactive protein for patients on statin treatment. Curr Atheroscler Rep. 2010:12:34-42.
    [37]Wang CY. Liu PY. Liao .IK. Pleiotropic effects of statin therapy: molecular mechanisms and clinical results, fiends Mol Med. 2008; 14:37-44.
    [38]Lisenhardt SU, Thiele JR. Bannasch H, Stark GB, Peter K. C-reactive protein: how conformational changes influence inflammatory properties. Cell Cycle. 2009:8:3885-92.
    [39]Yano M, Matsumura T, Senokuchi T, Ishii N, Murata Y, Taketa K, et al. Statins activate peroxisome proliferator-activated receptor gamma through extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase-dependent cyclooxygenase-2 expression in macrophages. Circ Res. 2007; 100:1442-51.
    [40]Cicha I, Schneiderhan-Marra N, Yilmaz A, Garlichs CD, Goppelt-Struebe M. Monitoring the cellular effects of HMG-CoA reductase inhibitors in vitro and ex vivo. Arterioscler Thromb Vase Biol. 2004;24:2046-50.
    [41]Takemoto M, Sun J, Hiroki J, Shimokawa H, Liao JK. Rho-kinase mediates hypoxia-induced downregulation of endothelial nitric oxide synthase. Circulation. 2002; 106:57-62.
    [42]Ni W, Egashira K, Kataoka C, Kitamoto S, Koyanagi M, Inoue S, et al. Antunflammatory and antiarteriosclerotic actions of HMG-CoA reductase inhibitors in a rat model of chronic inhibition of nitric oxide synthesis. Circ Res. 2001;89:415-21.
    [43]Prasad A, Stone GW, Holmes DR, Gersh B. Reperfusion injury, microvascular dysfunction, and cardioprotection:the "dark side" of reperfusion. Circulation. 2009;120:2105-12.
    [44]Young LH. AMP-activated protein kinase conducts the ischemic stress response orchestra. Circulation.2008; 117:832-40.
    [45]Hausenloy DJ, Yellon DM. Cell membrane repair as a mechanism for ischemic preconditioning? Circulation.2010; 121:2547-9.
    [46]Li WM, Liu W, Gao C, Zhou BG. Immunoregulatory effects of atorvastatin on experimental autoimmune myocarditis in Lewis rats. Immunol Cell Biol. 2006;84:274-80.
    [47]Wu JL, Matsui S, Zong ZP, Nishikawa K, Sun BG, Katsuda S, et al. Amelioration of myocarditis by statin through inhibiting cross-talk between antigen presenting cells and lymphocytes in rats. J Mol Cell Cardiol.2008;44:1023-31.
    [48]Oppenheim JJ. Cytokines:past, present, and future. Int J Hematol.2001;74:3-8.
    [49]Lane JR, Neumann DA, Lafond-Walker A, Herskowitz A, Rose NR. Role of IL-1 and tumor necrosis factor in coxsackie virus-induced autoimmune myocarditis. J Immunol.1993; 151:1682-90.
    [50]Fairweather D, Frisancho-Kiss S, Gatewood S, Njoku D, Steele R, Barrett M, et al. Mast cells and innate cytokines are associated with susceptibility to autoimmune heart disease following coxsackievirus B3 infection. Autoimmunity.2004;37:131-45.
    [51]Yamauchi-Takihara K, Kishimoto T. Cytokines and their receptors in cardiovascular diseases--role of gpl30 signalling pathway in cardiac myocyte growth and maintenance. Int J Exp Pathol.2000;81:1-16.
    [52]Yu X, Kennedy RH, Liu SJ. JAK2/STAT3, not ERK1/2, mediates interleukin-6-induced activation of inducible nitric-oxide synthase and decrease in contractility of adult ventricular myocytes. J Biol Chem.2003;278:16304-9.
    [53]Atreya R, Mudter J, Finotto S, Mullberg J, Jostock T, Wirtz S, et al. Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in crohn disease and experimental colitis in vivo. Nat Med. 2000;6:583-8.
    [54]Node K, Fujita M, Kitakaze M, Hori M, Liao JK. Short-term statin therapy improves cardiac function and symptoms in patients with idiopathic dilated cardiomyopathy. Circulation. 2003;108:839-43.
    [55]Yokoyama T, Nakano M, Bednarczyk JL, Mclntyre BW, lintman M, Mann DL. Tumor necrosis factor-alpha provokes a hypertrophic growth response in adult cardiac myocytes. Circulation. 1997;95:1247-52.
    [56]von Haehling S, Jankowska HA, Anker SD. Tumour necrosis factor-alpha and the failing heart—pathophysiology and therapeutic implications. Basic Res Cardiol. 2004:99:18-28.
    [57]Hamid T. Gu Y. Ortines RV. Bhattacharya C, Wang G. Xuan YT, et al. Divergent tumor necrosis factor receptor-related remodeling responses in heart failure: role of nuclear factor-kappaB and inflammatory activation. Circulation. 2009; 119:1386-97.
    [58]Higuchi Y. McTiernan CF,Frye CB, McGowan BS, Chan TO, Feldman AM. Tumor necrosis factor receptors 1 and 2 differentially regulate survival, cardiac dysfunction, and remodeling in transgenic mice with tumor necrosis factor-alpha-induced cardiomyopathy. Circulation. 2004; 109:1892-7.
    [59]Monden Y, Kubota T, Inoue T, Tsutsumi T, Kawano S, Ide T, et al. Tumor necrosis factor-alpha is toxic via receptor 1 and protective via receptor 2 in a murine model of myocardial infarction. Am J Physiol Heart Cire Physiol. 2007;293:H743-53.
    [60]Sharma HS, Stahl J, Weisensee D, I,ow-Friedrich I. Cytoprotective mechanisms in cultured cardiomyocytes. Mol Cell Biochem. 1996; 160-161:217-24.
    [61]Meng X, Harken AH. The interaction between Hsp70 and TNF-alpha expression: a novel mechanism for protection of the myocardium against post-injury depression. Shock. 2002;l7:345-53.
    [62]Grunenfelder J, Zaind G, Stucki V, Hoerstrup SP. Kadner A, Schoeberlein A, et al. Heat shock protein upregulation lowers cytokine levels after ischemia and reperfusion. Eur Surg Res.2001;33:383-7.
    [63]Salek-Ardakani S, Croft M. Tumor necrosis factor receptor/tumor necrosis factor family members in antiviral CD8 T-cell immunity. J Interferon Cytokine Res. 2010;30:205-18.
    [64]Tang Z, McGowan BS, Huber SA, McTiernan CF, Addya S, Surrey S, et al. Gene expression profiling during the transition to failure in TNF-alpha over-expressing mice demonstrates the development of autoimmune myocarditis. J Mol Cell Cardiol. 2004;36:515-30.
    [65]Sivasubramanian N, Coker ML, Kurrelmeyer KM, MacLellan WR, DeMayo FJ, Spinale FG, et al. Left ventricular remodeling in transgenic mice with cardiac restricted overexpression of tumor necrosis factor. Circulation.2001;104:826-31.
    [66]Hedayat M, Mahmoudi MJ, Rose NR, Rezaei N. Proinflammatory cytokines in heart failure:double-edged swords. Heart Fail Rev.2010; 15:543-62.
    [67]Haudek SB, Taffet GE, Schneider MD, Mann DL. TNF provokes cardiomyocyte apoptosis and cardiac remodeling through activation of multiple cell death pathways. J Clin Invest.2007; 117:2692-701.
    [68]Engel D, Peshock R, Armstong RC, Sivasubramanian N, Mann DL. Cardiac myocyte apoptosis provokes adverse cardiac remodeling in transgenic mice with targeted TNF overexpression. Am J Physiol Heart Circ Physiol.2004;287:H1303-11.
    [69]Pan HY, Yamada H, Chida J, Wang S, Yano M, Yao M, et al. Up-regulation of ectopic trypsins in the myocardium by influenza A virus infection triggers acute myocarditis. Cardiovasc Res.2011;89:595-603.
    [70]Danial NN, Korsmeyer SJ. Cell death:critical control points. Cell. 2004;116:205-19.
    [71]Green DR, Reed JC. Mitochondria and apoptosis. Science.1998;281:1309-12.
    [72]Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature.1998;391:43-50.
    [73]Sharma H, Pathan RA, Kumar V, et al. Anti-apoptotic potential of rosuvastatin pretreatment in murine model of cardiomyopathy. Int J Cardiol.2011;150:193-200.
    [1]Neumann DA, Burek CL, Baughman KL, Rose NR, Herskowitz A. Circulating heart-reactive antibodies in patients with myocarditis or cardiomyopathy. J Am Coll Cardiol.1990; 16:839-46.
    [2]Fairweather D, Kaya Z, Shellam GR, Lawson CM, Rose NR. From infection to autoimmunity. J Autoimmun.2001; 16:175-86.
    [3]Blyszczuk P, Valaperti A, Eriksson U, Future therapeutic strategies in inflammatory cardiomyopathy:insights from the experimental autoimmune myocarditis model. Cardiovasc Hematol Disord Drug Targets.2008;8:313-21.
    [4]Veeraveedu PT, Watanabe K, Ma M, Palaniyandi SS, Yamaguchi K, Suzuki K, et al. Torasemide, a long-acting loop diuretic, reduces the progression of myocarditis to dilated cardiomyopathy. Eur J Pharmacol.2008;581:121-31.
    [5]Veeraveedu PT, Watanabe K. Ma M, Palaniyandi SS, Yamaguchi K, Suzuki K, et al. Effects of nonpeptide vasopressin V2 antagonist tolvaptan in rats with heart failure. Biochem Pharmacol.2007;74:1466-75.
    [6]Ray KK, Cannon CP. Early time to benefit with intensive statin treatment:could it be the pleiotropic effects? Am J Cardiol.2005;96:54F-60F.
    [7]Greenwood J, Steinman L, Zamvil SS. Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nat Rev Immunol.2006;6:358-70.
    [8]Azuma RW, Suzuki J, Ogawa M, Futamatsu H, Koga N, Onai Y, et al. HMG-CoA reductase inhibitor attenuates experimental autoimmune myocarditis through inhibition of T cell activation. Cardiovasc Res.2004;64:412-20.
    [9]Schroeter MR, Humboldt T. Schafer K., Konstantinides S. Rosuvastatin reduces atherosclerotic lesions and promotes progenitor cell mobilisation and recruitment in apolipoprotein E knockout mice. Atherosclerosis.2009;205:63-73.
    [10]Zhou Q, Liao JK. Statins and cardiovascular diseases:from cholesterol lowering to pleiotropy. Curr Pharm Des.2009; 15:467-78.
    [11]Dechend R, Fiebeler A, Park JK, Muller DN, Theuer J, Mervaala E, et al. Amelioration of angiotensin II-induced cardiac injury by a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor. Circulation. 2001;104:576-81.
    [12]Hayashidani S. Tsutsui H, Shiomi T, Suematsu N, Kinugawa S, Ide T, et al. Fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation. 2002;105:868-73.
    [13]Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, et al. Heart disease and stroke statistics-2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2008;117:e25-146.
    [14]Adjei AA, Cohen RB, Franklin W, Morris C, Wilson D, Molina JR, et al. Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. J Clin Oncol. 2008;26:2139-46.
    [15]Aleshin A, Ananthakrishnan R, Li Q, Rosario R, Lu Y, Qu W, et al. RAGE modulates myocardial injury consequent to LAD infarction via impact on .INK and STAT signaling in a murine model. Am J Physiol Heart Circ Physiol. 2008:294: H1823-32.
    [16]Anilkumar N, Sirker A, Shah AM. Redox sensitive signaling pathways in cardiac remodeling, hypertrophy and failure. Front Biosci. 2009; 14:3168-87.
    [17]Andrews C, Ho PD, Dillmann WH, Cilcmbotski CC, McDonough PM. The MKK6-p38 MAPK pathway prolongs the cardiac contractile calcium transient, downregulates SERCA2, and activates NF-AT. Cardiovasc Res. 2003;59:46-56.
    [18]Aoki H, Kang PM. Hampe J, Yoshimura K, Noma T, Matsuzaki M, et al. Direct activation of mitochondrial apoptosis machinery by c-Jun N-terminal kinase in adult cardiac myocytes. J Biol Chem. 2002;277:10244-50.
    [19]Vatner DE, Yang GP, Geng YJ. Asai K, Yun JS, Wagner TK, et al. Determinants of the cardiomyopathic phenotype in chimeric mice overexpressing cardiac Gsalpha. Circ Res. 2000;86:802-6.
    [20]Molkentin JD, Dorn GW, 2nd. Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu Rev Physiol. 2001;63:391-426.
    [21]Aoki Y, Niihori T, Narumi Y, Kure S, Matsubara Y The RAS/MAPK syndromes: novel roles of the RAS pathway in human genetic disorders. Hum Mutat. 2008;29:992-1006.
    [22]Araki T, Chan G, Newbigging S, Morikawa L, Bronson RT, Neel BG. Noonan syndrome cardiac defects are caused by PTPN11 acting in endocardium to enhance endocardial-mesenchymal transformation. Proc Natl Acad Sci U S A. 2009;106:4736-41.
    [23]Ramos JW. The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. Int J Biochem Cell Biol.2008;40:2707-19.
    [24]Goldsmith ZG, Dhanasekaran DN. G protein regulation of MAPK networks. Oncogene.2007;26:3122-42.
    [25]McKay MM, Morrison DK. Integrating signals from RTKs to ERK/MAPK. Oncogene.2007;26:3113-21.
    [26]Raman M, Chen W, Cobb MH. Differential regulation and properties of MAPKs. Oncogene.2007;26:3100-12.
    [27]Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell. 2000;103:239-52.
    [28]Bogoyevitch MA, Kobe B. Uses for JNK:the many and varied substrates of the c-Jun N-terminal kinases. Microbiol Mol Biol Rev.2006;70:1061-95.
    [29]Bogoyevitch MA. The isoform-specific functions of the c-Jun N-terminal Kinases (JNKs):differences revealed by gene targeting. Bioessays.2006;28:923-34.
    [30]Katz M, Amit I, Yarden Y. Regulation of MAPKs by growth factors and receptor tyrosine kinases. Biochim Biophys Acta.2007; 1773:1161-76.
    [31]Pandur P, Maurus D, Kuhl M. Increasingly complex:new players enter the Wnt signaling network. Bioessays.2002;24:881-4.
    [32]Hreniuk D, Garay M, Gaarde W, Monia BP, McKay RA, Cioffi CL. Inhibition of c-Jun N-terminal kinase 1, but not c-Jun N-terminal kinase 2, suppresses apoptosis induced by ischemia/reoxygenation in rat cardiac myocytes. Mol Pharmacol. 2001;59:867-74.
    [33]Ferrandi C, Ballerio R, Gaillard P. Giachetti C, Carboni S, Vitte PA, et al. Inhibition of c-Jun N-terminal kinase decreases cardiomyocyte apoptosis and infarct size after myocardial ischemia and reperfusion in anaesthetized rats. Br J Pharmacol. 2004;142:953-60.
    [34]Milano G, Morel S, Bonny C, Samaja M, von Segesser LK, Nicod P, et al. A peptide inhibitor of c-Jun NH2-terminal kinase reduces myocardial ischemia-reperfusion injury and infarct size in vivo. Am J Physiol Heart Circ Physiol. 2007;292:H1828-35.
    [35]Andreka P. Zang J, Dougherty C, Slepak TI, Webster KA, Bishopric NH. Cytoprotection by Jun kinase during nitric oxide-induced cardiac myocyte apoptosis. Circ Res.2001;88:305-12.
    [36]Dougherty CJ, Kubasiak LA, Prentice H, Andreka P, Bishopric NH, Webster KA. Activation of c-Jun N-terminal kinase promotes survival of cardiac myocytes after oxidative stress. Biochem J. 2002;362:561-71.
    [37]Petrich BG, Eloff BC, Lerner DL, Kovacs A, Saffitz JH. Rosenbaum DS, et al. Targeted activation of c-Jun N-terminal kinase in vivo induces restrictive cardiomyopathy and conduction defects. J Biol Chem. 2004:279:15330-8.
    [38]Fan GC, Yuan Q, Song G, Wang Y, Chen G. Qian J. et al. Small heat-shock protein Hsp20 attenuates beta-agonist-mediated cardiac remodeling through apoptosis signal-regulating kinase 1. Circ Res. 2006;99:1233-42.
    [39]Izumiya Y, Kim S, Izumi Y, Yoshida K, Yoshiyama M, Matsuzawa A, et al. Apoptosis signal-regulating kinase 1 plays a pivotal role in angiotensin H-induced cardiac hypertrophy and remodeling. Circ Res. 2003:93:874-83.
    [40]Ono K, Han J. The p38 signal transduction pathway: activation and function. Cell Signal. 2000;12:1-13.
    [41]Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 2001:81:807-69.
    [42]Rincon M, Davis R.J. Regulation of the immune response by stress-activated protein kinases. Immunol Rev. 2009:228:212-24.
    [43]Zarubin T. Han J. Activation and signaling of the p38 MAP kinase pathway. Cell Res. 2005:15:11-8.
    [44]Matsumoto-Ida M, Takimoto Y, Aoyama T. Akao M. Takeda T, Kita T. Activation of TGF-betal-TAKl-p38 MAPK pathway in spared cardiomyocyles is involved in left ventricular remodeling after myocardial infarction in rats. Am J Physiol Heart Circ Physiol. 2006;290:11709-15.
    [45]Verrecchia F, Mauviel A. Transforming growth factor-beta and fibrosis. World J Gastroenterol. 2007; 13:3056-62.
    [46]Attisano L. Wrana JL. Signal transduction by the TGF-beta superfamily. Science. 2002:296:1646-7.
    [47]Inman GJ. Linking Smads and transcriptional activation. Biochem J. 2005;386:el-e3.
    [48]Koli K, Saharinen J, Hyytiainen M, Penttinen C. Keski-Oja J. Latency, activation, and binding proteins of TGF-beta. Microsc Res Tech. 2001;52:354-62.
    [49]Cruz-Adalia A, Jimenez-Borreguero LJ, Ramirez-Huesca M, Chico-Calero I, Barreiro O, Lopez-Conesa E, et al. CD69 limits the severity of cardiomyopathy after autoimmune myocarditis. Circulation.2010;122:1396-404.
    [50]Whaley-Connell A, Habibi J, Nistala R, Cooper SA, Karuparthi PR, Hayden MR, et al. Attenuation of NADPH oxidase activation and glomerular filtration barrier remodeling with statin treatment. Hypertension.2008;51:474-80.
    [51]Mausner-Fainberg K, Luboshits G, Mor A, Maysel-Auslender S, Rubinstein A, Keren G, et al. The effect of HMG-CoA reductase inhibitors on naturally occurring CD4+CD25+T cells. Atherosclerosis.2008; 197:829-39.
    [52]Aprahamian T, Bonegio R, Rizzo J, Perlman H, Lefer DJ, Rifkin IR, et al. Simvastatin treatment ameliorates autoimmune disease associated with accelerated atherosclerosis in a murine lupus model. J Immunol.2006; 177:3028-34.
    [53]Usui H, Shikata K, Matsuda M, Okada S, Ogawa D, Yamashita T, et al. HMG-CoA reductase inhibitor ameliorates diabetic nephropathy by its pleiotropic effects in rats. Nephrol Dial Transplant.2003; 18:265-72.
    [54]Yano M, Matsumura T, Senokuchi T, Ishii N, Murata Y, Taketa K, et al. Statins activate peroxisome proliferator-activated receptor gamma through extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase-dependent cyclooxygenase-2 expression in macrophages. Circ Res.2007; 100:1442-51.
    [55]Tuuminen R, Syrjala S, Krebs R, Keranen MA, Koli K, Abo-Ramadan U, et al. Donor simvastatin treatment abolishes rat cardiac allograft ischemia/reperfusion injury and chronic rejection through microvascular protection. Circulation. 2011;124:1138-50.
    [56]Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev.2008;22:1276-312.
    [57]Papadopoulos G, Delakas D, Nakopoulou L, Kassimatis T. Statins and prostate cancer:molecular and clinical aspects. Eur J Cancer.2011;47:819-30.
    [58]Rodriguez AL, Wojcik BM, Wrobleski SK, Myers DD, Jr., Wakefield TW, Diaz JA. Statins, inflammation and deep vein thrombosis:a systematic review. J Thromb Thrombolysis.2012;33:371-82.
    [59]Brown JH, Del Re DP, Sussman MA. The Rac and Rho hall of fame:a decade of hypertrophic signaling hits. Circ Res.2006;98:730-42.
    [60]Maack C, Kartes T, Kilter H, Schafers HJ, Nickenig G, Bohm M, et al. Oxygen free radical release in human failing myocardium is associated with increased activity of racl-GTPase and represents a target for statin treatment. Circulation. 2003; 108:1567-74.
    [61]Patel R, Nagueh SF, Tsybouleva N, Abdellatif M, Lutucuta S, Kopelen HA, et al. Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation. 2001 ;104:317-24.
    [62]Shiota N, Rysa J, Kovanen PT, Ruskoaho H, Kokkonen JO, Lindstedt KA. A role for cardiac mast cells in the pathogenesis of hypertensive heart disease. J Hypertens. 2003;21:1935-44.
    [63]Haudek SB, Taffet GE, Schneider MD, Mann DL. TNF provokes cardiomyocyte apoptosis and cardiac remodeling through activation of multiple cell death pathways. J Clin Invest. 2007; 117:2692-701.
    [64]Sivasubramanian N, Coker ML, Kurrelmeyer KM, MacLellan WR, DeMayo FJ, Spinale FG, et al. Left ventricular remodeling in transgenic mice with cardiac restricted overcxpression of tumor necrosis factor. Circulation. 2001; 104:826-31.
    [65]Peng J, Gurantz D, Iran V, Cowling Rl, Greenberg BH. Tumor necrosis factor-alpha-induced AT1 receptor upregulation enhances angiotensin H-mediated cardiac fibroblast responses that favor fibrosis. Circ Res. 2002;91:1119-26.
    [66]Turner NA, Mughal RS, Warburton P, O'Regan DJ, Ball SG, Porter KK Mechanism of TNFalpha-induced IL-lalpha, IL-1 beta and 1L-6 expression in human cardiac fibroblasts: effects of statins and thiazolidinediones. Cardiovasc Res. 2007;76:81-90.
    [67]Rohini A. Agrawal N, Koyani CN, Singh R. Molecular targets and regulators of cardiac hypertrophy. Pharmacol Res. 2010;61:269-80.
    [68]Yu X, Kennedy RH, Liu SJ. JAK2/STAT3. not LRK1/2, mediates interleukin-6-induced activation of inducible nitric-oxide synthase and decrease in contractility of adult ventricular myocytes. J Biol Chem. 2003;278:16304-9.
    [69]Atreya R, Mudter J, Finotto S, Mullberg J, Jostock T, Wirtz S, et al. Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in crohn disease and experimental colitis in vivo. Nat Med. 2000;6:583-8.
    [70]Zheng M, Dilly K, Dos Santos Cruz J, Li M, Gu Y, Ursitti JA, et al. Sarcoplasmic reticulum calcium defect in Ras-induced hypertrophic cardiomyopathy heart. Am J Physiol Heart Circ Physiol. 2004;286:11424-33.
    [71]Yamaguchi O, Watanabe T, Nishida K, Kashiwase K, Higuchi Y, Takeda T, et al. Cardiac-specific disruption of the c-raf-1 gene induces cardiac dysfunction and apoptosis. J Clin Invest.2004; 114:937-43.
    [72]Ueyama T, Kawashima S, Sakoda T, Rikitake Y, Ishida T, Kawai M, et al. Requirement of activation of the extracellular signal-regulated kinase cascade in myocardial cell hypertrophy. J Mol Cell Cardiol.2000;32:947-60.
    [73]Bueno OF, De Windt LJ, Tymitz KM, Witt SA, Kimball TR, Klevitsky R, et al. The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J.2000; 19:6341-50.
    [74]Petrich BG, Gong X, Lerner DL, Wang X, Brown JH, Saffitz JE, et al. c-Jun N-terminal kinase activation mediates downregulation of connexin43 in cardiomyocytes. Circ Res.2002;91:640-7.
    [75]Liao P, Georgakopoulos D, Kovacs A, Zheng M, Lerner D, Pu H, et al. The in vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy. Proc Natl Acad Sci U S A.2001;98:12283-8.
    [76]Klein G, Schaefer A, Hilfiker-Kleiner D, Oppermann D, Shukla P, Quint A, et al. Increased collagen deposition and diastolic dysfunction but preserved myocardial hypertrophy after pressure overload in mice lacking PKCepsilon. Circ Res. 2005;96:748-55.
    [77]Li M, Georgakopoulos D, Lu G, Hester L, Kass DA, Hasday J, et al. p38 MAP kinase mediates inflammatory cytokine induction in cardiomyocytes and extracellular matrix remodeling in heart. Circulation.2005; 111:2494-502.
    [78]Kompa AR, See F, Lewis DA, Adrahtas A, Cantwell DM, Wang BH, et al. Long-term but not short-term p38 mitogen-activated protein kinase inhibition improves cardiac function and reduces cardiac remodeling post-myocardial infarction. J Pharmacol Exp Ther.2008;325:741-50.
    [79]Liao P, Wang SQ, Wang S, Zheng M, Zhang SJ, Cheng H, et al. p38 Mitogen-activated protein kinase mediates a negative inotropic effect in cardiac myocytes. Circ Res.2002;90:190-6.
    [80]Chen Y, Rajashree R, Liu Q, Hofmann P. Acute p38 MAPK activation decreases force development in ventricular myocytes. Am J Physiol Heart Circ Physiol. 2003;285:H2578-86.
    [81]Mauviel A. Transforming growth factor-beta:a key mediator of fibrosis. Methods Mol Med.2005; 117:69-80.
    [82]Guo X, Wang XF. Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res.2009;19:71-88.
    [83]Rosenkranz S, Flesch M, Amann K, Haeuseler C, Kilter H, Seeland U, et al. Alterations of beta-adrenergie signaling and cardiac hypertrophy in transgenic mice overexpressing TGF-bcta(1). Am J Physiol Heart Circ Physiol. 2002;283:111253-62.
    [84]Brooks WW, Conrad CH. Myocardial fibrosis in transforming growth factor beta(l)heterozygous mice. J Mol Cell Cardiol. 2000;32:187-95.
    [85]Senthil V, Chen SN. Tsybouleva N, Haider T, Nagueh SF, Willerson JT. et al. Prevention of cardiac hypertrophy by atorvastatin in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circ Res. 2005;97:285-92.
    [86]Kameda Y. Hasegawa H, Kubota A, Tadokoro H, Kobayashi Y, Komuro I, et al. Effects of pitavastatin on pressure overload-induced heart failure in mice. Circ J. 2012;76:1159-68.
    [87]Yagi S, Aihara K, Ikeda Y, Sumitomo Y. Yoshida S, Ise T. et al. Pitavastatin. an HMG-CoA reductase inhibitor, exerts eNOS-independent protective actions against angiotensin H induced cardiovascular remodeling and renal insufficiency. Circ Res. 2008; 102:68-76.