补丁粒子在稀溶液中多级自组装行为的布朗动力学模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
各向异性的补丁粒子是由一个以上具有不同形状、位置、化学功能以及光、电、磁和力学特性的区域构成的纳米粒子或者胶体粒子。由于不同区域间的特殊相互作用,它们通常可以自组装形成有序结构,而这些有序结构具有很多潜在的应用,例如光子晶体、药物输运、数据存储以及条码技术等。为了更好的应用补丁粒子形成的组装结构,深入理解补丁粒子的自组装过程是十分必要的。因此本文布朗动动力学(Brownian Dynamics,BD)模拟方法研究了典型三嵌段补丁粒子的自组装行为,明确了两类补丁粒子自组装结构的调控规律。
     我们通过布朗动力学方法研究了具有对称性的双补丁粒子ABA在稀溶液中的自组装行为,其中A为补丁粒子的两极,B为补丁粒子的赤道。通过深入分析具有不同表面覆盖面积的双补丁粒子在选择性溶剂中的自组装过程,我们发现当选择性溶剂对粒子的补丁部分为不良溶剂,但是对于非补丁部分却为良溶剂时,在补丁尺寸较小的情况下可以得到线状结构,在补丁尺寸较大的情况下可以得到三维网络结构。当选择性溶剂对粒子的补丁部分为良溶剂,但是对于非补丁部分却为不良溶剂时,在补丁尺寸较大的时候可以得到层状结构,在补丁尺寸较小的时候只能得到聚集体结构。
     自组装是组装基元通过弱相互作用自发地形成有序结构的过程,多级自组装则提供了更加精确的控制手段,还可以对有序结构进行二次优化。近年来,多级自组装方法在具有优异性能的多肽、嵌段共聚物、纳米粒子和胶体粒子组装中备受关注。我们利用布朗动力学方法系统研究了ACB三嵌段补丁粒子的多级自组装过程,即将第一级组装得到的产物作为第二级组装的初始构型。多级自组装为制备具有复杂功能的结构提供了高效可行的方案,我们的模型更进一步,可以精确调控补丁的大小。第一阶段的组装在较低浓度、只有A-A疏水相互作用情况下进行,得到的产物为第二级组装提供反应物。
     在第二个阶段允许B-B疏水相互作用,我们通过退火的方法研究了第二级组装从反应物到目标结构的过程,并且讨论了浓度和吸引强度的影响。我们主要通过调控体系中补丁B部分的吸引强度和补丁粒子的浓度,研究了第二级组装过程中形成有序结构的影响因素。通过合理的设计组装模型、组装规则和组装路线,最终得到了蜂巢状网络结构和金刚石状结构。结果表明补丁B部分在较高的吸引强度和适当的浓度下,可以得到更多并且更规整的蜂巢状结构。而对于金刚石状结构,较高和较低的吸引强度和浓度都不利于其形成。
Patchy particles usually consist of more than one different regions withdiverse shapes, positions, chemical functionalities and electrical properties. Dueto specific interactions between different pattens, they often self-assemble intoordered structures which have numerous potential applications in many fields,such as photonic crystals, drug delivery, date storage and barcoding. In order tomake the self-assembly structures of patchy particles have a better application, itis necessary to understand the self-assembly process of patchy particles. In thisstudy, Brownian dynamics simulation method has been used to investigate theself-assembly behavior of ABA and ACB triblock patchy particles.
     We study the self-assembly behavior of two-patch particles with D∞hsymmetry by using Brownian dynamics simulations. The self-assemblyprocesses of two-patch particles with diverse patch coverage in two selectivesolvent conditions are investigated. The patchy particles form linear thread-likestructures with low patch coverage in a solvent that is bad for patches but goodfor matrix, whereas they form three-dimensional network structures withrelatively high patch coverage on surface. For patchy particles in a solvent thatis good for patches but bad for matrix, monolayer structures are obtained at highpatch coverage, and only cluster structures emerge when surface patch coverageis low.
     Hierarchical self-assembly provides a more precise control to optimizeordered structure quadratically. In recent years, the hierarchical self-assemblymethods are used to study the complex stuctures and excellent propertiesderived from the polypeptide, block copolymer, nanoparticles and colloidalparticles. We investigate the hierarchical self-assembly of ACB triblock patchyparticles, where the self-assembly product of first stage is set as the initialstructure for the second stage self-assembly. Hierarchical assembly offers apromising route that allows to fabricate a range of functional structures, the size of the patch can be precisely regulated in our models. In the first stageself-assembly,we only allow A-A hydrophobic attraction at low concentrationto refine self-assembly subunits for next stage.
     In the second stage, B-B hydrophobic attraction is also allowed to generatethe the second stage self-assembly structures. By regulation the interactionbetween patch B as well as the concentration of patchy particles, the factors thatinfluence the ordered structures are studied. Via properly designing theassembly models, routes and rules, we can observe the formation of honeycombnetwork structure and diamond structures, respectively. The results reveal thatthe strong attraction between patch B is good for honeycomb network structureformation in solution with suitable patchy particle concentrations. But it isnecessary to choose appropriate attraction between patch B and theconcentration to get the diamond structures.
引文
[1] LI Y M, XU G Y, CHEN Y J, LUAN Y, YUAN S L. Computersimulations of surfactants and surfactant/polymer assemblies[J].Computational Materials Science,2006,36(4):386-396.
    [2] VIOLEAU D. Dissipative forces for Lagrangian models incomputational fluid dynamics and application to smoothed-particlehydrodynamics[J]. Physical Review E,2009,80(3):036705.
    [3] LIU M B, MEAKIN P, HUANG H. Dissipative particle dynamicssimulation of multiphase fluid flow in microchannels and microchannelnetworks[J]. Physics of Fluids,2007,19(3):033302.
    [4] ZEWDIE H. Computer simulation studies of liquid crystals: A newCorner potential for cylindrically symmetric particles[J]. The Journal ofChemical Physics,1998,108(5):2117-2133.
    [5] CHAN E R, HO L C, GLOTZER S C. Computer simulations of blockcopolymer tethered nanoparticle self-assembly[J]. The Journal ofChemical Physics,2006,125(6):064905.
    [6] DRUKKER K, SCHATZ G C. A model for simulating dynamics of DNAdenaturation[J]. The Journal of Physical Chemistry B,2000,104(26):6108-6111.
    [7] DRUKKER K, WU G S, SCHATZ G C. Modes simulations of DNAdenaturation dynamics[J]. The Journal of Chemical Physics,2001,114(1):579-590.
    [8] FEDOSOV D A, CASWELL B, KARNIADAKIS G E. Dissipativeparticle dynamics simulation of polymer-and cell-wall depletion inmicro-channels[C]. Xvth International Congress on Rheology-theSociety of Rheology80th Annual Meeting, Pts1and2,2008,1027:612-614.
    [9] RAKESH L. Modeling and Bio molecular Self-assembly via MolecularDynamics and Dissipative Particle Dynamics[C]. Numerical Analysisand Applied Mathematics, Vols1and2,2009,1168:832-835.
    [10] SUEK N W, LAMM M H. Computer Simulation of Architectural andMolecular Weight Effects on the Assembly of AmphiphilicLinear Dendritic Block Copolymers in Solution[J]. Langmuir,2008,24(7):3030-3036.
    [11] MAYER C, SCIORTINO F, LIKOS C N, TARTAGLIA P, LOEWEN H,ZACCARELLI E. Multiple Glass Transitions in Star Polymer Mixtures:Insights from Theory and Simulations[J]. Macromolecules,2009,42(1):423-434.
    [12] SZABELSKI P, DE FEYTER S, DRACH M, LEI S. ComputerSimulation of Chiral Nanoporous Networks on Solid Surfaces[J].Langmuir,2010,26(12):9506-9515.
    [13] ASKADSKII A A. Computational Materials Science of Polymers[M].Cambridge: Cambridge International Science Publishing,2003.
    [14]李泽生,吕中元.计算机模拟方法及其在物理化学中的应用[M].新世纪的物理化学——学科前沿与展望,梁.国家自然科学基金委员会化学学科部组编,杨俊林,陈拥军,李灿主编,北京:科学出版社,2004,71-74.
    [15]杨小震.高分子的计算机模拟[M].高分子科学的今天与明天,施良和,胡汉杰主编,北京:化学工业出版社,1994,182-193.
    [16] SWOPE W C, ANDERSEN H C, BERENS P H, WILSON K R. Acomputer simulation method for the calculation of equilibrium constantsfor the formation of physical clusters of molecules: Application to smallwater clusters[J]. The Journal of Chemical Physics,1982,76(1):637-649.
    [17] LU Z Y, HENTSCHKE R. Computer simulation study on the swelling ofa polyelectrolyte gel by a Stockmayer solvent[J]. Physical Review E,2003,67(6):061807.
    [18] ELLIOTT J A, BENEDICT M, DUTT M. Applications of DL_POLY tomodelling of mesoscopic particulate systems[J]. Molecular Simulation,2006,32(12-13):1113-1121.
    [19] GROOT R D. Applications of dissipative particle dynamics[M]. NovelMethods in Soft Matter Simulations, M. Karttunen, I. Vattulainen, A.Lukkarinen, Berlin: Springer Berlin Heidelberg,2004,640:5-38.
    [20] NORO M G, MENEGHINI F, WARREN P B. Application of dissipativeparticle dynamics to materials physics problems in polymer andsurfactant science[M]. Mesoscale Phenomena in Fluid Systems, F. Case,P. Alexandridis, Washington: American Chemical Society,2003,861:242-257.
    [21] SATOH A, CHANTRELL R W. Application of the dissipative particledynamics method to magnetic colloidal dispersions[J]. MolecularPhysics,2006,104(20-21):3287-3302.
    [22] WOOLFSON M M, PERT G J. An Introduction to ComputerSimulation[M]. Oxford: Oxford University Press,1999.
    [23] RUTTEN N, VAN JOOLINGEN W R, VAN DER VEEN J T. Thelearning effects of computer simulations in science education[J].Computers&Education,2012,58(1):136-153.
    [24] HEYES D M. The Liquid State: Applications of MolecularSimulations[M]. New York: John Wiley&Sons, Inc.,1998.
    [25] BINDER K. Monte Carlo and Molecular Dynamics Simulations inPolymer Science[M]. Oxford: Oxford University Press,1996.
    [26] WOOD W W, PARKER F R. Monte Carlo Equation of State ofMolecules Interacting with the Lennard-Jones Potential. I. ASupercritical Isotherm at about Twice the Critical Temperature[J]. TheJournal of Chemical Physics,1957,27(3):720-733.
    [27] HINCHLIFFE A. Molecular Modelling for Beginners SecondEdition[M]. West Sussex: John Wiley&Sons Ltd,2008.
    [28] DAAN F, BEREND S. Understanding molecular simulation: FromAlgorithms to Applications[M].2ed. New York: Academic Press,2002.
    [29] HE Y D, TANG Y H, WANG X L. Dissipative particle dynamicssimulation on the membrane formation of polymer-diluent system viathermally induced phase separation[J]. Journal of Membrane Science,2011,368(1-2):78-85.
    [30] YAN L T, MARESOV E, BUXTON G A, BALAZS A C. Self-assemblyof mixtures of nanorods in binary, phase-separating blends[J]. SoftMatter,2011,7(2):595-607.
    [31] ZHU Y-L, LU Z-Y. Phase diagram of spherical particles interacted withharmonic repulsions[J]. The Journal of Chemical Physics,2011,134(4):044903.
    [32] LIU T W. Flexible polymer chain dynamics and rheological properties insteady flows[J]. The Journal of Chemical Physics,1989,90(10):5826-5842.
    [33] ZYLKA W, OTTINGER H C. A comparison between simulations andvarious approximations for Hookean dumbbells with hydrodynamicinteraction[J]. The Journal of Chemical Physics,1989,90(1):474-480.
    [34] GRASSIA P, HINCH E J. Computer simulations of polymer chainrelaxation via Brownian motion[J]. Journal of Fluid Mechanics,1996,308,255-288.
    [35] DOYLE P S, SHAQFEH E S G, GAST A P. Dynamic simulation offreely draining flexible polymers in steady linear flows[J]. Journal ofFluid Mechanics,1997,334,251-291.
    [36] CHEN S, DOOLEN G D. Lattice Boltzmann Method For Fluid Flows[J]. Annual Review of Fluid Mechanics,1998,30(1):329-364.
    [37] DUNWEG B, LADD A J C. Lattice Boltzmann Simulations of SoftMatter Systems[M]. Advanced Computer Simulation Approaches forSoft Matter Sciences III, H. Christian, K. Kurt, Berlin: Springer BerlinHeidelberg,2009,221:89-166.
    [38] BERENDSEN H J C. Simulating the Physical World HierarchicalModeling from Quantum Mechanics to Fluid Dynamics[M].Cambridge: Cambridge University Press,2007.
    [39] KOTELYANSKII M, THEODOROU D N. Simulation Methods ForPolymers[M]. New York: Marcel Dekker, Inc.,2004.
    [40] ROZEN T, BORYCZKO K, ALDA W. GPU bucket sort algorithm withapplications to nearest-neighbour search[J]. Journal of Wscg,2008,2008,16(1-3):161-167.
    [41] ANDERSON J A, LORENZ C D, TRAVESSET A. General purposemolecular dynamics simulations fully implemented on graphicsprocessing units[J]. Journal of Computational Physics,2008,227(10):5342-5359.
    [42] PHILLIPS C L, ANDERSON J A, GLOTZER S C. Pseudo-randomnumber generation for Brownian Dynamics and Dissipative ParticleDynamics simulations on GPU devices[J]. Journal of ComputationalPhysics,2011,230(19):7191-7201.
    [43] G TZ A W, WILLIAMSON M J, XU D, POOLE D, LE GRAND S,WALKER R C. Routine Microsecond Molecular Dynamics Simulationswith AMBER on GPUs.1. Generalized Born[J]. Journal of ChemicalTheory and Computation,2012,8(5):1542-1555.
    [44] LIANG J, LI K, SHI L, LIU R, MEI J. Accelerating solidificationprocess simulation for large-sized system of liquid metal atoms usingGPU with CUDA[J]. Journal of Computational Physics,2014,257,521-535.
    [45] YU H, CHEN R, WANG H, YUAN Z, ZHAO Y, AN Y, XU Y, ZHU L.GPU accelerated lattice Boltzmann simulation for rotationalturbulence[J]. Computers&Mathematics with Applications,2014,67(2):445-451.
    [46] WESTPHAL E, SINGH S P, HUANG C C, GOMPPER G, WINKLER RG. Multiparticle collision dynamics: GPU accelerated particle-basedmesoscale hydrodynamic simulations[J]. Computer PhysicsCommunications,2014,185(2):495-503.
    [47] PREIS T, VIRNAU P, PAUL W, SCHNEIDER J J. GPU acceleratedMonte Carlo simulation of the2D and3D Ising model[J]. Journal ofComputational Physics,2009,228(12):4468-4477.
    [48] RODRIGUES C I, HARDY D J, STONE J E, SCHULTEN K, HWUW-M W. GPU acceleration of cutoff pair potentials for molecularmodeling applications[C]. Proceedings of the5th conference onComputing frontiers,2008,273-282.
    [49] STONE J E, HARDY D J, ISRALEWITZ B, SCHULTEN K. GPUalgorithms for molecular modeling[M]. Scientific Computing withMulticore and Accelerators, J. Dongarra, D. A. Bader, J. Kurzak, NewYork: CRC Press,2011.
    [50] ZHU Y-L, LIU H, LI Z-W, QIAN H-J, MILANO G, LU Z-Y.GALAMOST: GPU-accelerated large-scale molecular simulationtoolkit[J]. Journal of Computational Chemistry,2013,34(25):2197-2211.
    [51] BIANCHI E, DOPPELBAUER G, FILION L, DIJKSTRA M, KAHL G.Predicting patchy particle crystals: Variable box shape simulations andevolutionary algorithms[J]. The Journal of Chemical Physics,2012,136(21):214102.
    [52] DE LAS HERAS D, TAVARES J M, TELO DA GAMA M M.Bicontinuous and mixed gels in binary mixtures of patchy colloidalparticles[J]. Soft Matter,2012,8(6):1785-1794.
    [53] DE MICHELE C, BELLINI T, SCIORTINO F. Self-Assembly ofBifunctional Patchy Particles with Anisotropic Shape into PolymersChains: Theory, Simulations, and Experiments[J]. Macromolecules,2012,45(2):1090-1106.
    [54] DOPPELBAUER G, NOYA E G, BIANCHI E, KAHL G. Self-assemblyscenarios of patchy colloidal particles[J]. Soft Matter,2012,8(30):7768-7772.
    [55] GNAN N, DE LAS HERAS D, TAVARES J M, DA GAMA M M T,SCIORTINO F. Properties of patchy colloidal particles close to a surface:A Monte Carlo and density functional study[J]. The Journal of ChemicalPhysics,2012,137(8):084704.
    [56] STUART M A C, HUCK W T S, GENZER J, MULLER M, OBER C,STAMM M, SUKHORUKOV G B, SZLEIFER I, TSUKRUK V V,URBAN M, WINNIK F, ZAUSCHER S, LUZINOV I, MINKO S.Emerging applications of stimuli-responsive polymer materials[J].Nature Materials,2010,9(2):101-113.
    [57] ZHANG W, M LLER A H E. Architecture, self-assembly and propertiesof well-defined hybrid polymers based on polyhedral oligomericsilsequioxane (POSS)[J]. Progress in Polymer Science,2013,38(8):1121-1162.
    [58] ZHANG J, LU Z-Y, SUN Z-Y. Self-assembly structures of amphiphilicmultiblock copolymer in dilute solution[J]. Soft Matter,2013,9(6):1947-1954.
    [59] YE X, CHEN J, ENGEL M, MILLAN J A, LI W, QI L, XING G,COLLINS J E, KAGAN C R, LI J, GLOTZER S C, MURRAY C B.Competition of shape and interaction patchiness for self-assemblingnanoplates[J]. Nature Chemistry,2013,5(6):466-473.
    [60] XIE Y, GUO S, GUO C, HE M, CHEN D, JI Y, CHEN Z, WU X, LIU Q,XIE S. Controllable Two-Stage Droplet Evaporation Method and ItsNanoparticle Self-Assembly Mechanism[J]. Langmuir,2013,29(21):6232-6241.
    [61] JANKOWSKI E, GLOTZER S C. Screening and designing patchyparticles for optimized self-assembly propensity through assemblypathway engineering[J]. Soft Matter,2012,8(10):2852-2859.
    [62] KRAFT D J, NI R, SMALLENBURG F, HERMES M, YOON K,WEITZ D A, VAN BLAADEREN A, GROENEWOLD J, DIJKSTRA M,KEGEL W K. Surface roughness directed self-assembly of patchyparticles into colloidal micelles[J]. Proceedings of the National Academyof Sciences,2012,109(27):10787-10792.
    [63] MANI E, SANZ E, ROY S, DIJKSTRA M, GROENEWOLD J, KEGELW K. Sheet-like assemblies of spherical particles with point-symmetricalpatches[J]. The Journal of Chemical Physics,2012,136(14):144706.
    [64] MATTHEWS R, LIKOS C N. Influence of Fluctuating Membranes onSelf-Assembly of Patchy Colloids[J]. Physical Review Letters,2012,109(17):178302.
    [65] SANTOS A, MILLAN J A, GLOTZER S C. Facetted patchy particlesthrough entropy-driven patterning of mixed ligand SAMS[J]. Nanoscale,2012,4(8):2640-2650.
    [66] ZHANG Z L, GLOTZER S C. Self-assembly of patchy particles[J].Nano Letters,2004,4(8):1407-1413.
    [67] PAWAR A B, KRETZSCHMAR I. Fabrication, Assembly, andApplication of Patchy Particles[J]. Macromolecular RapidCommunications,2010,31(2):150-168.
    [68] WANG S, MA J-M, CHEN Y. Preparation and Magnetic Properties ofAnisotropic (Sm,Pr)Co-5/Fe Nanocomposites Particles via ElectrolessPlating[J]. Journal of Chemistry,2014,2014(2014):842495.
    [69] REZVANTALAB H, SHOJAEI-ZADEH S. Role of Geometry andAmphiphilicity on Capillary-Induced Interactions between AnisotropicJanus Particles[J]. Langmuir,2013,29(48):14962-14970.
    [70] DE BEULE P A A. Surface scattering of core-shell particles withanisotropic shell[J]. Journal of the Optical Society of America A-OpticsImage Science and Vision,2014,31(1):162-171.
    [71] MCCONNELL M D, KRAEUTLER M J, YANG S, COMPOSTO R J.Patchy and Multiregion Janus Particles with Tunable OpticalProperties[J]. Nano Letters,2010,10(2):603-609.
    [72] NAGARWAL R C, KANT S, SINGH P N, MAITI P, PANDIT J K.Polymeric nanoparticulate system: A potential approach for ocular drugdelivery[J]. Journal of Controlled Release,2009,136(1):2-13.
    [73] GROSSE C, DELGADO A V. Dielectric dispersion in aqueous colloidalsystems[J]. Current Opinion in Colloid&Interface Science,2010,15(3):145-159.
    [74] WOOD V, PANZER M J, CARUGE J-M, HALPERT J E, BAWENDI MG, BULOVIC V. Air-Stable Operation of Transparent, ColloidalQuantum Dot Based LEDs with a Unipolar Device Architecture[J].Nano Letters,2009,10(1):24-29.
    [75] RHODES R, ASGHAR S, KRAKOW R, HORIE M, WANG Z,TURNER M L, SAUNDERS B R. Hybrid polymer solar cells: From therole colloid science could play in bringing deployment closer to a studyof factors affecting the stability of non-aqueous ZnO dispersions[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2009,343(1–3):50-56.
    [76] LIDDELL C M, SUMMERS C J, GOKHALE A M. Stereologicalestimation of the morphology distribution of ZnS clusters for photoniccrystal applications[J]. Materials Characterization,2003,50(1):69-79.
    [77] CHAMPION J A, KATARE Y K, MITRAGOTRI S. Making polymericmicro-and nanoparticles of complex shapes[J]. Proceedings of theNational Academy of Sciences,2007,104(29):11901-11904.
    [78] LANGER R, TIRRELL D A. Designing materials for biology andmedicine[J]. Nature,2004,428(6982):487-492.
    [79] GRATZEL M. Photoelectrochemical cells[J]. Nature,2001,414(6861):338-344.
    [80] VAN ANDERS G, AHMED N K, SMITH R, ENGEL M, GLOTZER SC. Entropically Patchy Particles: Engineering Valence through ShapeEntropy[J]. Acs Nano,2014,8(1):931-940.
    [81] WANG Y, HOLLINGSWORTH A D, YANG S K, PATEL S, PINE D J,WECK M. Patchy Particle Self-Assembly via Metal Coordination[J].Journal of the American Chemical Society,2013,135(38):14064-14067.
    [82] ROLDAN-VARGAS S, SMALLENBURG F, KOB W, SCIORTINO F.Phase diagram of a reentrant gel of patchy particles[J]. The Journal ofChemical Physics,2013,139(24):244910.
    [83] HE Z, KRETZSCHMAR I. Template-Assisted GLAD: Approach toSingle and Multipatch Patchy Particles with Controlled Patch Shape[J].Langmuir,2013,29(51):15755-15761.
    [84] WALKER D A, LEITSCH E K, NAP R J, SZLEIFER I,GRZYBOWSKI B A. Geometric curvature controls the chemicalpatchiness and self-assembly of nanoparticles[J]. NatureNanotechnology,2013,8(9):676-681.
    [85] LEE K J, YOON J, RAHMANI S, HWANG S, BHASKAR S,MITRAGOTRI S, LAHANN J. Spontaneous shape reconfigurations inmulticompartmental microcylinders[J]. Proceedings of the NationalAcademy of Sciences,2012,109(40):16057-16062.
    [86] GROESCHEL A H, WALTHER A, LOEBLING T I, SCHMELZ J,HANISCH A, SCHMALZ H, MUELLER A H E. Facile, Solution-BasedSynthesis of Soft, Nanoscale Janus Particles with Tunable JanusBalance[J]. Journal of the American Chemical Society,2012,134(33):13850-13860.
    [87] YOON J, LEE K J, LAHANN J. Multifunctional polymer particles withdistinct compartments[J]. Journal of Materials Chemistry,2011,21(24):8502-8510.
    [88] YI G R, PINE D J, SACANNA S. Recent progress on patchy colloidsand their self-assembly[J]. Journal of Physics: Condensed Matter,2013,25(19):193101.
    [89] WANG Y, WANG Y, BREED D R, MANOHARAN V N, FENG L,HOLLINGSWORTH A D, WECK M, PINE D J. Colloids with valenceand specific directional bonding[J]. Nature,2012,491(7422):51-55.
    [90] ROSSI L, SACANNA S, IRVINE W T M, CHAIKIN P M, PINE D J,PHILIPSE A P. Cubic crystals from cubic colloids[J]. Soft Matter,2011,7(9):4139-4142.
    [91] SUN Y G, XIA Y N. Shape-controlled synthesis of gold and silvernanoparticles[J]. Science,2002,298(5601):2176-2179.
    [92] YANAI N, SINDORO M, YAN J, GRANICK S. Electric Field-InducedAssembly of Monodisperse Polyhedral Metal–Organic FrameworkCrystals[J]. Journal of the American Chemical Society,2012,135(1):34-37.
    [93] SMALLENBURG F, VUTUKURI H R, IMHOF A, BLAADEREN A V,DIJKSTRA M. Self-assembly of colloidal particles into strings in ahomogeneous external electric or magnetic field[J]. Journal of Physics:Condensed Matter,2012,24(46):464113.
    [94] ROVIGATTI L, RUSSO J, SCIORTINO F. Structural properties of thedipolar hard-sphere fluid at low temperatures and densities[J]. SoftMatter,2012,8(23):6310-6319.
    [95] PHILLIPS C L, GLOTZER S C. Effect of nanoparticle polydispersity onthe self-assembly of polymer tethered nanospheres[J]. The Journal ofChemical Physics,2012,137(10):104901-104913.
    [96] GOGELEIN C, ROMANO F, SCIORTINO F, GIACOMETTI A.Fluid-fluid and fluid-solid transitions in the Kern-Frenkel model fromBarker-Henderson thermodynamic perturbation theory[J]. The Journal ofChemical Physics,2012,136(9):094512-094512.
    [97] SACANNA S, IRVINE W T M, ROSSI L, PINE D J. Lock and keycolloids through polymerization-induced buckling of monodispersesilicon oil droplets[J]. Soft Matter,2011,7(5):1631-1634.
    [98] ZOLDESI C I, VAN WALREE C A, IMHOF A. Deformable hollowhybrid silica/siloxane colloids by emulsion templating[J]. Langmuir,2006,22(9):4343-4352.
    [99] SACANNA S, IRVINE W T M, CHAIKIN P M, PINE D J. Lock andkey colloids[J]. Nature,2010,464(7288):575-578.
    [100] CHAMPION J A, KATARE Y K, MITRAGOTRI S. Particle shape: Anew design parameter for micro-and nanoscale drug delivery carriers[J].Journal of Controlled Release,2007,121(1–2):3-9.
    [101] YOO J W, DOSHI N, MITRAGOTRI S. Endocytosis and IntracellularDistribution of PLGA Particles in Endothelial Cells: Effect of ParticleGeometry[J]. Macromolecular Rapid Communications,2010,31(2):142-148.
    [102] DECUZZI P, FERRARI M. The Receptor-Mediated Endocytosis ofNonspherical Particles[J]. Biophysical Journal,2008,94(10):3790-3797.
    [103] SINDORO M, JEE A-Y, GRANICK S. Shape-selected colloidal MOFcrystals for aqueous use[J]. Chemical Communications,2013,49(83):9576-9578.
    [104] SYNATSCHKE C V, LOEBLING T I, FOERTSCH M, HANISCH A,SCHACHER F H, MUELLER A H E. Micellar InterpolyelectrolyteComplexes with a Compartmentalized Shell[J]. Macromolecules,2013,46(16):6466-6474.
    [105] XU S, NIE Z, SEO M, LEWIS P, KUMACHEVA E, STONE H A,GARSTECKI P, WEIBEL D B, GITLIN I, WHITESIDES G M.Generation of Monodisperse Particles by Using Microfluidics: Controlover Size, Shape, and Composition[J]. Angewandte ChemieInternational Edition,2005,44(5):724-728.
    [106] LU G, THIRD J R, MUELLER C R. Effect of particle shape on dominowave propagation: a perspective from3D, anisotropic discrete elementsimulations[J]. Granular Matter,2014,16(1):107-114.
    [107] ISHII S, INOUE S-I, OTOMO A. Electric and magnetic resonances instrongly anisotropic particles[J]. Journal of the Optical Society ofAmerica B-Optical Physics,2014,31(2):218-222.
    [108] HUBERT F, BIHANNIC I, PRET D, TERTRE E, NAULEAU B,PELLETIER M, DEME B, FERRAGE E. Investigating the anisotropicfeatures of particle orientation in synthetic swelling clay porous media[J].Clays and Clay Minerals,2013,61(5):397-415.
    [109] SAKURAI Y, NAGAO D, ISHII H, KONNO M. Miniaturization ofanisotropic composite particles incorporating a silica particle smallerthan100nm[J]. Colloid and Polymer Science,2014,292(2):449-454.
    [110] ZHAO Z, SHI Z, YU Y, ZHANG G. Ternary Asymmetric Particles withControllable Patchiness[J]. Langmuir,2012,28(5):2382-2386.
    [111] CHAUDHARY K, CHEN Q, JU REZ J J, GRANICK S, LEWIS J A.Janus Colloidal Matchsticks[J]. Journal of the American ChemicalSociety,2012,134(31):12901-12903.
    [112] YAKE A M, SNYDER C E, VELEGOL D. Site-specificfunctionalization on individual colloids: Size control, stability, andmultilayers[J]. Langmuir,2007,23(17):9069-9075.
    [113] CUI J-Q, KRETZSCHMAR I. Surface-Anisotropic Polystyrene Spheresby Electroless Deposition[J]. Langmuir,2006,22(20):8281-8284.
    [114] HONG L, JIANG S, GRANICK S. Simple Method to Produce JanusColloidal Particles in Large Quantity[J]. Langmuir,2006,22(23):9495-9499.
    [115] PERRO A, MEUNIER F, SCHMITT V, RAVAINE S. Production oflarge quantities of "Janus" nanoparticles using wax-in-wateremulsions[J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2009,332(1):57-62.
    [116] CHO Y-S, YI G-R, LIM J-M, KIM S-H, MANOHARAN V N, PINE D J,YANG S-M. Self-Organization of Bidisperse Colloids in WaterDroplets[J]. Journal of the American Chemical Society,2005,127(45):15968-15975.
    [117] MANOHARAN V N, ELSESSER M T, PINE D J. Dense packing andsymmetry in small clusters of microspheres[J]. Science,2003,301(5632):483-487.
    [118] SNYDER C E, YAKE A M, FEICK J D, VELEGOL D. Nanosealefunctionalization and site-specific assembly of colloids by particlelithography[J]. Langmuir,2005,21(11):4813-4815.
    [119] PAWAR A B, KRETZSCHMAR I. Multifunctional Patchy Particles byGlancing Angle Deposition[J]. Langmuir,2009,25(16):9057-9063.
    [120] PAWAR A B, KRETZSCHMAR I. Patchy particles by glancing angledeposition[J]. Langmuir,2008,24(2):355-358.
    [121] ZHANG G, WANG D, M HWALD H. Decoration of Microspheres withGold Nanodots—Giving Colloidal Spheres Valences[J]. AngewandteChemie International Edition,2005,44(47):7767-7770.
    [122] ZHANG G, WANG D, M HWALD H. Patterning Microsphere Surfacesby Templating Colloidal Crystals[J]. Nano Letters,2004,5(1):143-146.
    [123] ROH K-H, MARTIN D C, LAHANN J. Triphasic Nanocolloids[J].Journal of the American Chemical Society,2006,128(21):6796-6797.
    [124] ROH K H, MARTIN D C, LAHANN J. Biphasic Janus particles withnanoscale anisotropy[J]. Nature Materials,2005,4(10):759-763.
    [125] NIE Z, LI W, SEO M, XU S, KUMACHEVA E. Janus and TernaryParticles Generated by Microfluidic Synthesis: Design, Synthesis, andSelf-Assembly[J]. Journal of the American Chemical Society,2006,128(29):9408-9412.
    [126] ROMANO F, SANZ E, TARTAGLIA P, SCIORTINO F. Phase diagramof trivalent and pentavalent patchy particles[J]. Journal of Physics:Condensed Matter,2012,24(6):064113.
    [127] GIACOMETTI A, LADO F, LARGO J, PASTORE G, SCIORTINO F.Phase diagram and structural properties of a simple model for one-patchparticles[J]. The Journal of Chemical Physics,2009,131(17):174114.
    [128] FEJER S N, CHAKRABARTI D, WALES D J. Self-assembly ofanisotropic particles[J]. Soft Matter,2011,7(7):3553-3564.
    [129] GLOTZER S C, HORSCH M A, IACOVELLA C R, ZHANG Z L,CHAN E R, ZHANG X. Self-assembly of anisotropic tetherednanoparticle shape amphiphiles[J]. Current Opinion in Colloid&Interface Science,2005,10(5-6):287-295.
    [130] KRAFT D J, VLUG W S, VAN KATS C M, VAN BLAADEREN A,IMHOF A, KEGEL W K. Self-Assembly of Colloids with LiquidProtrusions[J]. Journal of the American Chemical Society,2008,131(3):1182-1186.
    [131] YAN L-T, POPP N, GHOSH S-K, BOEKER A. Self-Assembly of JanusNanoparticles in Diblock Copolymers[J]. Acs Nano,2010,4(2):913-920.
    [132] ZHANG Z L, KEYS A S, CHEN T, GLOTZER S C. Self-assembly ofpatchy particles into diamond structures through molecular mimicry[J].Langmuir,2005,21(25):11547-11551.
    [133] PAWAR A B, KRETZSCHMAR I, ARANOVICH G, DONOHUE M D.Self-Assembly of T-Structures in Molecular Fluids[J]. The Journal ofPhysical Chemistry B,2007,111(8):2081-2089.
    [134] SHARP E L, AL-SHEHRI H, HOROZOV T S, STOYANOV S D,PAUNOV V N. Adsorption of shape-anisotropic and porous particles atthe air-water and the decane-water interface studied by the gel trappingtechnique[J]. Rsc Advances,2014,4(5):2205-2213.
    [135] LI X, QIN Y, REN J, JIANG H. Algebraic Anisotropic TurbulenceModeling of Compound Angled Film Cooling Validated by ParticleImage Velocimetry and Pressure Sensitive Paint Measurements[J].Journal of Heat Transfer-Transactions of the Asme,2014,136(3):032201.
    [136] LAHANN J. Anisotropic particles made by electrohydrodynamicco-jetting[C]. Abstracts of Papers of the American Chemical Society,2013,246.
    [137] UEMURA T, KASEDA T, KITAGAWA S. Controlled Synthesis ofAnisotropic Polymer Particles Templated by Porous CoordinationPolymers[J]. Chemistry of Materials,2013,25(18):3772–3776.
    [138] PRADHAN A K, DAS D, CHATTOPADHYAY R, SINGH S N. Effectof3D fiber orientation distribution on particle capture efficiency ofanisotropic fiber networks[J]. Powder Technology,2013,249,205-207.
    [139] SUZUKI D, KAWAGUCHI H. Janus particles with a functional goldsurface for control of surface plasmon resonance[J]. Colloid andPolymer Science,2006,284(12):1471-1476.
    [140] JIANG S, GRANICK S. Janus balance of amphiphilic colloidalparticles[J]. The Journal of Chemical Physics,2007,127(16):161102.
    [141] WALTHER A, MULLER A H E. Janus particles[J]. Soft Matter,2008,4(4):663-668.
    [142] GRANICK S, JIANG S, CHEN Q. Janus particles[J]. Physics Today,2009,62(7):68-69.
    [143] LI Z-W, LU Z-Y, SUN Z-Y, AN L-J. Model, self-assembly structures,and phase diagram of soft Janus particles[J]. Soft Matter,2012,8(25):2693-2697.
    [144] LI Z W, LU Z Y, SUN Z Y, AN L J. Model, self-assembly structures, andphase diagram of soft Janus particles[J]. Soft Matter,2012,8(25):6693-6697.
    [145] SHINODA W, DEVANE R, KLEIN M L. Coarse-grained molecularmodeling of non-ionic surfactant self-assembly[J]. Soft Matter,2008,4(12):2454-2462.
    [146] M. P. ALLEN D J T. Computer Simulation of Liquids[M]. Clarendon:Oxford University Press,1987.
    [147] BINDER K, HEERMANN D W. Monte Carlo Simulation in StatisticalPhysics: An Introduction [M]. Berlin: Springer-Verlag,2010.
    [148] METROPOLIS N, ULAM S. The Monte Carlo Method[J]. Journal ofthe American Statistical Association,1949,44(247):335-341.
    [149] PONDER J W, CASE D A. Force fields for protein simulations[J].Protein Simulations,2003,66,27-85.
    [150] LENNARD-JONES J E. Cohesion[J]. The Proceedingss of the PhysicalSociety,1931,43(5):461-482.
    [151] SLATER G W, HOLM C, CHUBYNSKY M V, DE HAAN H W, DUBA, GRASS K, HICKEY O A, KINGSBURRY C, SEAN D,SHENDRUK T N, ZHAN L. Modeling the separation ofmacromolecules: A review of current computer simulation methods[J].Electrophoresis,2009,30(5):792-818.
    [152] WEEKS J D, CHANDLER D, ANDERSEN H C. Role of RepulsiveForces in Determining the Equilibrium Structure of Simple Liquids[J].The Journal of Chemical Physics,1971,54(12):5237-5247.
    [153] LEMONS D S, GYTHIEL A. Paul Langevin’s1908paper “On theTheory of Brownian Motion”[“Sur la théorie du mouvement brownien,”C. R. Acad. Sci.(Paris)146,530–533(1908)][J]. American Journal ofPhysics,1997,65(11):1079-1081.
    [154] MOUSSAVI-BAYGI R, JAMALI Y, KARIMI R, MOFRAD M R K.Brownian Dynamics Simulation of Nucleocytoplasmic Transport: ACoarse-Grained Model for the Functional State of the Nuclear PoreComplex[J]. Plos Computational Biology,2011,7(6):1002049.
    [155] GLOTZER S C, SOLOMON M J. Anisotropy of building blocks andtheir assembly into complex structures[J]. Nature Materials,2007,6(8):557-562.
    [156] LOVE J C, GATES B D, WOLFE D B, PAUL K E, WHITESIDES G M.Fabrication and Wetting Properties of Metallic Half-Shells withSubmicron Diameters[J]. Nano Letters,2002,2(8):891-894.
    [157] YU, CHANG S-S, LEE C-L, WANG C R C. Gold Nanorods:Electrochemical Synthesis and Optical Properties[J]. The Journal ofPhysical Chemistry B,1997,101(34):6661-6664.
    [158] CHEN S, WANG Z L, BALLATO J, FOULGER S H, CARROLL D L.Monopod, Bipod, Tripod, and Tetrapod Gold Nanocrystals[J]. Journal ofthe American Chemical Society,2003,125(52):16186-16187.
    [159] BONG K W, BONG K T, PREGIBON D C, DOYLE P S.Hydrodynamic Focusing Lithography[J]. Angewandte ChemieInternational Edition,2010,49(1):87-90.
    [160] SUNG K E, VANAPALLI S A, MUKHIJA D, MCKAY H A, MIRECKIMILLUNCHICK J, BURNS M A, SOLOMON M J. ProgrammableFluidic Production of Microparticles with Configurable Anisotropy[J].Journal of the American Chemical Society,2008,130(4):1335-1340.
    [161] HONG L, CACCIUTO A, LUIJTEN E, GRANICK S. Clusters ofcharged Janus spheres[J]. Nano Letters,2006,6(11):2510-2514.
    [162] CHATURVEDI N, JERRI H, VELEGOL D. Design andCharacterization of Randomly Speckled Spheres[J]. Langmuir,2008,24(14):7618-7622.
    [163] PERRO A, RECULUSA S, RAVAINE S, BOURGEAT-LAMI E,DUGUET E. Design and synthesis of Janus micro-and nanoparticles[J].Journal of Materials Chemistry,2005,15(35-36):3745-3760.
    [164] CAYRE O, PAUNOV V N, VELEV O D. Fabrication of asymmetricallycoated colloid particles by microcontact printing techniques[J]. Journalof Materials Chemistry,2003,13(10):2445-2450.
    [165] GANGWAL S, CAYRE O J, VELEV O D. Dielectrophoretic Assemblyof Metallodielectric Janus Particles in AC Electric Fields[J]. Langmuir,2008,24(23):13312-13320.
    [166] GLOTZER S C, SOLOMON M J, KOTOV N A. Self-assembly: Fromnanoscale to microscale colloids[J]. Aiche Journal,2004,50(12):2978-2985.
    [167] XIA Y, GATES B, YIN Y, LU Y. Monodispersed Colloidal Spheres: OldMaterials with New Applications[J]. Advanced Materials,2000,12(10):693-713.
    [168] ARSENAULT A, FOURNIER-BIDOZ S, HATTON B, MIGUEZ H,TETREAULT N, VEKRIS E, WONG S, MING YANG S, KITAEV V,OZIN G A. Towards the synthetic all-optical computer: science fictionor reality?[J]. Journal of Materials Chemistry,2004,14(5):781-794.
    [169] CHAMPION J A, MITRAGOTRI S. Role of target geometry inphagocytosis[J]. Proceedings of the National Academy of Sciences ofthe United States of America,2006,103(13):4930-4934.
    [170] PREGIBON D C, TONER M, DOYLE P S. Multifunctional encodedparticles for high-throughput biomolecule analysis[J]. Science,2007,315(5817):1393-1396.
    [171] LIU S T, ZHU T, HU R S, LIU Z F. Evaporation-induced self-assemblyof gold nanoparticles into a highly organized two-dimensional array[J].Physical Chemistry Chemical Physics,2002,4(24):6059-6062.
    [172] KAUFMANN T, GOKMEN M T, WENDELN C, SCHNEIDERS M,RINNEN S, ARLINGHAUS H F, BON S A F, DU PREZ F E, RAVOOB J."Sandwich" Microcontact Printing as a Mild Route TowardsMonodisperse Janus Particles with Tailored Bifunctionality[J].Advanced Materials,2011,23(1):79-83.
    [173] SNYDER C E, ONG M, VELEGOL D. In-solution assembly ofcolloidal water[J]. Soft Matter,2009,5(6):1263-1268.
    [174] CHEN Q, DIESEL E, WHITMER J K, BAE S C, LUIJTEN E,GRANICK S. Triblock Colloids for Directed Self-Assembly[J]. Journalof the American Chemical Society,2011,133(20):7725-7727.
    [175] BIANCHI E, BLAAK R, LIKOS C N. Patchy colloids: state of the artand perspectives[J]. Physical Chemistry Chemical Physics,2011,13(14):6397-6410.
    [176] ZHANG G, WANG D, M HWALD H. Nanoembossment of Au Patternson Microspheres[J]. Chemistry of Materials,2006,18(17):3985-3992.
    [177] BIANCHI E, LARGO J, TARTAGLIA P, ZACCARELLI E,SCIORTINO F. Phase Diagram of Patchy Colloids: Towards EmptyLiquids[J]. Physical Review Letters,2006,97(16):168301.
    [178] SCIORTINO F, ZACCARELLI E. Reversible gels of patchy particles[J].Current Opinion in Solid State and Materials Science,2011,15(6):246-253.
    [179] DE MICHELE C, TARTAGLIA P, SCIORTINO F. Slow dynamics in aprimitive tetrahedral network model[J]. The Journal of Chemical Physics,2006,125(20):204710.
    [180] SCIORTINO F, BIANCHI E, DOUGLAS J F, TARTAGLIA P.Self-assembly of patchy particles into polymer chains: a parameter-freecomparison between Wertheim theory and Monte Carlo simulation[J].The Journal of Chemical Physics,2007,126(19):194903.
    [181] KERN N, FRENKEL D. Fluid-fluid coexistence in colloidal systemswith short-ranged strongly directional attraction[J]. The Journal ofChemical Physics,2003,118(21):9882-9889.
    [182] GIACOMETTI A, LADO F, LARGO J, PASTORE G, SCIORTINO F.Effects of patch size and number within a simple model of patchycolloids[J]. Journal of Chemical Physics,2010,132(17).
    [183] ROMANO F, SCIORTINO F. COLLOIDAL SELF-ASSEMBLY Patchyfrom the bottom up[J]. Nature Materials,2011,10(3):171-173.
    [184] ROMANO F, SCIORTINO F. Two dimensional assembly of triblockJanus particles into crystal phases in the two bond per patch limit[J].Soft Matter,2011,7(12):5799-5804.
    [185] ZHANG J, LU Z-Y, SUN Z-Y. Self-assembly of amphiphilic patchyparticles with different cross-linking densities[J]. Soft Matter,2012,8(26):3073-3080.
    [186] GIACOMETTI A, LADO F, LARGO J, PASTORE G, SCIORTINO F.Effects of patch size and number within a simple model of patchycolloids[J]. The Journal of Chemical Physics,2010,132(17):174110.
    [187] ZHANG J, LU Z Y, SUN Z Y. Self-assembly of amphiphilic patchyparticles with different cross-linking densities[J]. Soft Matter,2012,8(26):7073-7080.
    [188] TRUNG DAC N, PHILLIPS C L, ANDERSON J A, GLOTZER S C.Rigid body constraints realized in massively-parallel moleculardynamics on graphics processing units[J]. Computer PhysicsCommunications,2011,182(11):2307-2313.
    [189] LI Z-W, LU Z-Y, ZHU Y-L, SUN Z-Y, AN L-J. A simulation model forsoft triblock Janus particles and their ordered packing[J]. Rsc Advances,2013,3(3):813-822.
    [190] WU Z, DONG C, LI Y, HAO H, ZHANG H, LU Z, YANG B.Self-Assembly of Au15into Single-Cluster-Thick Sheets at the Interfaceof Two Miscible High-Boiling Solvents[J]. Angewandte ChemieInternational Edition,2013,52(38):9952-9955.
    [191] LI YANCHUN W Y, LI ZHANWEI, LIU HONG, L,#220,ZHONGYUAN. Towards larger spatiotemporal scales in polymersimulations[J]. Chinese Science Bulletin,2013,58(30):3595-3599.
    [192] HE J, HUANG X, LI Y-C, LIU Y, BABU T, ARONOVA M A, WANG S,LU Z, CHEN X, NIE Z. Self-Assembly of Amphiphilic PlasmonicMicelle-Like Nanoparticles in Selective Solvents[J]. Journal of theAmerican Chemical Society,2013,135(21):7974-7984.
    [193] BISHOP K J M, WILMER C E, SOH S, GRZYBOWSKI B A.Nanoscale Forces and Their Uses in Self-Assembly[J]. Small,2009,5(14):1600-1630.
    [194] KONG W X, LI B H, JIN Q H, DING D T, SHI A C. Helical Vesicles,Segmented Semivesicles, and Noncircular Bilayer Sheets fromSolution-State Self-Assembly of ABC Miktoarm Star Terpolymers[J].Journal of the American Chemical Society,2009,131(24):8503-8512.
    [195] PONS-SIEPERMANN I C, GLOTZER S C. Design of Patchy ParticlesUsing Quaternary Self-Assembled Monolayers[J]. ACS Nano,2012,6(5):3919-3924.
    [196] GANG O, ZHANG Y. Shaping Phases by Phasing Shapes[J]. ACS Nano,2011,5(11):8459-8465.
    [197] WILLIAMSON A J, WILBER A W, DOYE J P K, LOUIS A A.Templated self-assembly of patchy particles[J]. Soft Matter,2011,7(7):3423-3431.
    [198] CHATTERJEE R, MITRA S K, BHATTACHARJEE S. ParticleDeposition onto Janus and Patchy Spherical Collectors[J]. Langmuir,2011,27(14):8787-8797.
    [199] LI B, ZHU Y-L, LU Z-Y. Different micellization behavior of miktoarmstar-like and diblock copolymers[J]. The Journal of Chemical Physics,2012,137(24):246102.
    [200] LI Y, QIAN H-J, LU Z-Y. The influence of one block polydispersity onphase separation of diblock copolymers: The molecular mechanism fordomain spacing expansion[J]. Polymer,2013,54(14):3716-3722.
    [201] XIE S-J, QIAN H-J, LU Z-Y. The influence of internal rotationalbarriers and temperature on static and dynamic properties of bulk atacticpolystyrene[J]. The Journal of Chemical Physics,2012,137(24):244903.
    [202] ZHANG J, LU Z Y, SUN Z Y. A possible route to fabricate patchynanoparticles via self-assembly of a multiblock copolymer chain in onestep[J]. Soft Matter,2011,7(21):9944-9950.
    [203] ZHANG J, ZHU Y L, PEI H W, LIU H. Self-assembly of AmphiphilicGraft Copolymer in Selective Solvent[J]. Chemical Journal of ChineseUniversities,2013,34(4):939-945.
    [204] ZHAO Y, XIE Y, LU Z Y, SUN C C. Dissipative Particle DynamicsSimulation of Physical Gelation Behavior ofP123(PEO20-PPO70-PEO20) Block Copolymer Aqueous Solution[J].Chemical Journal of Chinese Universities,2009,30(12):2455-2459.
    [205]李斌,朱有亮,徐丹,裴汉文,刘鸿.杂臂星型嵌段共聚物在溶液中自组装形成囊泡结构的计算机模拟[J].高等学校化学学报,2013,34(7):1667-1672.
    [206] SKARABOT M, RAVNIK M, ZUMER S, TKALEC U, POBERAJ I,BABIC D, MUSEVIC I. Hierarchical self-assembly of nematic colloidalsuperstructures[J]. Physical Review E,2008,77(6):061706.
    [207] MISZTA K, DE GRAAF J, BERTONI G, DORFS D, BRESCIA R,MARRAS S, CESERACCIU L, CINGOLANI R, VAN ROIJ R,DIJKSTRA M, MANNA L. Hierarchical self-assembly of suspendedbranched colloidal nanocrystals into superlattice structures[J]. NatureMaterials,2011,10(11):872-876.
    [208] XIE Y, GUO S M, GUO C F, HE M, CHEN D X, JI Y L, CHEN Z Y,WU X C, LIU Q, XIE S S. Controllable Two-Stage Droplet EvaporationMethod and Its Nanoparticle Self-Assembly Mechanism[J]. Langmuir,2013,29(21):6232-6241.
    [209] CHOI J S, CHOI H J, JUNG D C, LEE J H, CHEON J. Nanoparticleassisted magnetic resonance imaging of the early reversible stages ofamyloid beta self-assembly[J]. Chemical Communications,2008,2008(19):2197-2199.
    [210] MEZZENGA R, RUOKOLAINEN J, FREDRICKSON G H, KRAMERE J, MOSES D, HEEGER A J, IKKALA O. Templating organicsemiconductors via self-assembly of polymer colloids[J]. Science,2003,299(5614):1872-1874.
    [211] IKKALA O, TEN BRINKE G. Functional materials based onself-assembly of polymeric supramolecules[J]. Science,2002,295(5564):2407-2409.
    [212] GR SCHEL A H, SCHACHER F H, SCHMALZ H, BORISOV O V,ZHULINA E B, WALTHER A, M LLER A H E. Precise hierarchicalself-assembly of multicompartment micelles[J]. Nature Communications,2012,3,710.
    [213] IKKALA O, TEN BRINKE G. Hierarchical self-assembly in polymericcomplexes: Towards functional materials[J]. Chemical Communications,2004,2004(19):2131-2137.
    [214] ONOE H, MATSUMOTO K, SHIMOYAMA I. Three-dimensionalsequential self-assembly of microscale objects[J]. Small,2007,3(8):1383-1389.
    [215] HE Y, YE T, SU M, ZHANG C, RIBBE A E, JIANG W, MAO C D.Hierarchical self-assembly of DNA into symmetric supramolecularpolyhedra[J]. Nature,2008,452(7184):198-201.
    [216] KEIZER H M, SIJBESMA R P. Hierarchical self-assembly of columnaraggregates[J]. Chemical Society Reviews,2005,34(3):226-234.
    [217] CHEN Q, YAN J, ZHANG J, BAE S C, GRANICK S. Janus andMultiblock Colloidal Particles[J]. Langmuir,2012,28(38):13555-13561.
    [218] HE J, HUANG X L, LI Y C, LIU Y J, BABU T, ARONOVA M A,WANG S J, LU Z Y, CHEN X Y, NIE Z H. Self-Assembly ofAmphiphilic Plasmonic Micelle-Like Nanoparticles in SelectiveSolvents[J]. Journal of the American Chemical Society,2013,135(21):7974-7984.
    [219] WU Z N, DONG C W, LI Y C, HAO H X, ZHANG H, LU Z Y, YANGB. Self-Assembly of Au15into Single-Cluster-Thick Sheets at theInterface of Two Miscible High-Boiling Solvents[J]. AngewandteChemie International Edition,2013,52(38):9952-9955.
    [220] KOHLSTEDT K L, GLOTZER S C. Self-assembly and tunablemechanics of reconfigurable colloidal crystals[J]. Physical Review E,2013,87(3):032305.
    [221] WALTHER A, M LLER A H E. Janus Particles: Synthesis,Self-Assembly, Physical Properties, and Applications[J]. ChemicalReviews,2013,113(7):5194-5261.
    [222] HE Y, YE T, SU M, ZHANG C, RIBBE A E, JIANG W, MAO C.Hierarchical self-assembly of DNA into symmetric supramolecularpolyhedra[J]. Nature,2008,452(7184):198-201.
    [223] MILLER W L, CACCIUTO A. Hierarchical self-assembly ofasymmetric amphiphatic spherical colloidal particles (vol80,021404,2009)[J]. Physical Review E,2009,80(2):029903
    [224] HANISCH A, GR SCHEL A H, F RTSCH M, L BLING T I,SCHACHER F H, M LLER A H E. Hierarchical self-assembly ofmiktoarm star polymers containing a polycationic segment: A generalconcept[J]. Polymer,2013,54(17):4528-4537.
    [225] CHEN Q, BAE S C, GRANICK S. Staged Self-Assembly of ColloidalMetastructures[J]. Journal of the American Chemical Society,2012,134(27):11080-11083.
    [226] LI Y, ZHU Y-L, LI Y-C, QIAN H-J, SUN C-C. Self-assembly oftwo-patch particles in solution: a Brownian dynamics simulationstudy[J]. Molecular Simulation,2013,1-9.
    [227] YUE T, ZHANG X. Self-Assembly of Semiflexible Homopolymers intoHelical Bundles: A Brownian Dynamics Simulation Study[J]. TheJournal of Physical Chemistry B,2011,115(40):11566-11574.
    [228] IACOVELLA C R, HORSCH M A, ZHANG Z, GLOTZER S C. Phasediagrams of self-assembled mono-tethered nanospheres from molecularsimulation and comparison to surfactants[J]. Langmuir,2005,21(21):9488-9494.
    [229] LI B, ZHU Y L, LIU H, LU Z Y. Brownian dynamics simulation studyon the self-assembly of incompatible star-like block copolymers in dilutesolution[J]. Physical Chemistry Chemical Physics,2012,14(14):4964-4970.
    [230] LI B, ZHU Y L, XU D, PEI H W, LIU H. Computer Simulation ofVesicle Structure from Self-assembly of Miktoarm Star-like BlockCopolymers in Dilute Solution[J]. Chemical Journal of ChineseUniversities,2013,34(7):1667-1672.
    [231] LI Y, QIAN H-J, LU Z-Y, SHI A-C. Note: Effects of polydispersity onthe phase behavior of AB diblock and BAB triblock copolymer melts: Adissipative particle dynamics simulation study[J]. The Journal ofChemical Physics,2013,139(9):096101-096102.
    [232]赵英,谢宇,吕中元,孙家锺. P123(PEO_(20)-PPO_(70)-PEO_(20))嵌段共聚物水溶液物理凝胶化行为的耗散粒子动力学模拟[J].高等学校化学学报,2009,30(12):2455-2459.
    [233]张静,朱有亮,裴汉文,刘鸿.两亲性接枝共聚物在选择性溶剂中自组装行为的模拟研究[J].高等学校化学学报,2013,34(4):939-945.