大规模风电并网条件下的电力系统有功功率平衡理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着风电在我国各电网中并网规模的不断扩大,风电所具有的随机性、间歇性以及反调峰特性给电力系统有功平衡的各个方面都带来非常大的影响。在其中,低谷调峰能力不足所导致的大规模弃风浪费是当前电网面临的主要问题;而风电场脱网所造成的频率控制问题也值得关注。针对上述两个方面的问题,论文进行了较为系统和深入的研究,主要工作及成果如下:
     1.冬季供暖期,由于热电联产机组的调峰能力因供暖而下降,导致负荷低谷期间强迫出力过大,留给风电上网的空间严重不足,造成大量弃风。为此,在借鉴丹麦经验的基础上,提出了在我国电力系统中实行热电厂参与风电低谷调峰的设想,以东北电网为例论述了热电参与调峰对接纳风电的效益。分析表明,热电参与调峰是解决未来电网风电接纳能力不足的一个有效途径。进一步,还分析了三种可行的“热电解耦”技术方案,指出了实行热电参与调峰所面临的关键问题。
     2.为激励发电企业充分发掘其调峰潜力参与风电调峰,在充分考虑当前我国电力系统运营环境的基础上,提出了在现有上网电价制度下建立市场化的非常规调峰服务定价机制的构想。进而,通过对风电弃风机理的剖析,考虑现有的调峰管理模式,设计了风电参与的非常规调峰服务交易理论基本框架,并对其中的核心问题及解决方案进行了论述。分析表明,风电参与的非常规调峰服务市场,既可产生调峰价格信号,激励调峰并引导风电与调峰电源协调发展,还可保证电网经济运行,而且与现有风电扶持政策相兼容。
     3.为平抑风电的日间波动性,保障火电机组各日所承担尖峰负荷数量的稳定性,减少火电机组开停机调峰需求,提出了冬季枯水期水电一风电联合调峰运行策略,建立了以月为决策时间尺度、以周为决策时间间隔的滚动决策框架。理论分析和算例验证均表明,该联合运行策略不仅可有效平抑风电出力的日间波动性,使火电机组承担的日尖峰负荷保持稳定,从而保障火电开停机稳定性;还可利用水电的剩余容量与风电协调,充分利用风电电量,从而提高系统调峰能力、减少火电机组开机容量,提高电网运行经济性。
     4.大规模风电并网后,使得原有的低频减载方案存在安全隐患。为此,对风电出力的波动性和风电机组的低频保护对低频减载方案整定的影响进行了分析,论证了低频减载方案校核模型中单机改进为多机的必要性,提出了计入风电机组的影响的模型参数修『正方法,进而设计了大规模风电并网下的低频减载方案。最后,对传统方案和改进方案进行了仿真对比,结果表明,改进方案能更为有效地抑制系统频率下降,频率恢复效果更为良好。
     上述研究表明,对调峰问题而言,热电参与调峰是解决未来我国风电接纳的有效途径,其关键在于要有良好的调峰激励机制,而市场是最为有效的手段;水电——风电联合调峰运行也可以在一定程度上提高系统的调峰能力,从而提高系统接纳风电的水平。对频率控制问题而言,在设计低频减载方案时必须充分计及风电机组的影响,从而提高低频减载方案的可靠性。
     上述研究可为我国大规模风电并网后有功平衡问题的解决提供有益的参考。
With more wind power being integrated into the power grid, its random and intermittent output has brought great impact on various aspects of active power balances. Among them, the main problem at present is massive wind power curtailment during valley periods due to lack of regulating abilities. Also, frequency control issues caused by trip-off of wind farms from grid are worth concern. The paper probes and discusses the above two issues systematically and in-depth. The main work and the results are as follows.
     1. All the CHP plants have been operated full load in winter to satisfy the heat demand, giving limited space for wind power to access the grid especially in the off-peak hours at night, which would result in large wind power curtailment when output of wind power is larger than the limited space. Based on the experience of Denmark, the conception of CHP plants reducing their electric outputs to offer more space for wind power in load valley periods is proposed. Then the benefits of accommodating wind power by applying this conception in Northeast China grid are analyzed and the results show its validity. Furthermore, three feasible technical schemes of decoupling heat-power constraints of CHP plants are analyzed, and the key issues of implementing CHP plants to regulate for wind power are discussed.
     2. To encourage generation companies fully exploiting their potentials of peak load regulation, the marketing pricing mode for unconventional peak load regulation service is suggested under the current power system operation environment of China, especially the current generation price regime. The mode intents to inspire generation companies regulating peak load voluntarily and to lead the wind farm developing rationally with the ability of peak load regulation of system. By anatomizing the mechanism of limiting the wind farms' outputs, based on the current management pattern of peak load regulation services, the basic trading framework of unconventional peak load regulation service with participation of wind farms is designed, and then the core issues and corresponding possible solutions are discussed. Analysis shows that the wind farm participated peak load regulation service market has several merits. It can generate price signal for active peak load regulation and rational expansion of wind power with the system acceptance ability, and can ensure the economic operation of system, and is also compatible with the current policy for supporting wind power development.
     3. To smooth the large fluctuations of wind power output on the inter-day scale, ensure the stabilization of daily peak load for thermal power, and reduce the inter-day start-up and shut-down times of thermal units, a new operation strategy, combining the hydropower with wind power to regulate the peak of load, is advised with a weekly rolling decision framework. The theoretical analyses and numerical examples show that the combined operation of hydro and wind power generation system can not only smooth the large inter-day fluctuations of wind power output in daily peak hours and thus ensure the stabilization of daily peak load and start-up and shut-down operations for thermal power, but also improve the system peak-load regulating ability by utilizing the energy of wind power and the unused capacity of hydropower sufficiently and thus reduce the start-up capacity of thermal units and improve the operation economy.
     4. With the large-scale wind power integration, the original under--frequency load shedding scheme cannot meet design requirements any more. Thus, the impacts of fluctuating wind power and low frequency protection for wind turbine generator on under-frequency load shedding scheme are analyzed. And then the under-frequency load shedding scheme under large-scale wind power integration is designed. The analyses show that it is necessary to improve the traditional single machine model into multiple machines model. By considering the impact of wind turbines on the system model, a method of modifying the model parameters is proposed. Finally, the improved scheme is compared with the traditional scheme. The simulation results show that the improvement scheme can restrain the frequency falling effectively, and the effect of the recovery of frequency is better.
     The study shows that for the peak load regulation problem, the participation of CHP plants is an effective way to solve the wind power curtailments in future. The key is to have a good incentive mechanism, while the market is the most effective means. The combination operation of the hydropower with wind power can improve the peak load regulating ability of the system to some extent; thereby enhance the wind power accommodation level of the system. For the frequency control problem, the impact of wind turbines must be taken full consideration in the design of under-frequency load shedding scheme to ensure its reliability. The study would provide a useful reference for the solution of active power balance problem after the large-scale wind power integration in China.
引文
[1]World Wind Energy Association. World wind energy report 2010[R]. Bonn:World Wind Energy Association,2011.
    [2]国家电力监管委员会.电网企业全额收购可再生能源电量监管办法[S].北京:国家电力监管委员会,2007.
    [3]李俊峰,施鹏飞,高虎.风光无限:2011中国风电发展报告[R].北京:中国环境科学出版社,2011.
    [4]Wang Y H. Wind power plant behaviors:analyses of long-term wind power data[R]. Golden: National Renewable Energy Laboratory,2004.
    [5]肖创英,汪宁勃,陟晶,等.甘肃酒泉风电出力特性分析[J].电力系统自动化,2010,34(17):64-67.
    [6]辛颂旭,白建华,郭雁珩.甘肃酒泉风电特性研究[J].能源技术经济,2010,22(12):16-20.
    [7]侯佑华,房大中,齐军,等.大规模风电入网的有功功率波动特性分析及发电计划仿真[J].电网技术,2010,24(5):60-66.
    [8]高德宾,李群,金元,等.东北电网风电运行特性分析与研究[J].电力技术,2010,19(2):33-37.
    [9]崔杨,穆钢,刘玉,等.风电功率波动的时空分布特性[J].电网技术,2011,35(2):110-114.
    [10]孙荣富,张涛,梁吉.电网接纳风电能力的评估及应用[J].电力系统自动化,2011,35(4):70-75.
    [11]于大洋,韩学山,梁军,等.基于NASA地球观测数据库的区域风电功率波动特性分析[J].电力系统自动化,2011,35(5):77-81.
    [12]韩小琪,宋璇坤,李冰寒,等.风电出力变化对系统调频的影响[J].中国电力,2010,43(6):26-29.
    [13]Smith J C, Milligan M R, DeMeo E A, et al. Utility Wind Integration and Operating Impact State of the Art[J]. IEEE Trans on Power Systems,2007,22(3):900-908.
    [14]Banakar H, Luo C L, Ooi B T. Impacts of wind power minute-to-minute variations on power system operation[J]. IEEE Transactions on Power Systems,2008,23(1):150-160.
    [15]Makarov Y V, Loutan C, Ma J, et al. Impacts of Integration of wind generation on regulation an load following requirements of California power systems[C]. Proceedings of 5th International Conference on European Electricity Market, Lisboa,2008.
    [16]Rogerio G, Pecas J A. Primary frequency control participation provided by doubly fed induction wind generators[C]. Proceedings of IEEE the 15th Power Systems Computation Conference. Liege: IEEE,2005:22-26.
    [17]Rogerio G, Pecas J A. Participation of doubly fed induction wind generators in system frequency regulation [J]. IEEE Transactions on Power Systems,2007,22(3):944-951.
    [18]Khaki B, Asgari M H, Sirjan R. Contribution of DFIG wind turbines to system frequency control[C]. Conference on Sustainable Power Generation and Supply. Nanjing, China:Hohai University,2009:1-8.
    [19]Ramtharan G, Ekanayake J B, Jenkins N. Frequency support from doubly fed induction generator wind turbines[J]. IET Renewable Power Generation.2007,1(1):3-9.
    [20]尹明,李庚银,张建成.直驱式永磁同步风力发电机组建模及其控制策略[J].电网技术,2007,31(15):61-66.
    [21]赵仁德,王永军,张加胜.永磁式直驱同步风力发电系统最大功率追踪控制[J].中国电机.[程学报,2009,29(27):106-112.
    [22]James F C, Rick W. Frequency response capability of full converter wind turbine generators in comparison to conventional generation [J]. IEEE Transactions on Power Systems,2008,23(2): 649-657.
    [23]Janaka E, Nick J. Comparison of the response of doubly fed and fixed-speed induction generator wind turbines to changes in network frequency[J]. IEEE Transactions on Energy Conversion, 2004,19(4):800-803.
    [24]Johan M, Sjoerd W H, Wil L K. Wind turbines emulating inertia and support primary frequency control[J]. IEEE Transactions on Power Systems,2006,21(1):433-434.
    [25]Alan M, Mark O M. The inertia response of induction machine based wind turbine[J]. IEEE Transactions on Power Systems,2005,20(3):1496-1504.
    [26]Ia M, Janaka E. Frequency response from wind turbines[C]. Proceedings of 44th International Universities Power Engineering Conference. Glasgow:IEEE,2009.
    [27]Johan M, Jan P, Sjoerd W H. Inertia response of variable speed wind turbine[J]. Electric Power System Research,2006(76):980-987.
    [28]孙春顺,王耀南,李欣然.飞轮辅助的风力发电系统功率和频率综合控制[J].中国电机工程学报,2008,28(29):111-116.
    [29]胡雪松,孙才行,刘刃,等.采用飞轮储能的永磁直驱风电机组有功平滑控制策略[J].电力系统自动化,2010,34(13):79-83.
    [30]ABBEY C,JOOS G. Super capacitor energy storage for wind energy applications [J]. IEEE Transactions on Industry aplications,2007,43(3):769-776.
    [31]高纵和,腾贤亮,张小白.适应大规模风电接入的互联电网有功调度与控制方案[J].电力系统自动化,2010,34(17):37-41.
    [32]陈宁,于继来.基于电气剖分信息的风电系统有功调度与控制[J].中国电机工程学报,2008,28(16):51-58.
    [33]陈宁,于继来.兼顾系统调频需求的分布式风电分散自治调控策略[J].电工技术学报,2008,23(11):123-130.
    [34]张飒.风机问题或一两年内爆发[N].东方早报,2011.06.13.
    [35]Ackermann T. Wind power in power system[M].London:John WIley&Sons,2005.
    [36]Giebel G, Serensen P,Holttinen H. Forecast error of aggregated wind power[R].Riso National Laboratory,2007.
    [37]张伯明,吴文传,郑太一,等.消纳大规模风电的多尺度协调的有功调度系统设计[J].电力系统自动化,2011,35(1):1-6.
    [38]Tuohy A, Meibom P, Denny E,O'Malley M.Unit Commitment for Systems with significant wind penetration[J]. IEEE Transactions of Power Systems,2009,24(2):592-601.
    [39]韩自奋,陈启卷.考虑约束的风电调度模式[J].电力系统自动化,2010,34(2):89-92.
    [40]张宁,周天睿,段长刚,等.大规模风电场接入对电力系统调峰的影响[J].电网技术,2010,34(1):152-158.
    [41]王承煦,张源.风力发电[M].北京:中国电力出版社,2003.
    [42]Denny E, O'Malley M. Quantifying the total net benefits of grid integrated wind[J]. IEEE Transactions on Power Systems,2007,22(2):605-615.
    [43]Doherty R, O'Malley M. A new approach to quantify reserve demand in systems with significant installed wind capacity[J]. IEEE Transactions on Power Systems,2005,20(2):587-595.
    [44]Bouffard F, Galiana F D. An electricity market with a probabilistic spinning reserve criterion[J]. IEEE Transactions on Power System,2004,19(1):300-307.
    [45]Halamay D A, Brekken T K A, Simmons A, et al. Reserve requirement impacts of large-scale integration of wind, solar, and ocean wave power generation [J]. IEEE Transactions on Sustainable Energy,2011,2(3):321-328.
    [46]Ortega-Vazquez M A, Kirschen D S. Estimating the spinning reserve requirements in systems with significant wind power generation penetration[J]. IEEE Transactions on Power Systems, 2009,24(1):114-124.
    [47]Morales J M, Conejo A J, Perez-Ruiz J. Economic Valuation of reserves in power systems with high penetration of wind power[J]. IEEE Transactions on Power Systems,2009,24(2):900-910.
    [48]Bouffard F, Galiana F D. Stochastic security for operations planning with significant wind power generation[J]. IEEE Transactions on Power Systems,2008,23(2):306-316.
    [49]Wang J H, Shahidehpour M, Li Z Y. Security-constrained unit commitment with volatile wind power generation[J]. IEEE Transactions on power systems,2008,23(3):1319-1327.
    [50]Venkatesh B, Yu P, Gooi H B, et al. Fuzzy MILP unit commitment incorporating wind generators [J]. IEEE Transactions on Power Systems,2008,23(4):1738-1746.
    [51]Miranda V, Hang P S. Economic dispatch model with fuzzy wind constraints and attitudes of dispatchers[J]. IEEE Transactions on Power Systems,2005,20(4):2143-2145.
    [52]王芝茗,苏安龙,鲁顺.基于电力平衡的辽宁电网接纳风电能力分析[J].电力系统自动化,2010,34(3):86-90.
    [53]魏磊,姜宁,于广亮,等.宁夏电力系统接纳新能源能力研究[J].电网技术,2010,34(11):176-181.
    [54]姚金雄,张世强.基于调峰能力分析的电网风电接纳能力研究[J].电网与清洁能源.2010,26(7):25-28.
    [55]韩小琪,孙寿广,戚庆茹.从系统调峰角度评估电网接纳风电能力[J].中国电力,2010,43(6):16-19.
    [56]郭象容.关于电网接纳大规模风电能力的思考[J].广东电力,2011,24(5):20-23.
    [57]吴功高,叶中雄,姚明,等.安徽电网接纳风电能力的分析研究[J]_华东电力,2011,39(6):997-999.
    [58]国家电力监管委员会.风电、光伏发电情况监管报告[R].北京:国家电力监管委员会,2011.
    [59]李付强,王彬,涂少良.京津唐电网风力发电并网调峰特性分析[J].电网技术,2009.33(18):128-132.
    [60]国家发展改革委员会.国家核电发展专题规划(2005-2020年)[R].北京:国家发展改革委员会,2007.
    [61]国家电力监管委员会.我国风电发展情况调研报告[R].北京:国家电力监管委员会,2010.
    [62]Sharman H. Why wind power works for Demark[C]. Civil Engineering,2005,158(2):66-72.
    [63]Jorgensen P丹麦风电的未来[J].能源技术经济,2011,23(3):6-10.
    [64]徐伟,杨玉林,李政光,等.甘肃酒泉大规模风电参与电力市场模式及其消纳方案[J].电网技术,2010,34(6):71-77.
    [65]白建华,辛颂旭,贾德香,等.中国风电开发消纳及输送相关重大问题研究[J].电网与清洁能源,2010,26(1):14-17.
    [66]国家电网公司.国家电网公司促进风电发展白皮书.北京:国家电网公司,2011.
    [67]张运洲,白建华,辛颂旭.我国风电开发及消纳相关重大问题研究[J].能源技术经济,2010,22(1):1-6.
    [68]王鹏,任冲,彭明侨.西北电网风电调度运行管理研究[J].电网与清洁能源,2009,25(11):80-84.
    [69]袁越,周建华,余嘉彦.含风电场电力系统调峰对策综述[J].电网与清洁能源,2010,26(6):1-4.
    [70]李强,袁越,谈定中.储能技术在风电并网中的应用研究进展[J].河海人学学报,2010,38(1):115-122.
    [71]张文亮,丘明,来小康.储能技术在电力系统中的应用[J].电网技术,2008,32(4):1.9.
    [72]Bueno C,Carta J A. Technical-economic analysis of wind-power pumped hydro sorage systems part I:model development[J].Solar Energy,2004,78:382-395.
    [73]Bueno C,Carta J A. Technical-economic analysis of wind-power pumped hydro storage systems part II:model application to the island of El Hierro[J]. Solar Energy,2004,78:396-405.
    [74]谭志忠,刘德有,欧传奇,等.风电-抽水蓄能联合系统的优化运行模型[J].河海大学学报:自然科学版,2008,36(1):58-62.
    [75]潘文霞,范永威,朱莉,等.风电场中抽水蓄能系统容量的优化选择[J].电工技术学报,2008,23(3):121-124.
    [76]Edgardo D C,Lopes J A. Optimal operation and hydro storage sizing of a wind hydro power plant [J]. International Journal of Electric Power & Energy Systems,2004,26 (10):771-778.
    [77]Garcia-Gonzalez J, de la Meula R M R, Santos L M, et al. Stochastic joint optimization of wind generation and pumped-storage units in an electricity market[J]. IEEE Transactions on Power Systems,2008,23(2):460-468.
    [78]李强,袁越,李振杰,等.考虑峰谷电价的风电一抽水蓄能联合系统能量转化效益研究[J].电网技术,2009,33(6):13-18.
    [79]Tuohy A, O'malley M. Impact of pumped-strage on power systems with increasing wind penetration[C]. Proceedings of 2009 Power&Energy Society General Meeting, Dublin:University College Doblin,2009.
    [80]东北电网有限公司.东北电网”十二五”发展规划[S].沈阳:东北电网有限公司,2010.
    [81]国家能源局.关于进一步做好抽水蓄能电站建设的通知[EB].北京:国家能源局,2011.
    [82]李红军,李成仁,王卫军.当前抽水蓄能电站电价疏导问题分析[J].能源技术经济,2010,22(9):38-42.
    [83]王楠.我国抽水蓄能电站发展现状与前景分析[J].电力技术经济,2008,20(2):18-20.
    [84]任震,潘锡芒,黄雯莹,等.市场环境下抽水蓄能电站问题的几点思考[J].水电自动化与大坝监测.2003,27(1):6-10.
    [85]Brunetto C, Tina G. Optimal hydrogen storage sizing for wind power plants in day ahead electricity market[J]. IET Renewable Power Generation,2007,1(4):220-226.
    [86]Korpas M, Holen A T. Operation planning of hydrogen storage connected to wind power operating in a power market[J]. IEEE Transactions on Energy Conversion,2006,21(3):742-749.
    [87]Taljan G, Caniazres C, Fowler M, et al.The feasibility fo hydrogen storage for mixed wind-nuclear power plants[J]. IEEE Transactions on Power Systems,2008,23(3):1507-1518.
    [88]丹麦电网公司.风电:应对气候变化的卫士[R].哥本哈根:丹麦电网公司,2009.
    [89]Petersen M K, Aagaard J. Heat accumulators, http://dbdh.dk/images/uploads/ pdf-production/p4-5-6-7.pdf.
    [90]Manczyk H, Leach M D. Combined Heat and Power Generation and District Heating in Denmark: History, Goals, and Technology, www.energy.rochester.edu/dk/manczyk/denmark.pdf.
    [91]Lund H. Towards 100% renewable energy systems[J]. Applied energy,2011,88(2):419-421.
    [92]Streckiene G, Martinaitis V, Andersen A N,et al. Feasibility of CHP-plants with thermal stores in the German spot market[J]. Applied Energy,2009,86(11):2308-2316.
    [93]Andersen A N. CHP-plants with big thermal stores balancing fluctuation productions from wind turbines[R/OL]. http://desire.iwes.fraunhofer.de/files/deliverables/del_4.1-4.4.pdf
    [94]秦冰,江亿,付林.热电联产电力调峰时供热系统的调节[J].煤气和热力,2006,26(2):51-55.
    [95]秦冰,付林,江亿.利用系统热惯性的热电联产电力调峰[J].煤气和热力,2005,25(10):6-8.
    [96]付林,江亿.承担采暖负荷的背压机组电力调峰优化运行[J].中国电机工程学报,2000,20(3):80-87.
    [97]Divya K C,Ostergaard J. Battery energy storage technology for power system:an overview[J]. Electric Power Systems Research,2009,79(4):511-520.
    [98]Lund H, Kempton W. Integration of renewable energy into the transport and electricity sectors through V2G[J]. Energy Policy,2008,36(5):3578-3587.
    [99]杨黎晖,许昭,ostergaard J,等.电动汽车在含大规模风电的丹麦电力系统中的应用[J].电力系统自动华,2011,35(14):24-29.
    [100]Kempton W, Tomic J. Vehicle-to-grid power implementation:from stabilizing the grid to supporting large-scale renewable energy[J]. Journal of Power Sources,2005.144(1):280-294.
    [101]Hodge B S,Huang S S, Pekny J F, et al. The effects of Vehicle-to-Grid systems on wind power integration in California[J]. Computer aided Chemical engineering,2010,28(6):1039-1044.
    [102]Andersson S L, Elofsson A K, Galus M D, et al.Plug-in hybrid electric vehicles as regulating power providers:Case studies of Sweden and Germany [J]. Energy Policy,2010,38(6):2751-2762.
    [103]于大洋,宋曙光,张波,等.区域电网电动汽车充电与风电协同调度的分析[J].电力系统自动化,2011,35(14):24-29.
    [104]高赐威,张亮.电动汽车充电对电网影响的综述[J].电网技术,2011,35(2):127-131.
    [105]邹文,吴福保,刘志宏.实时电价下插电式混合动力汽车智能集中充电策略[J].电力系统自动化,2011,35(14):62-67.
    [106]曹一家,谭益,黎灿兵,等.具有反向放电能力的电动汽车充电设施入网典型方案[J].电力系统自动化,2011,35(14):48-52.
    [107]Wang Z, Liu P. Analysis on storage power of electric vehicle charging station[C]. Proceedings of 2010 Asia-Pacific Power and Energy Engineering Conference, March 28-31,2010,Chengdu,China.
    [108]Kempton W, Letendre S. Electric vehicles as a new power source for electric utilities[J]. Transportation Research:Part D,1997,2(3):157-175.
    [109]Kempton, W,Tomic J. Vehicle-to-grid power fundamentals:calculating capacity and net revenue[J]. Journal of Power Sources,2005,144(1):268-279.
    [110]赵俊华,文福拴,杨爱民,等.电动汽车对电力系统的影响及其调度与控制问题[J].电力系统自动化,2011,35(14):2-10.
    [111]罗卓伟,胡泽春,宋永华,等.电动汽车充电负荷计算方法[J].电力系统自动化,2011,35(14):36-42.
    [112]Hadiey S W.Tsyetkova A. Potential impacts of plug-in Hybrid electric vehicles on regional power generation[EB/OL]. [2010-09-10]. http://www.ornl.gov/info/ ornlreview/v41_1_08/regional_phev_analysis.pdf.
    [113]马最良,姚杨,姜益强,等.热泵技术应用理论基础与实践[M].北京:中国建筑工业出版社,2010.
    [114]Akmal M, Flynn D, Kennedy J, et al. Flexible heat load for managing wind variability in the Irish power system[C].Proceedings of 44th International Universities Power Engineering Conference, Glasgow:IEEE Press,2009.
    [115]Kennedy J, Fox B, Flynn D. Use of electricity price to match heat load with wind power generation[C].Proceedings of International Conference on sustainable Power Generation and Supply, Nanjing:IEEE Press,2009.
    [116]肖创英,汪宁渤,丁坤,等.甘肃酒泉风电功率调节方式的研究[J].中国电机工程学报,2010,30(10):1-7.
    [117]Castronuovo E D, Lopes J A. On the optimization of the daily operation of wind-hydro power plant[J]. IEEE Trans, on Power Systems,2004,19(3):1599-1606.
    [118]Sun N H,Ellersdorfer I, Swider D J. Model-based long-term electricity generation system planning under uncertainty[C]. Proceedings of 3th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, Nanjing:IEEE Press,2008.
    [119]王承煦,张源.风力发电[M].北京:中国电力出版社,2003,03.
    [120]孙春顺,王耀南,李欣然.水电—风电系统联合运行研究[J].太阳能学报,2009,30(2):232-236.
    [121]方陈,夏清,孙欣.考虑大规模风电接入的发电机组检修计划[J].电力系统自动化,2010,34(19):20-24.
    [122]刘树杰.基于可持续发展的电价政策体系研究[J].经济纵横,2009(06)
    [123]Danish Energy Agency. Energy in Denmark 2010[S]. http://www.ens.dk/en-US/Info/ FactsAndFigures/Energy_statistics_and_indicators/Annual%20Statistics/Documents/Energy%20in% 20Denmark%202010.pdf
    [124]The Danish Government. Energy Strategy 2050-from coal, oil and gas to green energy[S]. http://www.denmark.dk/NR/rdonlyres/2BD031EC-AD41-4564-B146-5549B273CC02/0/EnergyStrategy2050web.pdf
    [125]Lund H, Mathiesen B V. Energy system analysis of 100% renewable energy systems-The case of Denmark in years 2030 and 2050[J].Energy,2009,34(5):524-531.
    [126]Center for Politiske Studier. Wind Energy-The Case of Denmark[R/OL]. http://www. cepos.dk/fileadmin/user_upload/Arkiv/PDF/Wind_energy_-_the_case_of_Denmark.pdf
    [127]Lund H, Clark W W. Management of fluctuations in wind power and CHP comparing two possible Danish strategies[J]. Energy,2002,27():471-483.
    [128]Eriksen P B, Orths A G, Akhmatov V. Integrating dispersed generation into the Danish power system-present situation and future prospects[C]. Proceedings of 2006 IEEE Power Engineering Society General Meeting,Canada:Montreal,2006.
    [129]Orths A G, Eriksen P B, Akhmatov V. Planning under Uncertainty-Securing Reliable Electricity Supply in Liberalized Energy Markets[C]. Proceedings of 2007 IEEE Power Engineering Society General Meeting,USA:Tampa,2007.
    [130]Orths A G, Eriksen P B. System service in a system with a high DG penetration-A task for DG? [C]. Proceedings of 2008 IEEE Power Engineering Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, USA:Pittsburgh,2008.
    [131]国家电网公司.绿色发展白皮书[S]http://www.sgcc.com.cn/bps/index.shtml
    [132]国家电力监管委员会.并网发电厂辅助服务管理暂行办法[S].北京:国家电力监管委员会,2006.
    [133]东北电监局.东北区域并网发电厂辅助服务管理实施细则[S]. http://dbj.serc.gov.cn/ djjnWeb/main_info/ak.do?infoId=20090305190746580428278096462209
    [134]华北电监局.华北区域并网发电厂辅助服务管理实施细则[S]. http://hbj.serc.gov.cn /mxy.jsp?id4=00160101013
    [135]西北电监局.西北区域并网发电厂辅助服务管理实施细则[S]. http://xbj.serc.gov.cn
    [136]邱丽霞,韩晓琳,杨淑红.热力发电厂[M].北京:中国电力出版社,2008.
    [137]Danish Energy Agency. Energy Statistics2009. http://www.ens.dk/en-US/Info/ FactsAndFigures/Energy_statistics_and_indicators/Annual%20Statistics/Sider/Forside.aspx
    [138]李博.北欧电力市场的市场力评估[J].中国电力,2010,43(12):74-77.
    [139]Mathiesen B V, Lund H. Comparative analyses of seven technologies to facilitate the integration of fluctuating renewable energy sources[J]. IET Renewable Power Generation,2009,3(2):190-204.
    [140]Andersen T V. Integration of 50% wind power in a CHP-based power system:A model-based analysis of the impacts of increasing wind power and the potentials of flexible power generation [D]. Denmark:Technical University of Denmark,2009.
    [141]Lund H, Moller B, Mathiesen B V, et al. The role of district heating in future renewable energy systems[J]. Energy,2010,35(3):1381-1390.
    [142]Meibom P, Kiviluoma J, Barth R, et al.Value of electrical heat boilers and heat pumps for wind power integration[J]. Wind Energy,2007,10(4):321-337.
    [143]郑体宽,杨晨.热力发电厂[M].北京:中国电力出版社,2010.
    [144]冉景煜.热力发电厂[M].北京:机械工业出版社,2010.
    [145]刘志真,邱丽霞.热电联产[M].北京:中国电力出版社,2010.
    [146]孙奉仲,杨详良,高明.热电联产技术与管理[M].北京:中国电力出版社,2008.
    [147]张开菊,刘伟亮,宋伟,等.热力网与供热[M].北京:中国电力出版社,2008.
    [148]张蕾,单志栩.大型热网运行与管理[M].北京:中国水利水电出版社,2010.
    [149]Lund H, Andersen A N. Optimal designs of small CHP plants in a market with fluctuating electricity prices[J]. Energy Conversion and Management,2005,46(6):893-904.
    [150]全国人民代表大会常务委员会.中华人民共和国可再生能源法[S].北京:全国人民代表大会常务委员会,2005.
    [151]全国人民代表大会常务委员会.中华人民共和国可再生能源法[S]. 北京:全国人民代表大会常务委员会,2009.
    [152]王鹏,张灵凌,梁琳.火电机组有偿调峰与无偿调峰划分方法探讨[J].电力系统自动化,2010,34((9):87-90.
    [153]陈启鑫,康重庆,夏清.碳捕集电厂的运行机制研究与调峰效益分析[J].中国电机工程学报,2010,30(7):22-28.
    [154]胡建军,胡飞雄.节能发电调度模式下有偿调峰补偿新机制[J].电力系统自动化,2009,33(10):16-18.
    [155]王绵斌,谭忠富,张蓉,等.发电侧峰谷分时电价设计及电量分配优化模型[J].电力自动化设备,2007,27(8):16-20.
    [156]谭忠富,陈广娟,赵建保,等.以节能调度为导向的发电侧与售电侧峰谷分时电价联合优化模型[J].中国电机工程学报,2009,29(6):55-62.
    [157]ANGARITA J M, USAOLA J G. Combining hydro-generation and wind energy:bidding and operation on electricity spot markets[J]. Electric Power Systems Research,2007,77(5-6):393-400.
    [158]衣立东,朱敏奕,魏磊,姜宁,于广亮.风电并网后西北电网调峰能力的计算方法[J].电网技术,2010,34(2):129-132.
    [159]骆济寿,张川.电力系统优化运行[M].武汉:华中理工大学出版社,1990.
    [160]赵夏阳.电力系统日有功优化调度的工程化方法与软件[D].南京:河海大学,2001.
    [161]李刚.水火电系统短期节能发电调度研究与应用[D].大连:大连理工大学,2007.
    [162]华中工学院.水电站经济运行[M].北京:电力工业出版社,1980.06.
    [163]Steven Stoftl:美),著(宋永华,刘俊勇,王秀丽,译).电力系统经济—电力市场设计[M].北京:中国电力出版社,2006.04.
    [164]袁季修.论防止电力系统大面积停电的紧急控制—电力系统安全稳定运行的第三道防线[J].电网技术,1999,23(4):1-4.
    [165]DL 428-91电力系统自动低频减负荷技术规定[S].1991.
    [166]Kundur P, Power System Stability and Control[M]. New York:McGraw Hill,1994.
    [167]袁季修.电力系统安全稳定控制[M].北京:中国电力出版社,1996.
    [168]蔡邠.电力系统频率[M].北京:中国电力出版社,1988.
    [169]陈珩.电力系统稳态分析[M].北京:水利水电出版社,1995.
    [170]王锡凡.现代电力系统分析[M].北京:科学出版社,2003.
    [171]陈海波.国内外城市大面积停电分析及启示[J].广东电力,2008,21(2):34-39.
    [172]周勇,陈震海.华中(河南)电网“7.1”事故分析与思考[J].湖南电力,2008.
    [173]李厚年,湖:湖北电网安全稳定运行的经验和教训[J].湖北电力,2002,26(4):15-17.
    [174]国家经贸委,DL755-2001,电力系统安全稳定导则[S].北京:中国电力出版社,2001-07-01
    [175]杨博,解大,陈陈等.电力系统低频减载的现状和应用[J].华东电力,2002,9:14-18.
    [176]许正亚.电力系统自动装置[M].北京:中国电力出版社,1990.
    [177]Laths W R. Dynamic study of an extreme system reactive power deficit[J]. IEEE Trans PAS. PAS-104,(9):2420-2426.
    [178]杜壮奇.电力系统低频减载研究[D].北京:华北电力大学,2007.
    [179]曹小平.拉闸限电自动化方案的研究[D].大连:大连理工大学电气工程学院,2009.
    [180]闵勇.复杂扩展式电力系统中功率-频率动态过程分析及低频减载装置整定[D].北京:清华大学,1991.
    [181]东北电业管理局调度通信中心.电力系统运行操作和计算(修订版)[M].沈阳:辽宁科学技术出版社,1996.
    [182]袁季修.论防止电力系统大面积停电的紧急控制[J].电力自动化设备,2002,22(4):1-4.
    [183]袁季修,陈荣德,白亚民.对大型汽轮发电机频率异常运行能力的要求[J].中国电力.2001,34(12):32-35
    [184]Lindahl S, Runvik G, Stranne G. Operational experience of load shedding and new requirements on frequency relays[C]. The 6th International Conferenc on Developments in Power System Protection, 25-27 March 1997 Page(s):262-265.
    [185]A.A.Mohd Zin,H.Mohd Hafiz,W.K.Wong.Static and Dynamic Underfrequency Load Shedding:A Comparison[C].2004 International Conference on Power System Technology-POWER-CON2004 Singapore,21-24 November 2004:941-945
    [186]Charles C, Lester H. Fink and George Poullikkas. Load Shedding on an Isolated System[J]. IEEE Transactions on Power Systems, Vol.10, No.3, August 1995
    [187]余虹云,顾锦汶.华东电力系统低频减载方案的整定[J].浙江电力,1995,(1):29-31.
    [188]GB/Z 19963-2005风电场接入电力系统技术规定[S].北京:中国电力出版社,2005.
    [189]赵强,刘肇旭,张丽.对中国低频减载方案制定中若干问题的探讨[J].电力系统自动化,2010,34(11):48-53.
    [190]Johan Morren, Sjoerd W. H. de Haan, Wil L. Kling, et al. Wind turbines emulating inertia and supporting primary frequency control[J]. IEEE Transaction on Power Systems,2006,21(1):433-434.
    [191]L.Holdsworth, J.B. Ekanayake, N. Jenkin. Power system frequency response from fixed speed and doubly fed induction generator-based wind turbines[J]. Wind Energy,2004,7(1):21-35.
    [192]陈婷,熊建华,许小菲.江西电网低频减负荷整定及动态分析[J].江西电力,2001,25(4):11-17.