特高压线路单相接地故障开断后瞬态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
特高压输电是当前我国电力系统领域研究的热点,在我国“西电东送,南北互供,全国联网”的电力发展战略中扮演重要的角色。电压等级的提高给特高压输电系统绝缘带来了严峻的挑战,限制特高压输电系统的过电压水平,合理选择绝缘水平是特高压输电工程建设的关键课题。因此研究特高压输电线路的过电压及自适应重合闸技术具有重要的现实意义。
     本文针对特高压输电线路发生单相接地故障后的暂态特性,将从瞬态恢复电压、线路感应电压、潜供电弧熄灭特性等几个方面对特高压电网的过电压进行深入、细致地研究。作了如下几方面的研究工作:
     根据特高压示范工程线路的实际结构及GIS (Gas Insulated Switch)内部结构建立仿真模型,对瞬态恢复电压进行研究。本文首次分析了线路间的静电感应和电磁感应现象对瞬态恢复电压的影响,并进行详细的理论推导;仿真分析不同故障类型及不同故障位置处的瞬态恢复电压,以及考虑感应电压影响前后瞬态恢复电压参数的变化情况。通过分析可知感应电压使瞬态恢复电压的峰值和上升率有所增加,这对断路器的绝缘水平提出更高的要求,对断路器结构设计具有一定的理论指导作用。
     采用频率相关参数模型对特高压输电线路上潜供电弧产生的物理过程进行详细的分析并对潜供电弧参数进行系统的理论推导,分析恢复电压和潜供电流的变化规律;分析单相瞬时性故障情况下的一次电弧和二次电弧的数学模型,建立电弧的仿真模型。利用已有的试验结果对本文的计算结果进行验证,验证结果表明本文建立的电弧模型以及线路模型的思想是可行的,得到的计算结果是合理的。
     利用已建立的电弧模型和线路模型搭建特高压示范线路系统模型,对实际输电线路进行相关的潜供电弧特性仿真研究。得到不同故障性质情况下的故障相端电压电流波形,利用傅里叶变换对其进行分析,重点对二次电弧阶段的变换结果进行了对比和分析,从而提取出能够区分故障性质的关键特征。最后通过大量的仿真得到训练样本和测试样本,最后利用模糊神经网络实现自适应单相重合闸。最终的仿真结果证明了本文提出的自适应单相自动重合闸方法的有效性和正确性。
The ultra-high-voltage (UHV) transmission system takes an important part in China electrical power development. The issue of insulation becomes more and more outstanding with the increase voltage classification. The restriction of overvoltages and the proper selection of insulation coordinations are the key subject in UHV transmission engineering construction. Therefore the research on overvoltage and adaptive auto-reclosing technique for UHV transmission line is of great practical significance.
     The paper focuses on the transient characteristics of single-phase earth fault on UHV transmission line. Several aspects of overvoltage are studied in-depth on UHV power grid, including transient recovery voltage, line induced voltage, extinction characteristic of secondary arc. Several research aspects as the following:
     According to structural characteristics of the actual line and interal structure of GIS to set up the simulation model of the whole system. The paper first analyzes the effect electrostatic induction and electromagnetic induction on the transient recovery voltage, and conducts a detailed theoretical derivation. The paper simulates and analyzes transient recovery voltage under different fault types and different fault locations, and transient recovery voltage parameters changes after considering the effect of induced voltage. Analysis showed the induced voltage can increase the peak of transient recovery voltage, which bring forward higher requirements for the circuit breaker insulation level and provide theoretical basis for structural design of circuit breaker.
     The paper adopts frequency related parameter model on the transmission of UHV to analyze the physical process secondary arc and carry on the detailed theoretical derivation of the secondary arc parameters, and analyze the variation regularity of recovery voltage and secondary arc current, analyzes the mathematical models of the primary arc and the secondary arc under the temporary single-pole fault, and establishes the simulation models of arc. The computation results in this paper are testified by theformer test results and the maturity results. It is feasible that the idea based on establishing arc model and circuit model, and the calculation result is reasonable.
     The paper simulates and studies characteristic of secondary arc of the actual transmission line through establishing system model UHV demonstration project. The waveform of the voltage of faulty phase under the different type of fault is simulated by EMTP-ATP. Then, the voltage of faulty phase is transformed by the Fourier transform. In order to extract the key features which can be used to distinguish the type of fault, the transformation of the voltage of faulty phase in the period of secondary arc should be pay more attention to. Finally, training samples and the testing samples are obtained by lots of simulation, and single-pole adaptive reclosure based on transient component is realized by fuzzy neural network. The finally simulation results show that the method proposed in this paper of single-pole adaptive reclosure is correct and effective.
引文
[1]郭贤珊,高理迎.特高压直流输电工程节能设计实践[J].电网技术,2011,35(2):212-215.
    [2]舒印彪.1000kV交流特高压输电技术的研究与应用[J].电网技术,2005,29(19):1-6.
    [3]周小谦.中国电网发展与关键输变电设备需求[J].高压开关,2004,5(3):15-19.
    [4]史兴华,王敏.国外特高压电网建设实践的启示[J].华东电力,2005,33(7):19-22.
    [5]中国电工技术学会特高压输变电技术考察团.俄罗斯、鸟克兰超、特高压输变电技术发展近况[J].电力设备,2003,4(2):49-56.
    [6]中村秋夫,岗本浩,曹祥麟.东京电力公司的特高压输电技术应用现状[J].电网技术,2005,29(6):1-5.
    [7]吴敬儒,徐永禧.我国特高压交流输电发展前景[J].电网技术,2005,29(3):1-4.
    [8]虞菊英.我国特高压交流输电研究现状[J].高电压技术,2005,31(12):23-25.
    [9]张文亮,胡毅.发展特高压交流输电,促进全国联网[J].高电压技术,2003,29(8):20-22.
    [10]朱法华,谭国柱.西部大开发与电力工业可持续发展[J].中国电力,2001,34(1):1-5.
    [11]郑健超.金沙江大容量水电远距离输送方式的选择[J].中国电力,2003,36(9):5-10.
    [12]钟西炎.750kV超高压工程设计问题探讨[J].西北电力技术,2003,6(1),15-19.
    [13]张文亮,吴维宁,胡毅.特高压输电技术的研究与我国电网的发展[J].高电压技术,2003,29(9):16-18.
    [14]吴桂芳,陆家榆,邵方殷.特高压等级输电的电磁环境研究[J].中国电力,2005,38(6):24-27.
    [15]舒印彪,胡毅.交流特高压输电线路关键技术的研究及应用[J].中国电机工程学报,2007,27(36):1-7.
    [16]胡毅.特高压输电试验线段及相关技术问题的探讨[J].高电压技术,2004,30(12):37-39.
    [17]周浩,余宇红.我国发展特高压输电中一些重要问题的讨论[J].电网技术,2005,29(12):1-9.
    [18]林莘.现代高压电器技术[M].北京:机械工业出版社,2002年.
    [19]商立群,施围.同杆双回输电线路的潜供电流与恢复电压[J].高电压技术,2003,29(10):22-23.
    [20]Trad, G. Ratta, E. Valladares, J. L. Alonso, J. Nizovoy, E. Hollman. Transient study of two 500kV coupled lines in a transient network analyzer. International Journal of Electrical Power & Energy Systems, Volume 22, Issue 2, February 2000,111-117.
    [21]刘平,姚斯立,杜炜等.高压断路器近区故障开断试验人工数学链路的应用[J].高压电器,2008,44(6):558-561.
    [22]Ashraf I. Megahed, Hany M. Jabr, Fathy M. Abouelenin, Mahmoud A. Elbakry.Arc characteristics and a single-pole auto-reclosure scheme for Alexandria HV transmission system. Electric Power Systems Research, Volume 76, Issue 8, May 2006,663-670.
    [23]E. Schade, and E. Dullni. The Characteristic Features of Recovery of The Breakdown Strength of Vacuum Switching Devices After Interruption of High Current, in Proc. ⅩⅨth ISDEIV, Xi'an, China,2000,367-374.
    [24]Tokyo Electric Power Company. Overvoltage study and insulation coordination chinese 1000kV AC project[R]. Tokyo, Japan:TEPCO,2006.
    [25]Baozhuang Shi, Zhimin Li, et al, Analysis of the Reason Why VFTO May Endanger GIS Above 300kV, Power System Technology,1998,22(1):1-3.
    [26]林莘,何柏娜,徐建源.超高压输电线路的潜供电弧频谱特性[J].高电压技术,2009,35(8): 1891-1895.
    [27]易辉,熊幼京.1000kV交流特高压电输电线路运行特性分析[J].电网技术,2006,30(15):1-7.
    [28]林集明,顾霓鸿,于晓刚.特高压断路器的瞬态恢复电压研究[J].电网技术,2007,31(1):1-5.
    [29]Y. Shibuya, S. Fujita, T. Shimomura. Effects of Very Fast Transient Overvoltages on Transformer[J]. IEE Proc. Gener. Transm. Distrib,1999,146(7):459-464.
    [30]Y. Shibuya, S. Fujita, E. Tamaki. Analysis of very fast transient in transformers[J]. IEE Proc. Gener. Transm. Distrib,2001,148(7):377-383.
    [31]张晓莉,周泽昕,王玉铃.1000kV交流输电系统动态模拟研究[J].电网技术,2005,30(7):1-4.
    [32]陈庆国,张乔根.GIS在快速暂态过电压下的放电特性[J].电网技术,2000,24(9):1-4.
    [33]邹建华,康宁.快速暂态过电压的形成机制与抑制方法[J].西安交通大学学报,2005,39(4):417-420.
    [34]Dufournet D, Montillet G E. Transient recovery voltages requirements for system source fault interrupting by small generator circuit breakers[J]. IEEE Transactions on Power Delivery,2002, 17(2):474-478.
    [35]林莘,李爽,徐建源.特高压GIS壳体过电压特性[J].沈阳工业大学学报,2009,31(6):606-610.
    [36]杨志刚.特高压输电线路过电压抑制与保护[J].电气工程应用,2010(2):23-26.
    [37]N akanishi K, Fujita S, Kurita H, et al. High frequency voltage oscillation in transformer windings and electrical breakdown properties of interturn insulation immersed in oil at VFT voltage[A]. IEEE Annual Report-Conference on Electrical Insulation and Dielectric Phenomena[C]. Minneapolis,1997,490-493.
    [38]S. Fujita, N. Hosokawa, Y. Shibuya. Experimental Investigation of High Frequency Voltage Oscillation in Transformer Windings[J]. IEEE Transactions on Power Delivery,1998,13(10): 1201-1206.
    [39]康宁,李永林.GIS中VFT过电压数值分析简化模型的构建方法[J].高电压技术,2004,30(10):1-4.
    [40]王琦,李六零,邱毓昌.气体绝缘开关装置中快速暂态过电压的抑制[J].电力设备,2004年,5(3):19-21.
    [41]Shimoda N, Taguchi K, Nemoto T, et al. Suppression of VFTO across insulating flange of 1100kV GIS. IEE Conference Publication, High Voltage Engineering Symposium,1999,46(7):415-418.
    [42]Kumar V V, Thomas J. Capacitive sensor for the measurement of VFTO in GIS. IEE Conference Publication, High Voltage Engineering Symposium,1999,47(6):156-159.
    [43]C.L. Wagner, D.Dufournet, G.F.Montillet, Revision of the application guide for transient recovery voltage for AC high-voltage circuit breakers of IEEEC37.011:A Working Group Paper of the high voltage circuit breaker subcommittee, IEEE Trans. Power Deliv.2007,22(1):161-166.
    [44]ANSI Standard C37.06.1, Guide for High-Voltage Circuit Breakers Rated on a Sym-metrical Current Basis Designated Denite Purpose for Fast Transient Recover Voltage Rise Times, American National Standard,2000.
    [45]A. H. Soloot, H. K. Hoidalen, "Upon The Impact of Power System and Vacuum Circuit Breaker Parameters on Transient Recovery Voltage," in proceeding of APPEEC (IEEE conf.), Chengdu, China, March,2010,1-4.
    [46]李炜,李玉春,杨海芳等.确定预期瞬态恢复电压波形的低压模拟装置宇研制[J].电工技术,2006(12):177-178.
    [47]杨海芳,杨志宇,李玉春等.断路器合成试验瞬态恢复电压调节线路的确定[J].高电压技术,2006,32(08):3-5.
    [48]李炜,李玉春,杨海芳等.确定预期瞬态恢复电压的低压模拟装置[J].高电压技术,2006,32(8):33-35.
    [49]陈水明,许伟,王振兴等.500kV限流电抗器对瞬态恢复电压的影响及其限制措施[J].华北电力技术,2008,2(1):11-15.
    [50]林莘,何柏娜,徐建源.特高压线路上潜供电弧熄灭特性的分析[J].高电压技术,2006,32(3):7-9.
    [51]Laszlo Prikler, Mustafa Kizilcay, Gabor Ban, Peter Handl. Modeling secondary arc based on identification of arc parameters from staged fault test records. International Journal of Electrical Power & Energy Systems, October 2003,25(8):581-589.
    [52]IEC62271-100:2001, High-voltage switchgear and control gear-part 100:high-voltage alternating current circuit-breaker[S]. Switzerland:IEC Publication,2001.
    [53]Lee Hyeong-Ho, et al. Experimental investigations of VFTO GIS[C]. In:9th ISH. Graz:1995, 67-83.
    [54]F. Fernandez and R. Diaz. Metal-oxide surge arrester model for fast transient simulations, Rio de Janeiro, Brazil,2001, IPST01-144.
    [55]X. Wang et al, Transient recovery voltage investigation in the application of 15kV circuit breaker failure, Montereal, Canada,2005, IPST05-224.
    [56]D. M. Nobre et al, An Alternative to reduce medium voltage transient recovery voltage peak, Rio de Janeiro, Brazil,2001, IPST01-136.
    [57]Juan A. Martinez, Statistics Assessment of Very Fast Transient Overvoltages in Gas Insulated Substations, Power Engineering Society Summer Meeting, IEEE,2000, Vol.2,882-883.
    [58]Povh D, Schmitt H, Valcker O. Modeling and analysis guidelines for very fast transients[J]. IEEE Trans on PWRD,1996,11(4):2028-2035.
    [59]I. Gutman, K. Halsan, D. Hubinette and T. Ohnstad, Ice Progressive Stress Method Repeatability During Full-Scale Testing of 400kV Line and Apparatus Insulators and Application of the Test Results, Conf. Rec. of the 2004 IEEE Int. Symp. on Electrical Insulation, Indianapolis, USA, September 2004,560-563.
    [60]Yanagata Y, Tanaka K, Nishiwaki S, et al. Suppression of VFT in 1100kV GIS by adopting resistor-fitted disconnector[J]. IEEE Trans on PWRD,1996,11(2):872-880.
    [61]Dingzhen Nie, Shouju Chen, et-al, Analysis and Calculation of Operating Pass-by Transient with Disconnect Switch, High Voltage Engineering,2000,26(3):60-62.
    [62]李思南.500kV系统操作过电压计算分析研究:(硕十学位论文).武汉:武汉大学,2002.
    [63]陈水明,许伟,杨鹏程等.500kV变电站66kV侧断路器瞬态恢复电压特征[J].高电压技术,2009,35(6):1301-1308.
    [64]吴盛刚,李向阳,王学军等.中压网络试验系统瞬态恢复电压参数的计算及波形模拟[J].电工电气,2010(6):1-6.
    [65]吴松.Matlab在高压合成试验瞬态恢复电压中的仿真应用[J].电气技术,2010(9):17-21.
    [66]罗铮.天荒坪电厂GIS中快速暂态过电压的计算及分析:(硕十学位论文).武汉:武汉大学,2002.
    [67]Zadeh, M.R.D., Sanaye-Pasand, M., Kadivar, A. Investigation of Neutral Reactor Performance in Reducing Secondary Arc Current. IEEE Transactions on Power Delivery,2008,23(4):2472-2479.
    [68]商立群,施围.快速接地开关熄灭同杆双回输电线路潜供电弧的研究[J].电工电能新技术,2005,24(2):5-6.
    [69]杨芳,廖远忠,王巨丰.基于分布参数电路的潜供电弧参数的计算[J].广西电力,2006(5):57-59.
    [70]Lin Xin, He Baina, Xu Jianyuan. The Research of High Speed Earthing Switch on EHV.2006 China International Conference on Elevtricity Distribution,Beijing,2006.
    [71]黄冠斌,孙亲锡,谭丹.电路理论—电阻性网络[M].武汉:华中科技大学出版社,1998年.
    [72]陈维江,颜湘莲,贺子鸣等.特高压交流输电线路单相接地潜供电弧仿真[J].高电压技术,2010,1(31):1-6.
    [73]韩彦华,施围.故障点接地电阻对超高压输电线路潜供电流的影响[J].西安交通大学学报,2002年6月,36(6):555-558.
    [74]韩彦华,黄晓民,杜秦生.同杆双回线路感应电压和感应电流测量与计算[J].高电压技术,2007,33(1):140-143.
    [75]杨芳,廖远忠,王巨丰.基于分布参数电路的潜供电弧参数的计算[J].广西电力,2006(5):57-59.
    [76]杨芳.高压输电线路的潜供电流特性与对策研究:(硕十学位论文).广西:广西大学,2006.
    [77]Laszlo Prikler, Mustafa Kizilcay, Uabor Ban, et al. Improved secondary arc model based on identification of arc Improved parameters from staged fault test records[C]//14th PSCC, Sevilla, Spain:[s.n.],2002,1-7.
    [78]TAVARES M C, PORTELA C M. Transmission System Parameters Optimization-sensitivity Analysis of Secondary Arc Current and Recovery Voltage[J]. IEEE Transactions on Power Delivery,2004, (19):1464-1471.
    [79]MIZOGUCHI H, HIOKI I,YOKOTA T, et al, Development of An Interrupting Chamber for 1000kV High Speed Grounding Switches[J]. IEEE Trans PWRD,1998,13(2):495-502.
    [80]林莘,何柏娜,徐建源.潜供电弧的仿真分析[J].高压电器,2007,43(1):8-10.
    [81]谷定燮.我国发展特高压输电的前景[J].高电压技术,2002,28(3):28-30.
    [82]谷定燮,周沛洪.特高压输电系统过电压、潜供电流和无功补偿[J].高电压技术,2005,31(11):21-25.
    [83]田庆.特高压交流试验示范工程单相人工接地短路实测恢复电压分析[J].高压电器,2010,46(2):1-4.
    [84]陈维江,孙昭英,王献丽等.35kV架空输电线路并联间隙防雷装置单相接地故障电弧自熄特性研究[J].电网技术,2007,31(16):22-25.
    [85]和彦淼,宋杲,曹荣江.特高压同塔双回输电线路潜供电弧模拟试验等价性研究[J].电网技术,2008,32(22):4-7.
    [86]祝瑞金,马仁明.福建-华东联网工程调试[J].华东电力,2002(7):1-5.
    [87]Ishikawa, Y Iwai, A. Nishiwaki. S. Investigation of VFT surges propagated into transformer and overvoltages applied to winding. Electrical Engineering in Japan,2004,146(2):2-6.
    [88]钟连宏,欧世尧,周红霞.GIS中快速暂态过电压的分析及计算[J].高电压技术,2000,26(1):60-63.
    [89]宋国兵,索南加乐,许庆强等.基于双回线环流的时域法故障定位[J].中国电机工程学报,2004,·24(3):24-29.
    [90]邵方殷.特高压输电线路的相导线布置和工频电磁环境[J].电网技术,2005,(08):2-3.
    [91]王晶,牟磊,李彦明等.大容量实验室电流波形参数计算机提取算法的研究[J].高压电器,2006,42(1):44-46.
    [92]V.Vinod Kumar, Joy Thomas M., M.S.Naidu. Influence of switching conditions on the VFTO magnitude in a GIS. IEEE Transactions on Power Delivery,2001,16(4):539-544.
    [93]何柏娜.800kV GIS中采用快速接地开关抑制潜供电弧的研究:(硕十学位论文).沈阳:沈阳工业大学,2006.
    [94]Golshan, M.E. Hamedani, Golbon, N. Detecting secondary arc extinction time by analyzing low frequency components of faulted phase voltage or sound phase current waveforms. Electrical Engineering, Vol.88, No.2, p 141-148, January 2006.
    [95]BANG, PRIKLER L, BANFAI G. Testing EHV Secondary Arcs[J]. Power Tech. Proceedings,2001, 4(6):10-13.
    [96]哈恒旭.超高压输电线路边界保护的研究:(博十学位论文).西安:西安交通大学,2002.
    [97]H. S. Park, An Analysis on Transient Recovery Voltage of Circuit Breakeras Installing Current Limit Reactor in Ultra-High Voltage Power System, B. S. degree Paper in Chungnam National University,2005.
    [98]G.W.Swift, The Spectra of Fault Induced Transients[J], IEEE Trans. on PAS-90, June,1999, (3):940-947.
    [99]S.Henschel, L.Kirschner, M.C.Lima, Transient Recovery Voltage at Series Compensated Transmission Lines in Piaui, Brazil, (IPST'05), Canada on June 19-23,2005.
    [100]陈维江,颜湘莲,贺子鸣等.特高压交流输电线路单相接地潜供电弧仿真[J].高电压技术,2010,36(1):1-6.
    [101]邹圣权,陈为化.特高压交流输电试验示范工程投运研究[J].湖北电力,2009,33(3):31-34.
    [102]Radojevic, Zoran M. Numerical algorithm for adaptive single pole autoreclosure based on determining the secondary arc extinction time. Electric Power Components and Systems, July, 2006,34(7):739-745.
    [103]Akagi Y, Koyama S, Ohta H, et al. Development of anti-galloping device for UHV transmission line[C]. Asia Pacific. IEEE/PES Transmission and Distribution Conference and Exhibition 2002, 3(6):2158-2161.
    [104]G. Ban, L. Prikler, A.R. Said. Use of Neutral Reactors for Improving the Successfulness of Three-phase Reclosing[C]. Intermational Confererce on Electric Power Engineering,1999.
    [105]田翠华,陈柏超.可控电抗器在750kV系统中的应用[J].电工技术学,2005,21(1):31-37.
    [106]周孝信,郭剑波,胡学浩等.提高交流500kV线路输电能力的实用化技术和措施[J].电网技术,2001,25(3):1-6.
    [107]李达义,陈乔夫,贾正春.基于磁通可控的可调电抗器的新原理[J].中国电机工程学报,2003,23(2):116-120.
    [108]姚尧,阮羚,沈煜.超高压可控电抗器抑制潜供电流研究[J].高压电器,2009,45(2):22-26.
    [109]陈维贤,陈禾,鲁铁成等.关于特高压可控电抗器[J].高电压技术,2005,31(11):26-27.
    [110]柴旭峥,梁曦东,曾嵘等.串联补偿的远距离输电线路潜供电弧参数特性[J].电力系统自动化,2007,21(5):7-12.
    [111]钟胜.与超高压输电线路加装串补装置有关的系统问题及其解决方案[J].电网技术,2004,28(6):26-30.
    [112]Karhi, Ryan W.; Mankowski, John J.; Kristiansen, Magne. Analysis of distributed energy railguns to suppress secondary arc formation. The 14th Symposium on Electromagnetic Launch Technology, EML, Proceedings,2008,444-449.
    [113]Kovalev V, Panibratets A, Volkova O et al. The equipment for the AC 1150kV transmission line[Z]. Moscow:All-Russian Electrotechnical Institute(GUP VEI),2005.
    [114]Q.Bui-Van, E.Portales, D.McNabb, V.Gajardo, Transient performance of 500kV equipment for the Chilean series-compensated transmission system, presented at the IPST 2003 in New Orleans, USA.
    [115]A. I. Ibrahim, H. W. Dommel, An Intelligent Support System for the Analysis of Electric Power System Transients, International Journal of Electrical Power & Energy Systems, January,2003, Vol.25,71-77.
    [116]SANG-PIL A, CHUL-HWAN K, AGGRAWAL R K, et al. An alternative approach to adaptive single pole auto-rcelosing in high voltage transmission system based on variable dead time control[J].IEEE Transaction on Power Delivery,2001,16(4):676-686.
    [117]林莘,李学斌,徐建源.快速接地开关对交流特高压同塔双回输电线路潜供电弧的限制[J],电网技术,2010,34(9):26-30.
    [118]A T Johns, R K Aggarwal, Y H Song. Improved technique for modeling fault arcs on faulted EHV transmission systems[J]. IEE Pro-Gener, Transm Distrib,1994,141(2):148-154.
    [119]Y.H. SONG, R.K. AGGARWAL, A.T. JOHNS. Modelling of permanent faults in EHV transmission systems[C]. Proc IPEC93, Singapore,1993,485-489.
    [120]Z.M.Radojevic, V.V.Terzija, M.B.Djuric. Spctral Domain Arcing Fault Recognition and Fault Distance Calculation in Transmission System[J]. Electric Power System Research,1996, (37):105-113.
    [121]R.A.Niemerg, T.E.Grebe, Study of 345kV Transient Recovery Voltages on the Illinois Power System, IPST'05, Canada,2005.
    [122]Zadeh, M.R.D., Sanaye-Pasand, M., Kadivar, A Investigation of Neutral Reactor Performance in Reducing Secondary Arc Current. IEEE Transactions on Power Delivery,2008,23(4):2472-2479.
    [123]Shi Wei, Li Fan, Han Yanhua, Li Yunge. The effect of ground resistance on secondary arc current on an EHV transmission line. IEEE Transactions on Power Delivery, April,2005,20(2): 1502-1506.
    [124]He Baina, Lin Xin, Xu Jianyuan. The Analysis of Secondary Arc Extinction Characteristics on UHV Transmission Lines[C]. International Conference on High Voltage Engineering and Application, Chongqing, China, November,2008,516-519.
    [125]Danyek M, Handl P. Improving the reliability of experimental data about secondary arc duration. Proceedings of the 17th Hungarian-Korean Seminar, EHV Technologies-II, Keszthely-Lake Balaton, Hungary; October,2001.
    [126]Lin Xin, He Baina, Xu Jianyuan. The Analysis of Secondary Arc Suppression by High Speed Earthing Switch. Proceeding of the ⅪⅤth International Symposium on High Voltage Engineering, Tsinghua University, Beijing, China, August,2005,124.
    [127]J. Amon Fo, M. P. Pereira, Novos Desenvolvimentos dos Programas ATP/EMTP e APTDraw, ⅩⅥ SNTPEE, Campinas-SP, Brazil, October,2001.
    [128]蒋卫平,朱艺颖.750kV输变电示范工程单相人工接地故障试验现场实测和计算分析[J].电网技术,2006,30(19):42-47.
    [129]王皓,李永丽,李斌.750kV及特高压输电线路抑制潜供电弧的方法[J].中国电力,2005,(12):29-32.
    [130]陈禾,陈维贤.并联电抗器中性点小电抗的选择[J].高电压技术,2002,28(8):9-10.
    [131]M.C.Lima, F.R.Alves, S.Henschel, L.Kirschner, Electromagnetic transient studies for evaluation of 500kV fixed series capacitors installation impact of the stresses imposed to the circuit breakers in operation, presented at 18. SNPTEE Conference, Curitiba, Parana, Brazil,2005.
    [132]IEEE AC High Voltage Circuit Breakers Rated on a Symmetrical Current Basis Preferred Ratings and Related Required Capabilities, IEEE Standard C37.06, May.2000.
    [133]Qi Weifu, He Baina, Lin Xin. The Simulation and Analysis of Secondary Arc on Power Transmission Lines. The 5th International Conference on Power Transmission & Distribution Technology, Beijing, October,2005,704-708.
    [134]舒亮,贾磊,郑士普等.超高压线路潜供电弧电压的频率特性分析[J].西安交通大学学报,2007,41(6):712-716.
    [135]林湘宁,刘海峰,鲁文军等.基于广义多分辩形态学梯度的自适应单相重合闸[J].中国电机工程学报,2006,26(7):101-106.
    [136]王增平,刘浩芳,徐岩等.基于改进型相关法的单相自适应重合闸新判据[J].中国电机工程学报,2007,27(10):49-55.
    [137]聂宏展,董爽,李天云等.基于模糊神经网络的单相自适应重合闸[J].电网技术,2005,29(10):75-79.
    [138]Golshan, M.E. Hamedani, Golbon, N. Detecting secondary arc extinction time by analyzing low frequency components of faulted phase voltage or sound phase current waveforms. Electrical Engineering, January,2006,88(2):141-148.