大孔间距阳极氧化铝及其双层结构的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔阳极氧化铝(Anodic Aluminum Oxide,以下简称AAO)膜,因其可控的纳米阵列结构、稳定的制备工艺、低廉的生产成本而受到研究者的青睐。本文利用改性的电解液制备大孔间距以及孔间距大范围可调的多孔AAO膜,同时利用多孔AAO膜内、外层分别制备α-Al_2O_3多孔膜和AlOOH纳米柱以及纳米管阵列,并研究了大孔间距AAO膜的湿度敏感特性。
     根据阳极氧化电压与孔间距的线性关系,大孔间距AAO膜需通过施加高阳极氧化电压制备得到,但是由于高氧化电压下难以控制电解液中参与导电的离子浓度,易导致击穿现象的发生,所以目前稳定地制备高度有序大孔间距AAO膜依然存在困难。本文在磷酸溶液中添加草酸铝作为缓冲剂,有效抑制了高氧化电压下击穿现象的发生,成功制备了孔洞排列高度有序,孔径一致且孔间距达530nm的大孔间距AAO膜。实验表明大孔间距AAO膜的有序度与阳极氧化电压、反应温度、电解液浓度等密切相关。
     为了进一步拓宽多孔AAO膜的孔间距调节范围,本文以0.3M草酸和1wt%磷酸/0.01M草酸铝混合液为电解液,通过改变草酸体积百分含量,成功制备出了孔间距在100nmα-500nm范围可调、孔洞排列高度有序的多孔AAO膜。实验结果显示,最优阳极氧化电压与临界氧化电压基本相等;草酸体积百分含量与最优阳极氧化电压呈线性关系;孔间距随草酸体积百分含量减小而增大。理论分析表明,阳极氧化电流与电解液中酸根离子的电离常数密切相关。由于磷酸根的二次电离常数远小于草酸根,因此随草酸体积百分比减小,最优阳极氧化电压增大而稳态阳极氧化电流减小。
     利用多孔AAO膜制备具有抗腐蚀、耐高温性能的α-Al_2O_3多孔膜一直是研究的热点,但由于多孔AAO膜的双层结构,直接烧结会导致微观有序孔洞结构被破坏,宏观上产生膜片卷曲、开裂的现象。为解决此问题,本文提出利用水热法对多孔AAO膜进行晶化预处理,以增强其内层六方骨架的抗腐蚀能力,再利用刻蚀液将外层成分彻底去除后进行烧结的方法,制备得到了具有高度有序六方结构的纯α-Al_2O_3多孔膜。通过实验发现晶化预处理温度与去除外层成分时间影响制备得到的α-Al_2O_3多孔膜形貌。此方法为制备α-Al_2O_3多孔膜提供新思路,制备得到多孔膜能够应用于过滤、催化以及吸附等领域。
     AlOOH纳米材料在催化、吸附、耐火材料中有广泛用途,并且研究表明微观形貌直接影响其应用特性,故制备微观形貌可控的AlOOH纳米材料成为近年来研究的重点。为了控制生成AlOOH纳米材料的微观形貌,多孔AAO膜被用作原材料进行水热反应。本文针对多孔AAO膜水热过程,提出溶解α-沉淀理论解释AlOOH生长过程。基于此生长机理,通过改变多孔AAO膜外层成分含量以及控制反应温度实现对AlOOH纳米材料微观形貌的调控。获得的AlOOH纳米柱以及纳米管阵列能够提高其催化、吸附性能,并拓展其在生物与纳米科学方面的应用。
     多孔AAO膜具有巨大的比表面积且易吸附水分子,是一种构造湿度传感器的理想材料。本文结合溅射、光刻、电化学镀等半导体工艺,制备出基于大孔间距AAO膜的单通以及双通湿度传感器。分别研究器件结构、电极材料对传感器性能的影响。实验结果表明单通湿度传感器中,全电极传感器的灵敏度优于叉指电极,并且通过扩孔能够进一步提高其灵敏度。除此之外,采用双通结构能够有效提高器件的灵敏度和稳定性,并降低阻抗便于实际应用。本文通过研究发现电极材料影响湿度传感器的性能:溅射金、铜两种不同金属电极的双通湿度传感器表现出不同的感湿灵敏区域,金电极在高湿度区域内(高于75%RH)灵敏度高,但在低湿区域内(低于40%RH)具有铜电极的湿度传感器灵敏度较高。我们认为具有双通孔结构的多孔AAO膜除了应用于湿度传感器外,还可以通过填充催化物或复型各种气敏材料,在气体传感、气体分离等领域获得广泛的应用。
AAO (anodic aluminum oxide) membranes have received considerable interests due totheir controllable pore structure, stable preparation technology, and low cost of production. Inthis dissertation, the AAO membranes with large pore interval and tunable pore interval in alarge scale are fabricated successfully in a modified electrolyte. In addition, the porous
     α-Al_2O_3ceramic membranes and the aluminum oxyα-hydroxide (AlOOH) nanorod/nanotubearray are fabricated using the inner layer and outer layers of the AAO membranes, respectively.Besides, the humidity sensitive characteristics of the AAO membranes with large poreintervals were investigated.
     According to the linear relation of anodization voltage and pore interval, high anodizationvoltage is necessary for fabrication of the AAO membranes with large pore interval. However,high anodization voltage easily results in the breakdown of AAO membranes. To avoid thebreakdown, aluminum oxalate (Alox) is introduced as a buffer agent to modify the phosphoricacid electrolyte, and the highly ordered AAO membranes with the pore interval of530nm arefabricated successfully. Experimental results show that the pore order degree in AAOmembranes is simultaneously dependent on several factors, including anodization voltage,reaction temperature, and electrolyte concentration.
     In order to adjust the pore interval of AAO membranes in a large scale, the mixedelectrolytes with different volume ratio of0.3M oxalic acid and1wt%phosphoric acid/0.01M Alox are used for fabrication of AAO membranes. The experimental results indicate that theoptimal anodization voltage nearly equals to the critical breakdown voltage. And the poreinterval increases linearly from100nm to500nm with the decrease oxalic acid volumepercent. The theoretical analysis demonstrates that the anodization current has a close relationwith the ionization constant of acid radical ions. Since the secondary ionization constant ofphosphoric acid radical ion is much smaller than that of oxalic radical ion, the optimalanodization voltage increases and the steady anodization current decreases with the decreaseof oxalic acid volume percent.
     As a research hotspot, fabricating porous α-Al_2O_3membranes by taking AAO membranesas the starting materials has attracted much attention for a long time. Previously, all the effortstrying to sinter the AAO membranes directly at high temperature are failed due to that thebilayer cell structure of AAO membranes easily leads to the pores aligned disorderedly and themembranes curly and cracked on a macro level. To solve this problem, a novel strategy isproposed. By hydrothermal preα-treatment of the AAO membranes and subsequent chemical etching of the outer layer selectively and then sintering, the highly ordered hexagonal porous
     α-Al_2O_3membranes are fabricated successfully. The experimental results demonstrate that thehydrothermal temperature and the chemical etching time have great influence on the finalmorphologies of porous α-Al_2O_3membranes. This fabrication method might be a newapproach for preparation of porous α-Al_2O_3membrane. The obtained membranes areanticipated to become a new generation of filter and supports for catalysts or absorbents.
     The aluminum oxyα-hydroxide (AlOOH) nanoα-materials have been widely used in thefield of catalysis, adsorption, refractory materials, and the application performance has beenproved to be influenced by their morphologies. In order to control the morphologies of AlOOHproducts, AAO membrane is often used as a good starting material candidate. Here, aiming atthe hydrothermal treatment of AAO membranes, we propose a possible mechanism on theAlOOH growth. Based on this mechanism, AlOOH products with different morphologies areobtained by properly controlling the outer layer thickness of AAO membrane and the reactiontemperature. The obtained AlOOH nanorod and nanotube array are anticipated to improvetheir performances as catalysts and absorbents and broaden their applications in the fields ofbiology and nanotechnology.
     Since the large specific surface area and the excellent hydrophilic characteristics, theAAO membrane is an ideal material for fabrication of humidity sensors. In this dissertation,the humidity sensors based on the large pore intervals AAO membranes with throughα-holestructure and single hole structure were fabricated by a classical semiconductor technology(RF magnetron sputtering, lithography, and electrochemical plating). The effects of componentstructure on the humidity sensing property were investigated. Experimental results show thatfor the single hole structure, the sensitivity of humidity sensors with full electrode is superiorto the humidity sensor with interdigital electrode, and the sensitivity of humidity sensors withfull electrode could be improved by the pore widening. For the throughα-hole structure, thehumidity sensors have excellent sensitivity and stability, and their practical applications arefacilitated due to the low impedances. Moreover, the electrode material also plays an importantrole in deciding the humidity sensing property. The humidity sensors with Au electrode aresensitive in the high humidity area (above75%RH) while the humidity sensors with Cuelectrode show excellent sensitivity in the low humidity area (less than40%RH). We believethat the AAO membranes with throughα-hole structure not only can be used as the host materialof humidity sensor, but also can be used as gas sensors and in gas separation by filling the pores with catalysts or various gas sensitive materials.
引文
[1] Cochran J F, Mapother D E, Mould R E. Superconducting Transition inAluminum[J]. Phys Rev,1956,103(6):1657-1669
    [2] Mondolfo L F. Aluminum alloys: structure and properties[M]. London:Butterworths,1976
    [3] Edwards J D, Keller F. Formation of anodic coatings on aluminum[J]. TransElectrochem Soc,1941,79:135-144
    [4] Edwards J D, Keller F. The structure of Anodic oxide coatings[J]. Trans Am Inst MiningMet Eng,1944,156:288-299
    [5] Yakovleva N M, Anicai L, Yakovlev A N, et al. Structural study of anodic films formedon aluminum in nitric acid electrolyte[J]. Thin Solid Films,2002,416(1):16-23
    [6] Shingubara S, Morimoto K, Sakaue H, et al. Self-organization of a porous aluminananohole array using a sulfuric/oxalic acid mixture as electrolyte[J]. Electrochem SolidState Lett,2004,7(3): E15-E17
    [7] Ono S, Saito M, Ishiguro M, et al. Controlling factor of self-ordering of anodic porousalumina[J]. J Electrochem Soc,2004,151(8): B473-B478
    [8] Keller F, Hunter M S, Robinson D. L. Structural Features of Oxide Coatings onAluminum [J]. J Electrochem Soc,1953,100:411-419
    [9] Murphy J F, Michelson C E. A.D.A. Conference on Anodizing of aluminum.Nottingham England: University of Nottingham,1961
    [10] Thompson G E, Furneaux R C, Wood G C, et al. Nucleation and growth of porousanodic films on aluminium [J]. Nature,1978,272:433–435
    [11] O’Sullivan J P, Wood G C. The morphology and mechanism of formation of porousanodic films on aluminium [J]. Proc R Soc London A,1970,317:511-543
    [12] Xu Y, Thompson G E, Wood G C, et al. Anion incorporation and migration duringbarrier film formation on aluminium[J]. Corros Sci,1987,27(1):83-102
    [13] Parkhutik V P, Shershulsky V I. Theoretical modelling of porous oxide growth onaluminium[J]. J Phys D: Appl Phys,1992,25(8):1258-1263
    [14] Furneaux R C, Rigby W R, Davidson A P. The formation of controlled-porositymembranes from anodically oxidized aluminium[J]. Nature,1989,337(6203):147-149
    [15] Masuda H, Fukuda K. Ordered metal nanohole arrays made by a two-step replication ofhoneycomb structure of anodic alumina[J]. Science,1995,268:1466-1468
    [16] Li A P, Muller F, Birner A, et al. Hexagonal pore arrays with a50-420nm interporedistance formed by self-organization in anodic alumina[J]. J Appl Phys,1998,84:6023-6026
    [17] Meng G W, Jung Y J, Cao A Y, et al. Controlled fabrication of hierarchically branchednanopores, nanotubes, and nanowires[J]. Proc Natl Acad Sci U. S. A,2005,102(20):7074-7078
    [18] Shuoshuo C, Zhiyuan L, Xing H, et al. Controlled growth of branched channels by afactor of1/n anodizing voltage?[J]. J Mater Chem,2009,19(32):5717-5719
    [19] Shuoshuo C, Zhiyuan L, Xing H, et al. Competitive growth of branched channels insideAAO membranes[J]. J Mater Chem,2010,20(9):1794-1798
    [20] Sanz R, Hernández-Vélez M, Pirota K R, et al. Fabrication and magneticfunctionalization of cylindrical porous anodic alumina[J]. Small,2007,3(3):434-437
    [21] Nagaura T, Takeuchi F, Inoue S. Fabrication and structural control of anodic aluminafilms with inverted cone porous structure using multi-step anodizing[J]. ElectrochimActa,2008,53(5):2109-2114
    [22] Yamauchi Y, Nagaura T, Ishikawa A, et al. Evolution of standing mesochannels onporous anodic alumina substrates with designed conical holes[J]. J Am Chem Soc,2008,130(31):10165-10170
    [23] Losic D, Lillo M, Losic D Jr. Porous Alumina with Shaped Pore Geometries andComplex Pore Architectures Fabricated by Cyclic Anodization [J]. Small,2009,5:1392-1397
    [24] Losic D, Losic D Jr. Preparation of Porous Anodic Alumina with Periodically PerforatedPores [J]. Langmuir,2009,25:5426-5431
    [25] Jessensky O, Muller F, Gosele U. Self-organized formation of hexagonal pore arrays inanodic alumina [J]. Appl Phys Lett,1998,72:1173-1178
    [26]吴玉程、马杰、解挺等.氧化铝纳米有序阵列模板的制备工艺及应用[J].中国有色金属学报,2005,15:680-687
    [27] Su Z, Zhou W, Formation Mechanism of Porous Anodic Aluminium and TitaniumOxides[J]. Adv Mater,2008,20:3663-3667
    [28] Su Z, Hahner G, Zhou W. Investigation of the pore formation in anodic aluminiumoxide[J]. J Mater Chem,2008,18:5787-5795
    [29] Houser J E, Hebert K R. The role of viscous flow of oxide in the growth of self-orderedporous anodic alumina films[J]. Nat Mater,2009,8(5):415-420
    [30] Su Z, Buhl M, Zhou W. Dissociation of Water during Formation of Anodic AluminumOxide [J]. J Am Chem Soc,2009,131:8697-8702
    [31] Su Z, H hner G, Zhou W. Investigation of the pore formation in anodic aluminiumoxide[J]. J Mater Chem,2008,18(47):5787-5795
    [32] Diggle J W, Downie T C, Goulding C W. Anodic oxide films on aluminum[J]. ChemRev,1969,69:365-405
    [33] Wada K, Shimohira T. Microstructure of porous anodic oxide films on aluminum[J]. JMater Sci,1986,21:3810-3816
    [34] Heber K V. Studies on porous Al2O3growth. Pt. l. Physical model[J]. Electrochim Acta,1978,23:127-133
    [35] Brown I W M, Bowden M E, Kemmitt T, et al. Structural and thermal characterisationof nanostructured alumina templates[J]. Curr Appl Phys,2006,6(3):557-561
    [36] Yakovleva N M, Yakovlev A N, Chupakhina E A. Structural analysis of alumina filmsproduced by two-step electrochemical oxidation[J]. Thin Solid Films,2000,366(1):37-42
    [37] Parkhutik V P, Belov V T, Chernyckh M A. Study of aluminium anodization insulphuric and chromic acid solutions-II. Oxide morphology and structure[J].Electrochim Acta,1990,35(6):961-966
    [38]姚士冰,张智良,周绍民.用正电子淹没技术研究铅阳极氧化膜[J].物理化学学报,1989,5(4):427-431
    [39]巩运兰.铝在铬酸中高电压阳极氧化的研究[J].电镀与精饰,1999,21(1):5-7
    [40] Ginsberg H and Wefers K. Metallurgie Berlin,1963,17,202-209
    [41] Le Coz F, Arurault L, Datas L. Chemical analysis of a single basic cell of porous anodicaluminium oxide templates[J]. Mater Charact,2010,61(3):283-288
    [42]何增华.电化学法制备阳极多孔氧化铝及其在湿敏传感器中的应用[D].上海:上海交通大学,2011
    [43] Nielsch K, Choi J, Schwirn K, et al. Self-ordering regimes of porous alumina: the10porosity rule[J]. Nano Lett,2002,2(7):677-680
    [44]李屹.多孔阳极氧化铝模板的制备、表征及其在构筑纳米多孔结构阵列材料中的应用[D].广州:华南理工大学,2009
    [45] Mizeikis V, Mikulskas I, Tomasiunas R, et al. Optical characteristics oftwo-dimensional photonic crystals in anodic aluminum oxide films[J]. Jpn J Appl Phys,2004,43:3643-3647
    [46] Miao J Y, Cai Y, Chan Y F, et al. A novel carbon nanotube structure formed inultra-long nanochannels of anodic aluminum oxide templates[J]. J Phys Chem B,2006,110(5):2080-2083
    [47] Che G, Lakshmi B B, Fisher E R, et al. Carbon nanotubule membranes forelectrochemical energy storage and production[J]. Nature,1998,393(6683):346-349
    [48] Gleiter H. Nanostructured materials: basic concepts and microstructure[J]. Acta Mater,2000,48:1-29
    [49] Springholz G, Holy V, Pincaolits M, et al. Self-organized growth of three-dimensionalquantum-dot crystals with fcc-like stacking and a tunable lattice constant[J]. Science,1998,282:734-737
    [50] Ueta A, Avramescu A, Suemune I, et al. Nucleation and faceting in selectively grownZnS pyramidal dot array for short-wavelength light emitters[J]. Jpn J Appl Phys Part2,1999,38(7A): L710-L713
    [51] Nakajima A, Sugita Y, Kawamura K, et al. Si quantum dot formation with low-pressurechemical vapor deposition[J]. Jpn J Appl Phys Part2,1996,35(2B): L189-L191
    [52] Mei X, Kim D, Ruda H E, et al. Molecular-beam epitaxial growth of GaAs andInGaAs/GaAs nanodot arrays using anodic AlO nanohole array template masks[J]. ApplPhys lett,2002,81:361
    [53] Ding G Q, ShenW Z, Zheng M J, Xu W L, He Y L and Guo Q X2005to be submitted
    [54] Ding G Q, Zheng M J, Xu W L, et al. Fabrication of controllable free-standing ultrathinporous alumina membranes[J]. Nanotechnology,2005,16(8):1285-1289
    [55] Huangfu Y, Zhan W, Hong X, et al. Optimal growth of Ge-rich dots on Si (001)substrates with hexagonal packed pit patterns[J]. Nanotechnology,2013,24(3):035302
    [56] Masuda H, Yasui K, Nishio K. Fabrication of ordered arrays of multiple nanodots usinganodic porous alumina as an evaporation mask[J]. Adv Mater.,2000,12(14):1031-1033
    [57] Liu K, Nogués J, Leighton C, et al. Fabrication and thermal stability of arrays of Fenanodots[J]. Appl Phys Lett,2002,81:4434-4436
    [58] Liang J Y, Chik H, Yin A, et al. Two-dimensional lateral superlattices of nanostructures:Nonlithographic formation by anodic membrane template[J]. J Appl Phys,2002,91:2544–2546
    [59] Mei X, Kim D, Ruda H E, et al. Molecular-beam epitaxial growth of GaAs andInGaAs/GaAs nanodot arrays using anodic Al2O3nanohole array template masks[J].Appl Phys Lett,2002,81:361–363
    [60] Possin G E. A method for forming very small diameter wires[J]. Rev Sci Instrum,1970,41(5):772-774
    [61] Hu Z A, Xu T, Liu R J, et al. Template preparation of high-density, and large-area Agnanowire array by acetaldehyde reduction [J]. Mater Sci Eng, A,2004,371:236-240
    [62] Masuda M, Hanada T, Yase K, et al. Polymerization of bolaform butadiyne1-glucosamide in self-assembled nanoscale-fiber morphology[J]. Macromolecules,1998,31(26):9403-9405
    [63] Mathur S, Shen H, Sivakov V, et al. Germanium nanowires and core-shellnanostructures by chemical vapor deposition of [Ge(C2H5)2][J]. Chem Mater,2004,16:2449-2456
    [64]冯孙齐、俞大鹏、张洪洲等.一维硅纳米线的生长机制及其量子限制效应的研究[J].中国科学(A辑),1999,29:921-926
    [65] Palasantzas G, Llge B, Nijs J D, et al. Fabrication of Co/Si nanowires byultrahigh-vacuum scanning tunneling microscopy on hydrogen-passivated Si (100)surfaces[J]. J Appl Phys,1999,85(3):1907-1910
    [66] Sauer G, Brehm G, Schneider S, et al. Highly ordered monocrystalline silver nanowirearrays[J]. J Appl Phys,2002,91:3243-3247
    [67]王银海、牟季美、蔡维理等.交流电在A12O3模板中沉积金属机理探讨[J].物理化学学报,2001,17:116-118
    [68] Routkevitch D, Tager A A, Haruyama J, et al. Nonlithographic nano-wire arrays:fabrication, physics, and deviceapplications[J]. IEEE Trans Electron Devices,1996,43:1646-1658
    [69] Zhang J, Wang X, Peng X, et al. Fabrication, morphology and structuralcharacterization of ordered single-crystal Ag nanowires[J]. Appl Phys A,2002,75:485-488
    [70] Yang S, Zhu H., Yu D, et al. Preparation and magnetic property of Fe nanowire array [J].J Magn Mater,2000,222:97-100
    [71] Gao T, Meng G W, Zhang J, et al. Template synthesis of single-crystal Cu nanowirearrays by electrodeposition [J]. Appl Phys A,2001,73:251-254
    [72] Wang X F, Zhang J, Shi H Z, et al. Fabrication and temperature dependence of theresistance of single-crystalline Bi nanowires[J]. J Appl Phys,2001,89:3847-3851
    [73] Zheng M, Menon L, Zeng H, et al. Magnetic properties of Ni nanowires inself-assembled arrays[J]. Phys Rev B,2000,62:12282-12286
    [74] Riveros G, Gómez H, Cortes A, et al. Crystallographically-oriented single-crystallinecopper nanowire arrays electrochemically grown into nanoporous anodic aluminatemplates[J]. Appl Phys A,2005,81:17-24
    [75]迟广俊、姚素薇、范君等.银纳米线的TEM表征[J].物理化学学报,2002,18:532-535
    [76] Routkevitch D, Bigioni T, Moskovits M, et al. Electrochemical Fabrication of CdSNanowire Arrays in Porous Anodic Aluminum Oxide Templates[J]. J Phys Chem,1996,100:14037-14047
    [77] Shen X P, Han M, Hong J M, et al. Template-based CVD synthesis of ZnS nanotubearrays[J]. Chem Vap Deposition,2005,11:250-253
    [78] Zhao L L, Yosef M, Steinhart M, et al. Porous Silicon and Alumina as ChemicallyReactive Templates for the Synthesis of Tubes and Wires of SnSe, Sn, and SnO2[J].Angew Chem Int Ed,2006,45:311-315
    [79] Chik H, Xu J M. Nanometric superlattices: non-lithographic fabrication, materials, andprospects[J]. Mater Sci Eng R,2004,43:103-138
    [80] Lakshmi B B, Dorhout P K, Martin C. R., So-Gel Template Synthesis of SemiconductorNanostructures[J]. Chem Mater,1997,9:857-862
    [81] Yamaguchi A, Uejo F, Yoda T, et al. Self-assembly of a silica-surfactant nanocompositein a porous alumina membrane[J]. Nat Mater.2004,3:337-341
    [82] Lee W, Yoo H, Lee J. Template route toward a novel nanostructured superionicconductor film: AgI nanorod/-Al2O3[J]. Chem Commun,2001,2530-2531
    [83] Chong Y T, Gorlitz D, Martens S, et al. Multilayered core/shell nanowires displayingtwo distinct magnetic switching events[J]. Adv Mater,2010,22:2435-2439
    [84] Fan Z, Razavi H, Do J, et al. Three dimensional nanopillar array photovoltaics on lowcost and flexible substrates[J]. Nat Mater.2009,8:648-653
    [85] Yu W J, Cho Y S, Choi G S, et al. Patterned carbon nanotube field emitter using theregular array of an anodic aluminium oxide template[J]. Nanotechnology2005,16:S291-S295
    [86] Zhu W, Wang G Z, Hong X, et al. Metal nanoparticle chains embedded in TiO2nanotubes prepared by one-step electrodeposition[J]. Electrochim Acta2009,55:480-484
    [87] Wang Y, Wu M H, Jiao Z, et al. One-dimensional SnO2nanostructures: facilemorphology tuning and lithium storage properties[J]. Nanotechnology2009,20:345704
    [88] Li M K, Lu M, Kong L B, et al. The synthesis of MWNTs/SWNTs multiple phasenanowire arrays in porous anodic aluminum oxide templates[J]. Mater Sci Eng A,2003,354:92-96
    [89] Sui Y C, Acosta D R, Gonzalez-Leon J A, et al. Structure, thermal stability, anddeformation of multibranched carbon nanotubes synthesized by CVD in the AAOtemplate [J]. J Phys Chem B,2001,105:1523-1527
    [90] Wang Y, Wu M, Jiao Z, et al. One-dimensional SnO2nanostructures: facile morphologytuning and lithium storage properties[J]. Nanotechnology,2009,20(34):345704
    [91] Cha Y K, Seo D, Yoo I K, et al. Nonlithographic SiO2nanodot arrays via templatesynthesis approach[J]. Jpn J Appl Phys,2004,43:5657-5659
    [92] Zhao W B, Zhu J J, Chen H Y. Photochemical synthesis of Au and Ag nanowires on aporous aluminum oxide template[J]. J Cryst Growth,2003,258(1):176-180
    [93] Li J L, Jia J F, Liang X J, et al. Spontaneous assembly of perfectly ordered identical-sizenanocluster arrays[J]. Phys Rev Lett,2002,88(6):066101:1-066101:4
    [94] Luo Z, Fang Y, Zhou X, et al. Synthesis of highly ordered Iron/Cobalt nanowire arraysin AAO templates and their structural properties[J]. Mat Chem Phys,2008,107(1):91-95
    [95] Pe a D J, Mbindyo J K N, Carado A J, et al. Template growth of photoconductivemetal-CdSe-metal nanowires[J]. J Phys Chem B,2002,106(30):7458-7462
    [96] Xu C L, Li H, Zhao G Y, et al. Electrodeposition and magnetic properties of Ninanowire arrays on anodic aluminum oxide/Ti/Si substrate[J]. Appl Sur Sci,2006,253(3):1399-1403
    [97] Yang Y, Chen H, Mei Y, et al. Anodic alumina template on Au/Si substrate andpreparation of CdS nanowires[J]. Solid State Commun,2002,123(6):279-282
    [98] Liu L, Lee W, Huang Z, et al. Fabrication and characterization of a flow-throughnanoporous gold nanowire/AAO composite membrane[J]. Nanotechnology,2008,19(33):335604-335609
    [99] Xu C L, Bao S J, Kong L B, et al. Highly ordered MnO2nanowire array thin films onTi/Si substrate as an electrode for electrochemical capacitor[J]. J Solid State Chem,2006,179(5):1351-1355
    [100] Yin A J, Li J, Jian W, et al. Fabrication of highly ordered metallic nanowire arrays byelectrodeposition[J]. Appl Phys Lett,2001,79(7):1039-1041
    [101] Sander M S, Prieto A L, Gronsky R, et al. Fabrication of high-density, high aspect ratio,large-area bismuth telluride nanowire arrays by electrodeposition into porous anodicalumina templates[J]. Adv Mater,2002,14(9):665-667
    [102] Zhou Z F, Zhou Y C, Pan Y, et al. Growth of the nickel nanorod arrays fabricated usingelectrochemical deposition on anodized Al templates[J]. Mater Lett,2008,62(19):3419-3421
    [103] Huang K T, Kuo P C, Yao Y D. Formation of Pt nanorods on nanoporous anodicaluminum oxides by controlled nucleation sites[J]. Thin Solid Films,2009,517(11):3243-32474
    [104] Nitzani M, Berger S. Pyroelectric nano-rods grown inside alumina nano-pores[J]. PhysE,2007,37(1):260-264
    [105] Wang F, Huang H, Yang S. Synthesis of ceramic nanotubes using AAO templates[J]. JEur Cerm Soc,2009,29(8):1387-1391
    [106] Kim M J, Choi J H, Park J B, et al. Growth characteristics of carbon nanotubes viaaluminum nanopore template on Si substrate using PECVD[J]. Thin Solid Films,2003,435(1):312-317
    [107] Angelucci R, Boscolo I, Ciorba A, et al. Honeycomb arrays of carbon nanotubes inalumina templates for field emission based devices and electron sources[J]. Phys E,2010,42(5):1469-1476
    [108] Franklin A D, Janes D B, Claussen J C, et al. Independently addressable fields of porousanodic alumina embedded in SiO2on Si [J]. Appl Phys Lett,2008,92(1):013122-013122-3
    [109] Lee O J, Hwang S K, Jeong S H, et al. Synthesis of carbon nanotubes with identicaldimensions using an anodic aluminum oxide template on a silicon wafer[J]. Synth Met,2005,148(3):263-266
    [110] Masuda H, Yamada M, Matsumoto F, et al. Lasing from two-dimensional photoniccrystals using anodic porous alumina[J]. Adv Mater.,2006,18:213-216
    [111] Kyotani T, Xu W H, Yokoyama Y, et al. Chemical modification of carbon-coated anodicalumina films and their application to membrane filter[J]. J Membr Sci,2002,196:231-239
    [112] Basu S, Chatterjee S, Saha M, et al. Study of electrical characteristics of porous aluminasensors for detection of low moisture in gases[J]. Sens Actuators B,2001,79:182-186
    [113] Herrmann J M, Guillard C, Pichat P. Heterogeneous photocatalysis: an emergingtechnology for water treatment[J]. Catal Today,1993,17:7-20
    [114] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys Rev Lett,1987,58:2059-2062
    [115] Masuda H., Ohya M., Asoh H., et al. Photonic crystal using anodic porous alumina [J].Jpn J Appl Phys,1999,38: L1403-L1045
    [116] Mikulskas I, Juodkazis S, Tomasiunas R, et al. Aluminum Oxide Photonic CrystalsGrown by a New Hybrid Method [J]. Adv Mater,2001,13:1574-1577
    [117] Wang B, Fei G T, Wang M, et al. Preparation of photonic crystals made of air pores inanodic alumina [J]. Nanotechnology,2007,18:365601
    [118] Guo D L, Fan L X, Wang F H, et al. Porous Anodic Aluminum Oxide Bragg Stacks asChemical Sensors[J]. J Phys Chem C,2008,112:17952-17956
    [119] Liu Y, Chang Y, Ling Z, et al. Structural coloring of aluminum[J]. ElectrochemCommun,2011,13(12):1336-1339
    [120] Ansbacher F, Jason A C. Effets of water vapour on the electrical properties of anodisedaluminium [J]. Nature,1953,24,177-178
    [121] Jason A C, Wood J L. Some electrical effects of the adsorption of water vapour byanodized aluminium [J]. Proc Phys Soc B,1955,68,1105-1116
    [122] Khanna V K, Nahar R K. Carrier-transfer mechanisms and Al2O3sensors for low andhigh humidities[J]. J Phys D Appl Phys,1986,19(7): L141-L145
    [123] Nahar R K, Khanna V K, Khokle W S. On the origin of the humidity-sensitive electricalproperties of porous aluminium oxide (sensor application)[J]. J Phys D Appl Phys,1984,17(10):2087-2095
    [124] Khanna V K, Nahar R K. Surface conduction mechanisms and the electrical propertiesof Al2O3humidity sensor[J]. Appl Surf Sci,1987,28(3):247-264
    [125] Varghese O K, Gong D, Paulose M, et al. Highly ordered nanoporous alumina films:Effect of pore size and uniformity on sensing performance[J]. J Mater Res,2002,17(05):1162-1171
    [126] Yao L, Zheng M, Li H, et al. High-performance humidity sensors based on high-fieldanodized porous alumina films[J]. Nanotechnology,2009,20(39):395501
    [127] Varghese O K, Gong D, Dreschel W R, et al. Ammonia detection using nanoporousalumina resistive and surface acoustic wave sensors[J]. Sensor Actuat B,2003,94(1):27-35
    [128] Rumiche F, Wang H H, Hu W S, et al. Anodized aluminum oxide (AAO) nanowellsensors for hydrogen detection[J]. Sensor Actuat B,2008,134(2):869-877
    [129] Lee W, Ji R, G sele U, et al. Fast fabrication of long-range ordered porous aluminamembranes by hard anodization[J]. Nat Mater,2006,5(9):741-747
    [130] Li Y B, Zheng M J, Ma L. High-speed growth and photoluminescence of porous anodicalumina films with controllable interpore distances over a large range[J]. Appl Phys Lett,2007,91(7):073109-073109-3
    [131] Yi L, Zhiyuan L, Xing H, et al. Formation and microstructures of uniquenanoporous AAO films fabricated by high voltage anodization[J]. J Mater Chem,2011,21(26):9661-9666
    [132] Masuda H, K Yada, A Osaka. Self-ordering of cell configuration of anodic porousalumina with large-size pores in phosphoric acid solution[J]. Jpn J Appl Phys,1998,37:L1340-L1342
    [133] Li Y, Zheng M, Ma L, et al. Fabrication of highly ordered nanoporous aluminafilms by stable high-field anodization[J]. Nanotechnology,2006,17(20):5101
    [134] Chen W, Wu J S, Xia X H. Porous anodic alumina with continuously manipulatedpore/cell size[J]. ACS nano,2008,2(5):959-965
    [135] Martín J, Manzano C V, Martín-González M. In-depth study of self-ordered porousalumina in the140–400nm pore diameter range[J]. Micropor Mesopor Mat,2012,151:311-316
    [136] Ono S, Saito M, Ishiguro M, et al. Controlling factor of self-ordering of anodic porousalumina[J]. J Electrochem Soc,2004,151(8): B473-B478
    [137] Lee W, Nielsch K, G sele U. Self-ordering behavior of nanoporous anodic aluminumoxide (AAO) in malonic acid anodization[J]. Nanotechnology,2007,18(47):475713
    [138] Chu S Z, Wada K, Inoue S, et al. Large-scale fabrication of ordered nanoporousalumina films with arbitrary pore intervals by critical-potential anodization[J]. JElectrochem Soc,2006,153(9): B384-B391
    [139] Feng Z, Chen X J, Chen J, et al. A novel humidity sensor based on alumina nanowirefilms[J]. J Phys D Appl Phys,2012,45(22):225305
    [140] Shingubara S, Morimoto K, Sakaue H, et al. Self-organization of a porous aluminananohole array using a sulfuric/oxalic acid mixture as electrolyte[J]. Electrochem SolidSt,2004,7(3): E15-E17
    [141] Wehrspohn R B. Ordered porous nanostructures and applications[M]. Springer ScienceBusiness Media,2005
    [142] Ono S, Saito M, Asoh H. Self-ordering of anodic porous alumina induced by localcurrent concentration: Burning[J]. Electrochem Solid St,2004,7(7): B21-B24
    [143] Ono S, Saito M, Ishiguro M, et al. Controlling factor of self-ordering of anodic porousalumina[J]. J Electrochem Soc,2004,151(8): B473-B478
    [144] Ono S, Saito M, Asoh H. Self-ordering of anodic porous alumina formed in organic acidelectrolytes[J]. Electrochim Acta,2005,51(5):827-833
    [145] Yi L, Zhiyuan L, Xing H, et al. Investigation of intrinsic mechanisms of aluminiumanodization processes by analyzing the current density[J]. RSC Adv,2012,2(12):5164-5171
    [146] Walter H. Gitzen. Alumina as a Ceramic Material[M]. American Ceramic Society,Columbus, Ohio,1970,17-19
    [147]王零森.特种陶瓷[M].第1版.长沙:中南工业大学出版社,1994
    [148]高陇桥.电子陶瓷用-Al2O3粉体及其技术条件[C].江苏省硅酸盐学会特种陶瓷专业委员会第10届学术年会论文集,1993:10-24
    [149] Leenaars A F M, Keizer K, Burggraaf A J. The preparation and characterization ofalumina membranes with ultra-fine pores[J]. Journal Mater Sci,1984,19(4):1077-1088
    [150]徐平坤,董应榜.刚玉耐火材料[M].北京:冶金工业出版社,1999:56-61
    [151]黄培,徐南平.粒子烧结法制备氧化铝微滤膜[J].水处理技术,1996,22(3):129-133
    [152]孙宏伟,谢灼利.微孔-Al2O3陶瓷膜管的制备与性能[J].无机材料学报,1998,13(5):698-702
    [153]袁文辉,叶振华.氧化铝无机膜的制备[J].华南理工大学学报:自然科学版,1997(10)
    [154] Isobe T, Tomita T, Kameshima Y, et al. Preparation and properties of porous aluminaceramics with oriented cylindrical pores produced by an extrusion method[J]. J EurCeram Soc,2006,26(6):957-960
    [155] Rambo C R, Andrade T, Fey T, et al. Microcellular Al2O3ceramics from wood forfilter applications[J]. J Am Ceram Soc,2008,91(3):852-859
    [156]赵基钢,刘纪昌,孙辉,等.无机膜的制备及应用[J].化工科技,2005,13(5):68-72
    [157]朱科学,周惠明.陶瓷膜分离技术及其在食品工业中的应用[J].食品科技,2002,5:8-10
    [158] Hyun S H, Kim G T. Synthesis of ceramic microfiltration membranes for oil/waterseparation[J]. Sep Sci Technol,1997,32(18):2927-2943
    [159] Neuffild P, Nagpaul NK, Ashdown R, et al. Crystallization of anodic Al2O3[J].Electrochim Acta,1972,17:1543-1546
    [160] Brown I W M, Bowden M E, Kemmitt T, et al. Structural and thermal characterisationof nanostructured alumina templates[J]. Curr Appl Phys,2006,6(3):557-561
    [161] Le Coz F, Arurault L, Fontorbes S, et al. Chemical composition and structural changesof porous templates obtained by anodising aluminium in phosphoric acid electrolyte[J].Surf Interface Anal,2010,42(4):227-233
    [162] Ono S, Ichinose H, Masuko N. The High resolution observation of porous anodic filmsformed on aluminum in phosphoric acid solution[J]. Corros Sci,1992,33(6):841-850
    [163] McQuaig Jr M K, Toro A, Van Geertruyden W, et al. The effect of high temperatureheat treatment on the structure and properties of anodic aluminum oxide[J]. J Mater Sci,2011,46(1):243-253
    [164] Gall K, Yiping L, Routkevitch D, et al. Instrumented microindentation of nanoporousalumina films[J]. J Eng Mater Technol,2006,128(2):225-233
    [165] Jha H, Kikuchi T, Sakairi M, et al. Area-selective microscale metallization on porousanodic oxide film of aluminium[J]. Electrochem Commun,2007,9(7):1596-1601
    [166] Jha H, Schmidt-Stein F, Shrestha N K, et al. Formation of magnetic aluminiumoxyhydroxide nanorods and use for hyperthermal effects[J]. Nanotechnology,2011,22(11):115601
    [167] Kirchner A, MacKenzie K J D, Brown I W M, et al. Structural characterisation ofheat-treated anodic alumina membranes prepared using a simplified fabricationprocess[J]. J Membrane Sci,2007,287(2):264-270
    [168] Bokhimi X, Sánchez-Valente J, Pedraza F. Crystallization of sol–gel boehmite viahydrothermal annealing[J]. J Solid State Chem,2002,166(1):182-190
    [169] Yeh C L, Liu E W. Effects of Si3N4addition on formation of aluminum nitride byself-propagating combustion synthesis[J]. J Alloy Compd,2007,433(1):147-153
    [170] Hou H, Xie Y, Yang Q, et al. Preparation and characterization of-AlOOH nanotubesand nanorods[J]. Nanotechnology,2005,16(6):741
    [171]夏长荣,王大志.纳米勃姆石(-AlOOH)膜的结构及热稳定性[J].无机材料学报,1994,9(4):437-442
    [172]吴建锋,张欣,徐晓虹.用溶胶-凝胶法制备勃姆石溶胶[J].佛山陶瓷,2005,10(106):31-34
    [173] Bugosh J. Colloidal alumina-the chemistry and morphology of colloidal boehmite[J]. JPhys Chem,1961,65(10):1789-1793
    [174] Alemi A, Hosseinpour Z, Dolatyari M, et al. Boehmite (-AlOOH) nanoparticles:Hydrothermal synthesis, characterization, pH-controlled morphologies, opticalproperties, and DFT calculations[J]. Phys Status Solidi B,2012,249(6):1264-1270
    [175] Buining P A, Pathmamanoharan C, Bosboom M, et al. Effect of hydrothermalconditions on the morphology of colloidal boehmite particles: implications for fibrilformation and monodispersity[J]. J Am Ceram Soc,1990,73(8):2385-2390
    [176]郝保红,方克明,向兰.水热制备纳米AlOOH颗粒的工艺优化SEM分析[J].新技术新工艺,2008,12:95-97
    [177] Cai W, Yu J, Mann S. Template-free hydrothermal fabrication of hierarchicallyorganized-AlOOH hollow microspheres[J]. Micropor Mesopor Mat,2009,122(1):42-47
    [178] Yu X, Yu J, Cheng B, et al. Synthesis of hierarchical flower-like AlOOH andTiO2/AlOOH superstructures and their enhanced photocatalytic properties[J]. J PhysChem C,2009,113(40):17527-17535
    [179] Fang X S, Ye C H, Xu X X, et al. Synthesis and photoluminescence of-Al2O3nanowires[J]. J Phys Condens Matter,2004,16(23):4157-4163
    [180] Hou H, Xie Y, Yang Q, et al. Preparation and characterization of-AlOOH nanotubesand nanorods[J]. Nanotechnology,2005,16(6):741-746
    [181] Fang X S, Ye C H, Peng X S, et al. Temperature-controlled growth of-Al2O3nanobelts and nanosheets[J]. J Mater Chem,2003,13(12):3040-3043
    [182] Gao P, Xie Y, Chen Y, et al. Large-area synthesis of single-crystal boehmite nanobeltswith high luminescent properties[J]. J Cryst Growth,2005,285(4):555-560
    [183] Valcárcel V, Pérez A, Cyrklaff M, et al. Novel Ribbon-Shaped-Al2O3Fibers[J]. AdvMater,1998,10(16):1370-1373
    [184] Van Der Kooij F M, Lekkerkerker H N W. Liquid-crystalline phase behavior of acolloidal rod-plate mixture[J]. Phys Rev Lett,2000,84(4):781-784
    [185] Feng Y, Lu W, Zhang L, et al. One-step synthesis of hierarchical cantaloupe-likeAlOOH superstructures via a hydrothermal route[J]. Cryst Growth Des,2008,8(4):1426-1429
    [186] Yu Z Q, Du Y W. Preparation of nanometer-sized alumina whiskers[J]. J Mater Res,1998,13(11):3017-3018
    [187] Dandapat A, De G. Nanorods assembly of mesoporous boehmite film on glass: anefficient catalyst for permanganate reduction to MnO2nanoparticles[J]. J Mater Chem,2010,20(19):3890-3894
    [188] Granados-Correa F, Jiménez-Becerril J. Chromium (VI) adsorption on boehmite[J].Journal Hazard Mater,2009,162(2):1178-1184
    [189] Górka J, Fulvio P F, Pikus S, et al. Mesoporous metal organic framework–boehmite andsilica composites[J]. Chem Commun,2010,46(36):6798-680
    [190] Shen S C, Chen Q, Chow P S, et al. Steam-assisted solid wet-gel synthesis ofhigh-quality nanorods of boehmite and alumina[J]. J Phys Chem C,2007,111(2):700-707
    [191] Liu L, Huang W, Gao Z, et al. Synthesis of AlOOH slurry catalyst and catalytic activityfor methanol dehydration to dimethyl ether[J]. J Ind Eng Chem,2012,18(1):123-127
    [192] Zhang L, Jiao X, Chen D, et al.-AlOOH Nanomaterials with Regular Shapes:Hydrothermal Fabrication and Cr2O72-Adsorption[J]. Eur J Inorg Chem,2011,2011(34):5258-5264
    [193] Wernick S, Pinner R, Sheasby P, The Surface Treatments of Aluminium and ItsAlloys[M],5th edition, ASM International and Finishing Publications Ltd., Metals Park,OH,1987:773-776
    [194] Hoar T P, Wood G C. The sealing of porous anodic oxide films on aluminium[J].Electrochim Acta,1962,7(3):333-353
    [195] Wood G C, O'Sullivarv J P. Electron-Optical Examination of Sealed Anodic AluminaFilms: Surface and Interior Effects[J]. J Electrochem Soc,1969,116(10):1351-1357
    [196] Jha H, Kikuchi T, Sakairi M, et al. Synthesis of aluminum oxy-hydroxide nanofibersfrom porous anodic alumina[J]. Nanotechnology,2008,19(39):395603
    [197] Yang X, Wang J Y, Pan H Y. Boehmite Nanostructures Preparation by HydrothermalMethod from Anodic Aluminium Oxide Membrane[J]. J Nanosci Nanotechno,2009,9(2):1123-1126
    [198] ivkovi D, Dobovi ek B. Kinetics of aluminium hydroxide dehydration[J]. J ThermAnal Calorim,1977,12(2):207-215
    [199] Nahar R K, Khanna V K. Ionic doping and inversion of the characteristic of thin filmporous Al2O3humidity sensor[J]. Sens Actuators B,1998,46(1):35-41
    [200] Parkhutik V P, Shershulskii V I. The modelling of DC conductivity of thin disordereddielectrics [J]. J Phys D: Appl Phys,1986,19:623-641
    [201]章燕豪.吸附作用[M],上海:上海科学技术文献出版社,1989
    [202] Sears W M. The effect of oxygen stoichiometry on the humidity sensing characteristicsof bismuth iron molybdate [J]. Sens Actuators B,2000,67:161-172
    [203] Khanna V K, Nahar R K. Effect of moisture on the dielectric properties of porousalumina films[J]. Sens Actuators,1984,5(3):187-198
    [204] Nahar R K. Physical understanding of moisture induced degradation of nanoporousaluminum oxide thin films[J]. J Vac Sci Technol B,2002,20(1):382-385
    [205] Kim Y, Jung B, Lee H, et al. Capacitive humidity sensor design based on anodicaluminum oxide[J]. Sens Actuators B,2009,141(2):441-446
    [206] Korvink J G, Chandran L, Boltshauser T, et al. Accurate3D capacitance evaluation inintegrated capacitive humidity sensors[J]. Sensors Mater,1993,4:323-323
    [207] Jachowicz R S, Senturia S D. A thin-film capacitance humidity sensor[J]. SensActuators,1982,2:171-186
    [208]凌志远,陈烁烁,王金池.通孔结构阳极氧化铝湿敏传感器的制备与性能表征[J].科学通报,2007,52(12):1396-1399
    [209] Xu T, Zangari G, Metzger R M. Periodic holes with10nm diameter produced bygrazing Ar+milling of the barrier layer in hexagonally ordered nanoporous alumina[J].Nano Lett,2002,2(1):37-41
    [210] Holm R, Holm E. Electric contacts: theory and application[M]. New York, NY:Springer-Verlag,1967