多级多尺度散式流态化精密分级塔的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粉体制造时,分级是决定最终粉体产品粒度组成、级别宽窄、粗细颗粒含量的关键,对窄级别或极窄级别超细粉体的制造,分级显得比粉碎更重要。为此,国内外开展了大量的理论和实验研究,以解决分级下限、分级效率和能耗三大问题。传统的干式分级由于受流场稳定性、物料分散等方面的制约,在解决窄粒度分布、切割清晰度和高回收率上存在困难。湿式分级虽然流场稳定性优于干式分级,物料分散的难度低,但存在后续干燥,甚至需要二次粉碎等弊端,故主要用于某些贵重粉体的分级。
     基于现有干式分级和湿式分级各自存在的缺陷,通过详细分析超细颗粒之间的作用力和颗粒流态化后的扬析、夹带及粗细颗粒之间存在的相平衡现象,借鉴上升流分级原理和液体精馏原理,作者在此提出了多级多尺度散式流态化精密分级的干式分级方法和概念。即分级塔内设置多层筛板,每两层筛板间空域即为一分级区,靠近上层筛板的下方为稀相区,以含细颗粒为主,靠近筛板的上方为浓相区,浓相区颗粒及颗粒聚团靠倾斜滑动进入塔板低位端设置的粗颗粒聚集槽内由轴流风机引入下层筛板上的空间实现再分散,稀相区颗粒随上升气流上升至上层筛板。粉料进入塔前经过高速气流的预分散,在塔内呈散式流态化状态,小颗粒聚团和被大颗粒携带的小颗粒在下落被循环的过程中经轴流风机多次打碎分散,从而产生稀浓相颗粒在流体中的浓度平衡,使细颗粒获得多次分离,这样通过多个流化层对细颗粒的多次分离就产生出多级流态化分级效果;通过计算颗粒的终端速度,调节塔内风速的大小,可以满足分离不同粒径颗粒的分级要求,得到不同尺度要求的高纯超细粉体。经过一系列的试验、改进和优化。证明,该实验设备具有分级精度高,粒级效率高,分级下限低,易于控制等优点。
     作者以超细颗粒之间的作用力理论为基础,建立了干燥条件下分级过程中超细颗粒凝并模型,并进行了定量计算,得到了本分级塔实验条件下的不同粒径石英砂颗粒凝并后的颗粒当量直径。计算结果表明,直径1μm石英砂颗粒凝并后的颗粒聚团的当量直径可达1480μm,而直径10μm石英砂颗粒凝并后的颗粒聚团的当量直径只有279μm,对直径1~10μm石英砂颗粒,扩散力最小,可被忽略,范德华力与静电吸引力占绝对统治地位,从理论上定量解释了超细颗粒干式分级实验结果中粒级效率所呈现的鱼钩效应;另外,以超细颗粒凝并后的当量直径和流态化条件下颗粒的扬析与夹带理论为基础,建立了超细颗粒(属C类颗粒)的粒级效率模型,计算结果与实验结果基本吻合。
     借助于先进的模拟软件FLUENT6.2,对分级塔进行了气流流场和颗粒轨迹的模拟计算,流场模拟计算显示:精密分级塔内静压分布基本呈阶梯状分布,沿Z轴方向,由下至上呈递减的趋势,经过每一块塔板时就产生一次显著压降,从减压分级原理上讲有利于颗粒进行分级操作;气速沿Z轴方向向上穿过整个塔体时有一个速度递减趋势,即流态化精密分级塔所采用的速度梯度原理与精馏中的温度梯度原理相对应;气流穿过塔板时速度增大,其湍动强度远远大于其它空域的湍动强度,并在匀风板上达到最大;塔板与塔板间空域处,流场规整无涡旋,速度分布均匀,与上升流分级机流场相似。颗粒轨迹模拟结果显示:在塔内风速为0.100m/s的条件下,大颗粒群均沉降到塔的底部,小颗粒群大多数从塔顶溢出,极少数被引出气流引入下层塔板重新分离,中等粒径的颗粒均被引出气流引入下层塔板;粒径大的颗粒在沉降过程中,其动量也普遍大,但一部分经过塔板的碰撞和引出气流的吸引,动量减少,分离出的细颗粒无论粒径大小,其动量基本相同,表明了颗粒越小,其对气流的跟随性越好,越容易被分离出;颗粒粒径越大,其湍动度也相对较大,并且经过塔板时的湍动度达到最大;塔板通过的颗粒越多,颗粒的湍动度越大。模拟计算结果验证了分级塔塔板设计、粗颗粒引出系统、分级区设计和在塔内产生速度梯度的必要性,为精密分级塔总体结构上的改进和操作上的优化提供了坚实的理论依据。
     在本实验装置上的分级实验结果表明:以滑石粉颗粒为原料进行分级,将塔内风速控制在0.122 m/s,粒径10μm颗粒的粒级效率达到了78.78%,d95达到12.84μm;以石英砂颗粒为原料进行分级,将塔内风速控制在0.139 m/s,粒径10μm颗粒的粒级效率达到了92.80%,d95达到12.58μm;在操作条件允许的条件下,加料量越少,分级效率越高;粗颗粒循环系统循环风速,在本实验中由上至下为:0.5m/s、1.0m/s、1.5m/s、2.0m/s和2.5m/s较为合适;本实验条件下,回流细粉量越大对获得更纯细颗粒越有利,但也使分级效率下降,对分级产生不利影响。分级实验中的最佳风速与计算得出的理想风速是有差别的,对于粒径10μm颗粒的计算分离风速,通过分级性能趋势图可看出,要小于实际风速,但随着风速的提高,溢流产品中粗颗粒的返混率会不断增大,严重影响分级精度,对于不同的物料,基于颗粒本身的性质(颗粒的形状,密度,各种结合力等)与颗粒群的性质,其理想风速与实际最佳风速亦有不同。
In the process of powders preparation technique, Classification was the final program to determine particle average diameter, particle efficiency and particle size distribution. For narrow-level or extreme narrow-level distribution ultra fine powders manufacturing technology, classification technology was even more important than grind technology. Because of the importance of classification technology, there were a number of theoretical and experimental studies at home and abroad, also there were a large number of patents, technologies and equipments. The majority researches were concentrated on the dry type classification, in order to solve the lower limit of classification, particle efficiency and energy efficiency issues. Because traditional dry type classification was confined by the flow stability and material dispersion, there were many real difficulties in solving the particle size distribution and particle composition. Although the stabilization of wet type classification was more than the dry type classification, there were a follow-up dry and a second problem of comminution, so the economic augmentation was brought. Except to classify some valuable powders, the wet type classification was not been used in mass classification process.
     Based on the actuality of classification, relied on the foundation of the physical properties and the entrainment and elutriation theory of particles, used for reference of ascending flow classification and rectification principles, a new multilevel multi-scale particulate fluidization precision classification tower was designed. Multi-trays were equipped in the tower, which could be formed several fluidization layers. Underside of upper layer was particle dilute phase. Upside of lower layer was particle dense phase. So the multi-fluidization and classification effect was produced. The feed particles were dispersed by air flow before entered into the tower. Accumulation of little particles and schlepped little particles by large particles were shattered by axial-flow blowers in the drop process, so the particulate fluidization effects was produced. Different diameter particles could be obtained through adjusting the air rate in tower. After a series of tests and improving, testified in experiments that the classification equipment had high particle efficiency, narrow-level particle size distribution and lower limit of classification.
     Based on the forces among the ultra fine particles, an agglomeration mathematical model of ultra fine particles in dry condition was established, and the qualitative and quantitative calculation results were made out. Agglomerated equivalent diameters of different diameter SiO2 particles were calculated out in the first. The results indicated that the agglomerated equivalent diameter of 1μm particles could reached 1480μm, while the agglomerated equivalent diameter of 10μm particles was 279μm. For the particles of diameters from 1μm to 10μm, diffusion force was so small that could be neglected, electrostatic force and Van Der Waals force were the master forces. It could be explained the experimental result of particle efficiency’s“fish hook effect”through this theory. Based on the entrainment and elutriation theories, the separation mathematical model of C type particles was established. The results of calculation were in concordance with the experimental results.
     Numerical simulation of flow and particle tracks in classification tower were been made depending on the advanced simulating software FLUENT6.2. These simulation results of flow revealed that the distribution of static pressure was a ladder line. The magnitude of static pressure was presented to a decreasing trend from the bottom to the crest of classification tower, which was similar to the grads of temperature in distillation column. This phenomena was in concordance with the distillation principle which was adopted by us. The turbulent intensity in the board was stronger than any other position. The turbulent intensity of air flow reached to the max. when it was passed the distribution sheet. The simulating results of particle tracks showed that the big particles subsided on the bottom of the tower, while the small particles escaped from the outlet at the air rate of 0.100m/s. A little portion of small particles and the medium of particles were pulled to the next sheet by circulation air flow. The bigger particles in the processing of sedimentation had bigger momentum, but some taken place collision with the boards and allured by circulation air flow whose momentum were decreased. The fine particles hold the similar momentum, which indicated that the fine particles had better following behaviors for air flow. The Reynolds number became big when the diameter of particle became big, the maximum turbulent intensity taken place in the board, which indicated the force between the coarse particle and the air flow became bigger than the fine particle. That confirmed the separating effect of the board. The numerical simulation results also validated the design validity of the sheets, circulation system of bigger particle and the rate gradient in the tower.
     This paper presented experimental data classified for classification tower. Previous laboratory results with an experimental tower classifying talc and quartz sand powder showed its superiority of classification. The grade efficiency of the diameter of 10μm talc particle was achieved 78.78% at velocity of 0.122 m/s while d95 of fine talc particle reached 12.84μm. Also the grade efficiency of diameter of 10μm quartz sand particle was achieved 92.80% at velocity of 0.139 m/s while d95 of fine quartz sand particle was reached 12.84μm. Grade efficiency became large while the feed rate reduced. Circular air rate was suitably at 0.5m/s、1.0m/s、1.5m/s、2.0m/s和2.5m/s from upside to underside. Grade efficiency had a decrease trend while regurgitant rate increased. The calculation air rate of diameter 10μm particle was smaller than the actual air rate. These results illustrated the distinctness between the optimal experiment velocity and the calculation velocity. And also could be interpreted that different materials had different properties (density, shape of particle, several combined force et al.), so the errors were different. It was indicated clearly that the new equipment had a good future in classification application field.
引文
[1]陶珍东,郑少华.粉体工程与设备.北京:化学工业出版社,2003,1-3
    [2]李茂林.微细粒级精密分级机的研究.北京科技大学博士论文,2003
    [3]非金属矿工业手册编委会.非金属矿工业手册.北京:冶金工业出版社,1992,2.135-153
    [4]赵继华,余加耕.硬质磨料高精度分级设备的研制.化工装备与技术,1997,18 (4): 1-3
    [5]非金属矿工业手册编委会.非金属矿工业手册.北京:冶金工业出版社,1992,1:89-99
    [6]任德树,陈丙辰,杨忠高.化学工程手册.北京:化学工业出版社,1996, 24-97
    [7]K G H Heiskanen.Developments in wet classifiers.Int.J.Miner.Process,1996,44(45):29-42
    [8]王京刚,陈炳辰.超细粉体气力分级设备的现状与发展.国外金属矿选矿,1997,3:14-19
    [9]张少明,张静.NHF-11空气分级机的优化研究.南京化工学院学报,1994,16(增刊):40-41
    [10]吴其胜,张少明.超细分级技术的现状与发展.硅酸盐通报,1997,6:45-49
    [11]张宇,刘家祥,涡流空气分级机“鱼钩效应”的实验研究.北京化工大学学报, 2004, 31(3):51-54
    [12]张宇.涡流空气分级机“鱼钩效应”和机内粉体分散的研究.北京化工大学硕士研究生论文,2004
    [13]E Riera-Francode Sarabia.Application of high-power ultrasound to enhance fluid/solid particle separation processes. Ultrasonics,2000,38: 642-646
    [14]梅芳.气流分级“鱼钩效应”的研究.硅酸盐学报,1996,24(6):616-621
    [15]陈振兴.特种粉体.北京:化学工业出版社,2004,159-179
    [16]张国旺.超细粉碎设备及其应用.北京:冶金工业出版社,2005,150-163
    [17]李凤生.超细粉体技术.北京:国防工业出版社,2000,151-196
    [18]蒋阳,程继贵.粉体工程.合肥:合肥工业大学出版社,2006,240-261
    [19]郑水林.超细粉碎.北京:中国建材工业出版社,1999,199-223
    [20]郑水林.超细粉碎工艺设计与设备手册.北京:中国建材工业出版社,2002,232-270
    [21]卢寿慈.粉体加工技术.北京:中国工业出版社,1999,40-64,277-292
    [22]俞志敏.液固流化分级塔的结构设计.化工机械,2005,32(1):5-8
    [23]王庆志.流化分级塔分级与性能参数的研究.合肥工业大学硕士论文,2001
    [24]金涌,祝京旭,汪展文,俞芷青.流态化工程原理.北京:清华大学出版社,2002,86-88
    [25]李洪钟,郭慕孙.气固流态化的散式化.北京:化学工业出版社,2002,27-37
    [26]Wen C Y, Chen L H. Fluidized bed freeboard phenomena: entrainment and elutriation. AIChE,1982, 28:117-129
    [27]Hanna M, Huotari. Electrically enhanced crossflow membrane filtration of oily waste waterusing the membrane as a cathode. Journal of Membrane Science,1999,156: 49-60
    [28]Harit K Vyas, R J Bennett, A D Marshall. Influence of operating conditions on membrane fouling in crossflow microfiltration of particulate suspensions. International Dairy Journal, 2000, 10:477-487
    [29]Y Victor Wu, Robert A, Norton. Enrichment of protein,starch,fat,and sterol ferulates from corn fiber by fine grinding and air classification.Industrial Crops and Products,2001,14:135-138
    [30]Bickert G,Stahl W,Bartsh R. Grinding circuit for mine particles in liquid suspensions with a new counter-flow centrifugal classifier. Int.J.Miner.process,1995,44 (15):735-743
    [31] J R Gibbins,T J Beeley, J C Crelling, A C Scott, N M Skorupska, and J Williamson. Observations of heterogeneity in large pulverized coal particles. Energy & Fuels,1999, 13: 592-601
    [32] Y u– Duhsu, Hung M in Chein, Tzuming Chen, and Chuen-Jinn Tsai. Axial flow cyclone for segregation and collection of ultrafine particles: theoretical and experimental study. Environ. Sci. Technol,2005, 39:1299-1308
    [33]Takehito Yoshida, Toshiharu Makino, Nobuyasu Suzuki, Yuka Yamada. Fine-particle classification apparatus and functional material production apparatus. Patent, U.S.A, 2002, 6454862 B1
    [34]Frank Heese, Philip Robson, and Laurie Hall. Magnetic resonance imaging velocimetry of fluid flow in a clinical blood filter. fluid mechanics and transport phenomena. AIChE, 2006, 51(9):2396-2401
    [35]WANG Yanmin, PAN Zhidong1,XIE Pingbo1,LI Xingheng. Centrifugal classification of ultrufine calcium carbonate. Journal of the Chinese Ceramic Society, 2006, 34 (8):921-936
    [36]马振华,张少明.碟式分级机超细分级效率的模型.南京化工大学学报, 1995,17(增刊): 538-541
    [37]马振华,张少明.湿法分级a-Al2O3微粉的实验研究.粉体技术,1995, 2 (1):23-27
    [38]彭景光,房永广,梁志诚.超细粉体干法分级理论的研究现状及其展望.化工矿物与加工,2005,4:1-8
    [39]张少明,叶旭初.超细粉干法转子分级机.南京化工学院,中国专利: ZL94241774.7, 1994
    [40]Dring T H, Langeloh. The influence of the drag effect on the clarification in decanting centrifuges.Aufbereitungs-Technik,1989, (6):331-337
    [41]杨睛.石英流化分级塔的研究.合肥工业大学硕士论文,1999
    [42]杨传遍.WS型干法分级机及分级效率的研究.粉煤灰,1996,2:31-33
    [43]K Nageswararac. Normalisation of the efficiency curves of hydrocyclone classifier.Minerals Engineering, 1999, 12 (1): 107-118
    [44]K Nageswararao. Reduced efficiency curve of the industrial hydrocyclones. Minerals Engineering, 1999,12 (5):517-544
    [45]黎国华,许德胜.微粒分级的特性研究.华中理工大学学报,1997,5 (5): 50-52
    [46]杜玉成,郑水林.超微粉体材料精细分级研究.粉体技术, 1994,11( 1): 15-19
    [47]曲顺祥.超细粉射流分级技术研究.轻金属,2000,10: 15-23
    [48] Geldart D,Cullinan J,Georghiades S, Gilvray D, and Pope D J.The effect of fines entrainment from gas fluidized beds. Trans. Inst. Chem. Eng. 1979, 57,269-277
    [49]刘艳新,赵传山.激光衍射粒度仪测量原理及使用性能.上海造纸,2003,3 (34):18-20
    [50]张国权,杨吉林.气溶胶力学—除尘净化理论基础.北京:中国环境科学出版社,1987, 204-278
    [51]Jin.Y, Yu Z Q, Shen J Z and Zhang L.Pagoda-type vertical internal raffles in gas-fluidized beds. Int. Chem. Eng., 1980, 20:191-198
    [52]金涌,俞芷青,张礼,姚文虎,蔡平.流化床脊形内构件.石油化工,1986,5:269-274
    [53]卢天雄.流化床反应器.北京:化学工业出版社, 1986,123-129
    [54] Hassett N J.The Mechanism of fluidization. Chem.Eng.,1961,6:777-780
    [55]Varadi T and Grace J R. High pressure fluidization in a two-dimensional bed.Cambridge Univ.Press, Cambrisge,1978,55-58
    [56]Wilhelm R H and Kwauk M.Fluidization of solid particle. Chem. Eng. Progr., 1948, 44:201- 218
    [57]Max Leva, Joseph M Lucas and Herman H Frahme. Effect of particle supports on mechanical operation of packed tower.Ind.Eng.Chem.,1954,46,1225-1232
    [58] Grace,Gugnoni, Zenz.Fluidization. New York: Plenum press,1980
    [59]Juma A K A,Richardson J F. Segregation and mixing in liquid fluidized beds. Chemical Engineering Science,1983, 6 (38):955-967
    [60]Van Duijng,Riefemak. Segregation of liquid-fluidized solids. Chemical Engineering Science, 1982,6 (37):727-733
    [61]Scarlett B,Rippon M.J. Two-layer method of centrifugal particle-size analysis. Loughborough Univ. Technol. Eng.,1967, 57-242
    [62]AI-Dibouni, Maan R,Garside J.Velocity-voidage relation for fluidization and sedimentation in solid-liquid systems.Ind. Eng. Chem.,1977,16 (2), 206-221
    [63]Clarence J Wall,William J Ash.Ind,Eng,Chem.,1941,41,124-126
    [64]Kar D D,Gupta P S.Design air-classifier this way.Chem. Age.India.,1976,27 (5):475-482
    [65]Barari H B,Gupta P S,Kar D D.Performance of a continuous fluidized bed classifier.IndianJ.Technol,1978,16 (9),343-349
    [66]Valent M K.Fluidized-bed gas classification of high temperature gas-cooled reactor fuel particles.AIChE,1977,73 (161),74-80
    [67]Gelperin N I,Einstein V G. Fluidization.Chap.11, Aoademio press,1971
    [68]Zennosuke Tanaka,Teruo Takahashi.Fluidization and Fluid Particle System. Recent Advances (AICHE Symposium Series)Published by American Institute of Chemical Engineers,2001,757-763
    [69]张统潮,俞志敏,姚芝茂.流态化床中稀浓相颗粒浓度平衡关.化学工程,5 (22),1994:46-49
    [70]张统潮,俞志敏,姚芝茂.多层流化床分级性能研究.化学工程,6 (22),1994:64-68
    [71]彭辉,张济宇.流化床二组分混合物的适宜分离气速.化学反应工程与工艺,3(12),1996: 271-280
    [72]Zennosuke Tanaka,Xu Qi Song.Advanced Powder Technol, 1996, 17:29-40
    [73]Zennosuke Tanaka,Masahiko Uchi Yama. Advanced Powder Technol,1996,33:248-252
    [74]杨睛.石英流化分级塔的研究.合肥工业大学硕士论文,1999
    [75]Li J and Kwauk,M.Particle-fluid two-phase flow-the energy minimization multi-Scale method.Metallurgical Industry Press,Beijing,1994,102-107
    [76]Ergan, Sabri.Measurement of three-dimensions steady flow. Chem. Eng. (Japan),1952,16, 52-70
    [77] Wen C Y,and Yu Y H. A generalized method for predicting the minimum fluidization velocity.AIChE, 1966, 12: 610-612
    [78]Pillai M G, Raja Rao. Molecular force field for Ozone.J. Shivaj. Univ,1971,3(416): 41-51
    [79]Geldert D, Abrahamsen A R. The effect of fines on the behavior of gas fluidized beds of particles. Powder Technol,1980, 26: 35-55
    [80]Vaid R P, Sen Gupta P. Minimum fluidization velocities in beds of mixed solids. Can. J. Chem. Eng., 1978, 56: 6-292
    [81]Andrew G Frantz, Fred H Katz, And Joseph. W. Jailer. Measurement and significance in human urine. Endocrinol and Metabolism,1961,21,1290-1330
    [82]袁惠新.分离工程.北京:中国石化出版社,2002,65-171
    [83]Roy S Hancock, and Arthur Langmeier.Apparatus for refining rosin.Trans. Inst. Mining Eng, 1937, 94-99
    [84] Richardson J F and Zaki W N. Energy changes associated with germination in Wheat seedings.Trans. Inst. Chem. Eng., 1954,32:35-41
    [85]王尊孝等.化学工程手册第二十篇流态化.北京:化学工业出版社,1987,1-33
    [86]Brown, G. G. etal.. Unit Operations. John Wiley & Sons, New York, 1950
    [87]李建隆.环流循环除尘系统.中国专利,2001,专利号:01243742.5
    [88]郭宜诂,王喜忠.流化床基本原理及其工业应用.北京:化学工业出版社,1980,17-70
    [89]潘国昌,郭庆丰.化工设备设计.北京:清华大学出版社,1996,78-108
    [90]李瑞,张丽娟.精馏塔理论板计算方法探究.固原师专学报,2005,6 (26):101-104
    [91]蒋维钧,化工原理.北京:清华大学出版社,2003,171-196
    [92]张蕴壁.流态化选论.西安:西北大学出版社,1989, 108-147
    [93]柯善哲,肖福康,江兴方.量子力学.北京:科学出版社,2005,168-211
    [94]Hamaker H C.The London-Van Der Waals attraction between spherical particles. Physica, 1937, 4, 1058-72
    [95]Lifshitz E M,Sovert. The theory of molecular attraction forces between solid bodies.Phys, 1956, 2, 73-83
    [96]Overbeck J and Sparnaay.Classical coagulation. London-Van Der Waals’attraction between nacroscopc objects. Discussions Faraday Soc., 1954, 18, 9-11
    [97]Visser J.Hamaker constants. Comparison between Hamaker constants and Lifshitz-Van Der Waals constants.Advan.Colloid Interface Sci.1972, 3 (3), 331-63
    [98]Visser J.Adehesion of colloidal particles.Advan. Surf. Colloid Sci., 1975, 8,84-87
    [99]Bailcy A G.. Electrostatic phenomena during powder handling. Powder Technology, 1984, 37, 71-85
    [100]Visser J. An invited review, Van der Waals and others cohensive forces affecting powder fluidization. Powder Technology,1989,58, 1-10
    [101]Visser J. Surface and colloid science,Vol. 8,Wliey, New York,1976
    [102]童景山,张克.流态化干燥技术.北京:中国建筑工业出版社, 1985,127-141
    [103]郭慕孙,庄一安.流态化垂直系统中均匀球体和流体的流动.北京:科学出版社,1963, 66-89
    [104]郑水林.超微粉体加工技术与应用.北京化学工业出版社,2005,134-154
    [105]王福军.计算流体动力学分析.北京:清华大学出版,2004, 113-142
    [106]H K Versteeg, W Malalasekera.An Introduction to computational fluid dynamics: The finite volume method. Wiley, New York, 1995
    [107]P Bradshaw, T Cebeci, J. H. Whitelaw. Engineering calculation methods for turbulent flow. Academic Press, London, 1981
    [108]黄克智,薛明德,陆明万.张量分析.北京:清华大学出版,2003,123-137
    [109]Fluent Inc. FLUENT user’s guide. Fluent Inc., 2003
    [110]Marzio Piller, Enrico Nobile, J Thomas. DNS study of turbulent transport at low prandtl numbers in a channel flow.Journal of Fluid Mechanics, 2002,45: 419-441
    [111]J G. Wissink. DNS of separating low reynolds number flow in a turbine cascade withincoming wakes.International Journal of Heat and Fluid Flow,2003,24 (4): 626-635
    [112]V Michelassi, J G Wissink, W Rodi. Direct numerical simulation, large eddy simulation and unsteady reynolds-averaged navier-stokes simulations of periodic unsteady flow in a low-pressure turbine cascade: a comparison. Journal of Powder and Energy,2003,217 (4): 403-412
    [113]V Stephane.Local mesh refinement and penalty methods dedicated to the direct numerical simulation of incompressible multiphase flows.proceedings of the ASME/JSME joint fluids engineering conference,2003,1299-1305
    [114]M B Abbott, D R Basco. Computational fluid dynamics-an introduction for engineers. longman scientific & technical, Harlow, England,1989
    [115]A A Feiz,M Ould-Rouis,G Lauriat.Large eddy simulation of turbulent flow in a rotating pipe. International Journal of Heat and Fluid Flow,2003,24 (3):412-420
    [116]Mary Ivan,Sagaut Pierre.Large eddy simulation of flow around an airfoil near stall. AIAA Journal, 2002, 40 (6):1139-1145
    [117]D G E Grigoriadis, J G bartzis, A goulas efficient treatment of complex geometries for large eddy simulation of turbulent flows.Computers and Fluids,2004,33 (2):201-222
    [118]L Shen, D K P Yue.Large-eddy simulation of free-surface turbulence.Journal of Fluid Mechanics,2001,440:75-116
    [119]R E Julian, K Smolarkiewiez.Eddy resolving simulation of turbulent solar convection. International Journal for Numerical Methods in Fluids,2002,39 (9):855-864
    [120]J C Li. Large eddy simulation of complex turbulent flows: physical aspects and research trends. Acta Mechanica Sinica,2001,17 (4):289-301
    [121]P Rollet-Miet,D Laurence,J Ferziger. LES and RANS of turbulent flow in tube bundles. International Journal of Heat and Fluid Flow,1999,20 (3): 241-254
    [122]J O Hinze.Turbulence.McGraw-Hill,New York,1975
    [123]B E Launder, D B Spalding. Lectures in mathematical models of turbulence. Academic Press,London,1972
    [124]陶文铨.数值传热学.西安:西安交通大学出版,2001,87-106
    [125]郭鸿志.传输过程数值模拟.北京:冶金工业出版,1998,121-150
    [126]李静海,欧阳洁,高士秋,葛蔚,杨宁,宋文立.颗粒流体复杂系统的多尺度模拟.北京:科学出版, 2005,2-47
    [127]Gage D H, Schiffer M, Kline S J, Reynolds W C.The non-existence of a general thermodynamic variational principle. Chicago:the University of Chicago Press,1966,283-286
    [128]Prigogine I.Introduction to thermodynamics of irreversible processes.3rd edition. New York: Interscience Publiction, 1967
    [129]Costanga R. A vision of the future of science: reintegrating the study of humans and the rest of nature.Future,2003,35:651-671
    [130]Karsch F, Monien B, Satz H. Multi-scale phenomena and their simulation-proceedings of international conference. Singapore: World Scientific, 1997
    [131]Gidaspow D. Multiphase flow and fluidization. San Diego: Academic Press, 1994
    [132]Tsuo Y P, Gidaspow D.Computation of flow patterns in circulation fluidized beds.AIChE, 1990, 36(6): 885-896
    [133]Ding J,Gidaspow D.A bubbling fluidization model using kinetic theory of granular flow. AIChE,1990,36 (4): 523-538
    [134]Enwald H, Feirano E, Almsedt A E. Eulerian two-phase flow theory applied to fluidization. Int. J. Multiphase Flow,1996,22 (Suppl.): 21-66
    [135]Tsuji Y, Kawaguchi T, Tanaka T. Discrete particle simulation of two-dimensional fluidized bed. Powder Technol,1993,77 (1): 79-87
    [136]Xu B H, Yu A B.Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computation fluid dynamics.Chem. Eng. Sci,1997,52(16): 2785-2809
    [137]Mikami T,Kamiya H,Horio M.Numerical simulation of cohesive powder behavior in a fluidized bed.Chem. Eng. Sci,1998,53(10):1927-1940
    [138]Hoomans B P B,Kuipers J A M, Briels W J, Van Swaaij W P M. Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidized:a hard-sphere approach. Chem. Eng. Sci, 1996,51 (1):99-108
    [139]Ouyang J, Li J H. Discrete simulation of Heterogeneous structure and dynamic behavior in gas-solid fluidization. Chem. Eng. Sci, 1999, 54(22): 5427-5440
    [140]Helland E, Occelli R, Tadrist L. Numerical study of cluster formation in a gas-particle circulating fluidized bed. Powder Technol,2000,110 (3):210-221
    [141]Tsuji Y, Tanaka T, Yonemura S. Cluster patterns in circulating fluidized beds predicted by numerical simulation(discrete particle model versus two-fluid model). Powder technol,1998,95(3): 254-264
    [142]Toomey R D, Johnstone H F. Gaseous fluidization of solid particles. Chem. Eng. Prog., 1952,48 (5):220-226
    [143]Davidson J F, Clift R, Harrison D. Fluidization. 2nd ed. London: Academic press,1985
    [144]Grace J R, Clift R. On the two-phase theory of fluidization. Chem. Eng. Sci., 1974,29 (2): 327-334
    [145]Li J, Kwauk M. Particle-fluid two-phase flow:the energy-minimization multi-scale method.Beijing: Metallurgical Industry Press, 1994
    [146]Ge W, Li J. Macro-scale phenomena reproduced in microscopic system-pseudo-particle model of fluidization. Chem. Eng. Sci.,2003,58 (8):1565-1585
    [147]张政,谢灼利.流体-固体两相流的数值模拟.化工学报,2000,52 (1): 1-11
    [148]孔珑.两相流体力学.北京:高等教育出版,2000,86-99
    [149]岑可法,樊建人.工程气固多相流动的理论及计算.浙江:浙江大学出版社,1990, 67-89
    [150]M. Sommerfeld and H.H.Qiu. Characterization of particle-laden, confined swirling flows by phase-dopper anemometry calculation. Int. J.Multiphase Flow,1993,19,1093-1127
    [151]Tabakoff W. and Hamed A.Aerodynamic effects on erosion in turbo-machinery. Inter Proc.Tokyo Joint Gas Turbine Congr,1977,574-580
    [152]Robert M,West,James C Cullivan, Richard A Williams.Estimation of particle-Size distribution and classifier selectivity. Part. Syst. Charact., 2000, 17, 139-148
    [153]曹茂盛.超微颗粒制备科学与技术.哈尔滨:哈尔滨工业大学出版,1998,2-13
    [154]L.Karunakumari,C.Eswaraiah,S Jayanti and S. S. Narayanan. Experimental and numerical study of a rotating wheel air classifier.AIChE,2005,51 (3):776-782
    [155]Heiskanen K. Developments in wet classifiers. Int.J.Mineral Process, 1996,44 (45):39-44
    [156]Schubert H,Bohme S,Neesse T. Classification in turbulent two-phase flows. Aufbereitung- Technik,1986,6:295-306