盱眙火山岩山地典型植被群落结构及抗旱机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过对盱眙火山岩山地中处于不同演替阶段的典型植物群落进行结构调查和空间结构分析,并以二年生实生树种黄连木(Pistacia chinensis)、黄檀(Dalbergia hupeana)、朴树(Celtis sinesis)、麻栎(Quercus acutissima)、湿地松(Pinus elliotii)5个主要建群种为研究对象,研究了其抗旱机理,主要研究结论如下:
     1、乔木层α多样性指数呈稳定上升趋势,灌木层、草本层在湿地松群落和朴树+侧柏群落都偏低,整个群落的多样性指数在朴树+黄连木群落达最大。群落的演替规律呈现为:针叶纯林阶段—→针叶林为主的针阔混交林阶段—→针阔混交林阶段—→阔叶混交林阶段。
     2、林分空间分析结果表明,林分物种多样性丰富,乔木层共出现14个树种,径级结构分布连续,群落垂直结构特征明显,可分为3个林层,林分平均混交度为0.516,处于强度混交状态;林分平均角尺度为0.465,属于均匀分布;林分平均大小比数为0.454,即有45.4%的林木处于优势状态;林分平均开敞度为0.296,林木生长空间略有不足。栓皮栎、麻栎和侧柏种群优势度明显,群落暂时处于相对稳定状态,但侧柏缺少更新个体,群落最终将演替为落叶阔叶混交林。
     3、对野外调查筛选出5个主要优势树种黄连木、黄檀、朴树、麻栎、湿地松,进行干旱模拟试验。在干旱胁迫下,气孔导度与Chla含量变化呈现出显著下降的趋势;从整体上可以看出抗旱性强的树种与渗透调节能力相关的脯氨酸、可溶性糖的含量呈现出上升的趋势,大多数树种在重度和中度胁迫的末期则呈现出了显著下降的趋势;抗旱性强的树种在胁迫的初期SOD呈现出显著的上升趋势,随着胁迫时间延长,抗旱性较弱的树种最先呈现出了下降的趋势。
     4、轻度干旱胁迫下,湿地松的叶片超微结构未受损伤;麻栎线粒体无明显变化,叶绿体有扩张现象;黄连木与黄檀线粒体外膜有降解现象,叶绿体膨胀;朴树线粒体与叶绿体受损明显。重度胁迫下,湿地松、麻栎的线粒体内部出现降解,叶绿体受损;黄连木与黄檀出现质壁分离,叶绿体与线粒体受到严重损伤;朴树细胞内部受损最严重。
     5、综合5种树种的成活率和外部形态,用隶属函数法对多个评价指标和各树种的抗旱性以及生理适应性进行评价,各树种抗旱能力从高到低的排序为:湿地松>麻栎>黄连木>黄檀>朴树。
The typical plant communities in different succession phases were analysised in Volcanics Mountains of Xuyi, Jiangsu. The 2 years old young trees of 5 species (Pistacia chinensis Dalbergia hupeana、Celtis sinesis、Quercus acutissima. Pinus elliotii) were chosen as the experimental materials in order to reveal the drought tolerance mechanism.5 conclusions were drawn as follow:
     1、The species diversity of mixed forest was rich, there were 14 stocks in tree layer, the DBH structure of community was continuous, and the vertical structure of stand might be divided into 3 layers. The communities were in the highly mixed statement under intensity distribution, and the growth space for the trees was insufficient slightly. The dominant tree species was 45.4% in total. The a diversity index of the tree layer steady uptrend, and was higher than the shrub and herb layers in the Celtis sinesis Pers.+ Biota orientalis communities. And the top value appeared in the Celtis sinesis Pers.+ Pistacia chinensis Bunge communies. The succession underwent 4 steps:coniferous forest→mixed broadleaf-conifer forest (dominated by coniferous forest)→mixed broadleaf-conifer forest→mixed broadleaf forest.
     2、The species diversity of mixed forest was rich, there were 14 stocks in tree layer, the DBH structure of community was continuous, and the vertical structure of stand might be divided into 3 layers. The average mingling of the stand was 0.516, showed that the mixed degree of the forest is high. The angle index was 0.465, indicated that the tree position in this stand was uniform distribution. The neighborhood comparison was 0.454, and there were 45.4% trees in the stand being dominant. The average opening degree was 0.296, displayed the growth space of most trees in the forest was slightly less than sufficient. Q.variabilis, Q.acutissima and P.orientalis population are dominant now, and the community is being in a relatively stable state. But P.orientalis lack of updated individual, so when all of P.orientalis died, the stand will become deciduous broad leaved mixed forest.
     3、In drought stress, stomatal conductance and variation in content Chla shows significantly trend; from the whole can be seen that the praline and soluble sugar in the tree species of strong drought resistance shows ascendant trend, and most species in severe and moderate stress were present at the end of a significantly trend; SOD of strong drought resistance tree species in initial stress shows significant uptrend. With prolonged drought stress, weaker species first revealed a downward trend.
     4、Five species of the ultrastructure of mesophyll cells also had change:in normal moisture conditions, the mesophyll cell organelles structure was complete. Under slight drought stress, Pinus elliotii leaves ultrastructure were not hurt. There was no obvious change of quercus acutissima Carruth. mitochondrial, and expand phenomenon to the chloroplast. Degradation phenomenons were observed at the Pistacia chinensis Bunge and Dalbergia hupeana Hance mitochondrial membrane and chloroplast were swelling. Celtis sinesis Pers. mitochondria and chloroplasts were damaged obviously. Under severe stress, there were internal possibilities of degradation of Quercus acutissima Carruth. and Pinus elliotii mitochondrial, and chloroplast were damaged. Pistacia chinensis Bunge and Dalbergia hupeana Hance appeard qualitative wall separation, and chloroplast and mitochondrial badly damaged. The Celtis sinesis Pers. cells. were damaged most seriously.
     5. Compositing five species survival rate and external shape, with the method of multiple subordinate function of each species evaluation indexes of drought resistance and evaluate the physiological adaptive drought resistance, the sequence of the 5 trees from high to low in the resistance of drought stress was Pinus elliotii>Quercus acutissima Carruth.>Pistacia chinensis Bunge>Dalbergia hupeana Hance>Celtis sinesis Pers.
引文
[1]Gery,D,H.Infulence of vegetation on the stability of slope. Proceedings International Conference on vegetation and slope[C].University Museum,1994.
    [2]Gerard Buttoud欧洲的山地森林[J].热带林业,2002,30(2):15-18.
    [3]李博主编.生态学[M].北京:高等教育出版社,2000.
    [4]李景文主编.森林生态学[M].北京:中国林业出版社,1992.
    [5]Belnapj. Vulnerability of desert biological soil crust to wind erosion[J]. Journal of Arid Environment, 1998.
    [6]陈晓天,罗远培,石元春.作物对水分胁迫的反应[J].生态农业研究,1998,6(4):12-15.
    [7]蒋志荣.沙冬青抗旱性机理的探讨[J].中国沙漠,2000,20(1):70-74.
    [8]杨敏生,裴保华,朱之悌.白杨双交杂种无性系抗旱性鉴定指标分析[J].林业科学,2002,38(6):36-42.
    [9]高建社,王军,周永学,等.5个杨树无性系抗旱性研究[J].西北农林科技大学报(自然科学版),200533(2):112-116.
    [10]林艳,杜平,张全峰,等.国内林木抗寒抗旱性评定的主要指标及方法[J].河北林业科技,2000(6):10-12.
    [11]黎祜琛,邱治军.树木抗旱性及抗旱造林技术研究综述[J].世界林业研究,2003,16(4):17-22.
    [12]曾鸣.四川柏木与露丝柏的抗旱性研究[J].四川农业大学学报,1989(2):46-49.
    [13]刘淑明,陈海滨,孙长忠,等.黄土高原主要造林树种的抗旱性研究[J].西北农林科学技术大学学报,2003,31(4):149-153.
    [14]蒲光兰,袁大刚,胡学华,等.杏树抗旱性研究[J].西北林学院学报,200,20(3):4-43.
    [15]YANG X Q(杨晓青),ZHANG S Q(张岁岐),LIANG Z S(梁宗锁).Effect s of water stress on chlorophyll fluorescence parameters of different drought resistance winter wheat cultivars seedlings[J]. Acta Bot.Boreal.2Occi dent. Sin(西北植物学报),2004,24(5):812-516(in Chinese).
    [16]Shield L M. Leaf xeromorphy as related to physiological and strcatural influences[J]. Bot Rev,1950,16:399-4471
    [17]Metecalfe C R. Chalk I. A natomy of the dicotyledenes. edi, Clarenden press,Oxford.1982,Vol.Ⅰ. Ard.
    [18]薛慧勤等.花生品种抗旱性综合评价及其抗早机理的数量分析[J].干旱区农业研究,1999,17(1).83-87
    [19]张英普,何武权,韩健.水分胁迫对玉米生理生态特性的影响[J].西北水资源与水工程,1999,10(3):18-21.
    [20]Makchmof H A. H. A. Makchmof academician's florilegium[M]. BeiJing:Science Press.1959
    [21]Cutter, E. G. Plant anatomy[M]. Science press.1976.
    [22]Huang Zheng-Ying(黄振英)The structure of 30 species of psammophytes and their adaptation to the sandy desert environment in Xinjiang[J].Acta Phytoecol Sin(植物生态学报),1997,21(6):521-530.
    [23]Deng Yan Bin(邓彦斌)Thexeromorphic and saline morphic structure of leaves and assimilating branches in ten Chenopodiaceae species in Xinjiang[J]. Acta Phytoecol Sin.(植物生态学报),1998,22(2):164-170.
    [24]Endress A G, Sjoloud R D. Ultra structural cytology of callus cultures of Stepanthus tortuosus as affect by temperature [J].Am. J. Bot.,1976,63(9):1213-1224
    [25]李晓储,黄利斌,张永兵,等.四种含笑叶解剖性状与抗旱性的研究[J].林业科学研究,2006,19(2):177-181.
    [26]Xiong L, Wang R G, Mao G, et al. Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid [[J]. Plant Physiology,2006,142:1065-1074.
    [27]Ouiam Lahlou, Jean Franrois Ledent. Root mass and depth, stolons and roots formed on stolons in four cultivars of potato underwater stress [J]. European Journal of Agronomy,2005,22(2):159-173.
    [28]张彤,齐麟.植物抗旱机理研究进展[J].湖北农业科学,2005(4):107-110.
    [29]蒋志荣,杨占彪,汪君,等.兰州九州台四种绿化树种抗旱性机理比较研[J].中国沙漠,2006,26(4):553-558.
    [30]孙存华,白嵩,白宝璋,等.水分胁迫对小麦幼苗根系生长和生理状态的影响[J].吉林农业大学学报,2003,25(3):485-489.
    [31]张立新,李生秀.氮、钾、甜菜碱对减缓夏玉米水分胁迫的效果[J].中国农业科学,2005,38(7):1401-1407.
    [32]郭泉水,谭德远,刘玉军,等.梭梭对干旱的适应及抗旱机理研究进展[J].林业科学研究,2004,17(6):796-803.
    [33]Lizana C, WentworthM, Martinez J P, et al. Differential adaptation of two varieties of common bean to abiotic stress Ⅰ.Effects of drought on yield and photosynthesis [J]. Journal of Experimental Botany,2006,57,(3):685-697.
    [34]彭立新,李德全,束怀瑞.植物在渗透胁迫下的渗透调节作用[J].天津农业科学,2002,8(1):40-43
    [35]高洁,曹坤芳,王焕校.干热河谷9种造林树种在旱季的水分关系和气孔导度[J].植物生态学报,2004,28(2):186-190.、
    [36]邹春静,韩士杰,徐文铎,等.沙地云杉生态型对干旱胁迫的生理生态响应[J].应用生态学报,2003,14(9):1446-1450.
    [37]Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature:differences and crosstalk between two stress signaling pathways [J].Currop in Plant Biol,2000,3:217-223.
    [38]Fujita Y, FujitaM, Satoh R, et al. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidop sis [J]. The Plant Cell,2005,17:3470-3488.
    [39]YangW L, Hu ZA, Wang H X, et al. The protective role of Xanthophyll cycle in resurrection angiosperm boea hygrometrica during dehydration and rehydration[J]. Acta Botanica Sinica,2003,45 (3):307-310.
    [40]张林生,赵文明.LEA蛋白与植物的抗旱性[J].植物生理学通讯,2003,39(1):61-66.
    [41]彭立新,李德全,束怀瑞.园艺植物水分胁迫生理及耐旱机制研究进展[J].西北植物学报,2002,22(5):1275-1281.
    [42]孙存华,白嵩,白宝璋等.水分胁迫对小麦幼苗根系生长和生理状态的影响[J].吉林农业大学学报,2003,25(3):485-489.
    [43]汤章城.植物对水分胁迫的反应和适应性-Ⅰ抗逆性的一般概念和植物的抗涝性[J].植物生理学通讯,1983,19(3):24-29.
    [44]肖春旺,周广胜,马风云.施水量变化对毛乌素沙地优势植物形态与生长的影响[J].植物生态学报,2002,26(1):69-76.
    [45]龚明.作物抗旱性鉴定方法与指标及其综合评价[J].云南农业大学学报,1989,4(1):75-82.
    [46]柴宝峰,李洪建,王孟本.晋西黄土丘陵区若干树种水分生理及抗旱性量化研究[J].植物研究,2000,20(1):79-85.
    [47]王孟本,李洪建,任建中等.杨树杂交无性系品种抗旱性的比较研究[J].山西大学学报(自然科学版),2002,25(2):176-179.
    [48]庄丽,陈亚宁,陈明等.模糊隶属法在塔里木河荒漠植物抗旱性评价中的应用[J].干旱区研究,2005,28(3):367-372.
    [49]杨敏生,裴保华,朱之梯.白杨双交杂种无性系抗旱性鉴定指标分析[J].林业科学,2002,38(2):36-42.
    [50]张振师,薛智德,崔宏安等.延安地区3种灌木叶旱性结构的解剖研究[J].西北林学院学报,2004,19(1):32-35.
    [51]刘学师,任小林.宁南八种植物组织结构抗旱性的研究[J].水土保持研究,2005,12(3):76-80.
    [52]王珲,夏玉芳,陆飞等.马尾松针叶解剖构造及其抗旱适应性初步研究[J].贵州林业科技,2005,33(4):17-20.
    [53]Vodak M C,Roberts P L,Wellman J D,et al.Scenic impacts of eastern hardwood managenent[J].Forest Science,1985,31(2): 289-301.
    [54]惠刚盈,胡艳波.混交林树种空间隔离程度表达方式的研究[J].林业科学研究,2001,14(1):177-181.
    [55]安树青,李升峰,王峥峰,等.南京灵谷寺森林动态变化的研究[J].植物学报,1997,39(7)661-666.
    [56]安树青,陈兴龙,李国旗,等.南京灵谷寺森林物种多度结构变化的研究[J].南京大学学报,1999,35(2):156-161.
    [57]安树青,洪必恭,李朝阳,等.紫金山次生林林窗植被和环境的研究[J].应用生态学报,1997,8(3):245-249.
    [58]郝日明,魏宏图.紫金山森林植被性质与常绿落叶阔叶混交林重建可能性的探讨[J].植物生态学报,1999,23(2):108-115.
    [59]翟可,孙珊,时琴,等.南京紫金山地区优势种群生活史特征与格局[J].安徽农业科学,2008,36(33):14530-14533.
    [60]王威,郑小贤,梁雨,等.北京八达岭林场防护风景林空间结构分析[J].东北林业大学学报,2008,36(2):25-26,39.
    [61]苏薇,岳永杰,余新晓.北京山区油松天然林的空间结构分析[J].灌溉排水学报,2008,28(1):113-117.
    [62]胡艳波,惠刚盈,戚继忠,等.吉林蛟河天然红松阔叶林的空间结构分析[J].林业科学研究,2003,16(5):523-530.
    [63]赵中华,惠刚盈,袁士云,等.小陇山锐齿栎天然林空间结构特征[J].林业科学,2009,45(3):1-6.
    [64]沈伯澜,姚景德,薛萝润,等.松梢枯病的调查研究[J].林业科技开发,1992,33(3):4-5.
    [65]周红敏,惠刚盈,赵中华,等.林分空间结构分析中样地边界木的处理方法[J].林业科学,2009,45(2):1-5.
    [66]郑丽凤,周新年,江希钿,等.松阔混交林林分空间结构分析[J].热带亚热带植物学报,2006,14(4):275-280.
    [67]汤孟平,唐守正,雷相东,等.两种混交度的比较分析[J].林业资源管理,2004(4):25-27.
    [68]惠刚盈,Gadow K V, Albert M角尺度——一个描述林木个体分布格局的结构参数[J].林业科学,1999,35(1):37-42.
    [69]安慧君.阔叶红松林空间结构研究[D].北京林业大学博士论文,2003.
    [70]惠刚盈,Klausvon Gadow,Matthias Albert一个新的林分空间结构参数——大小比数[J].林业科学研究,1999,12(1):1-6.
    [71]郝云庆,王金锡,王启和,等.柳杉纯林改造后林分空间结构变化预测[J].林业科学,2006,42(8):8-15.
    [72]Battles J J,Shlisky A J, Barrett R H,et al.The effects of forest management on plant species diversity in a Sierran conifer[J]. forest.For.Ecol.Manage.,2001,146:211-222.
    [73]张金池,杜天真.长江中下游山地丘陵区植被恢复与重建[M].北京:中国林业出版社,2007.
    [74]王惠,房用等.山东省济南市石灰岩山地植物群落演替特征[J],东北林业大学学报,2009,37(5):54-57.
    [75]彭少麟.南亚热带森林群落动态学[M].北京,科学出版社,1996,30-101.
    [76]喻理飞,朱守谦,叶镜中,等.人为干扰与喀斯特森林群落退化及评价研究[J].应用生态学报,2002,13(5):529-5321.
    [77]喻理飞,朱守谦,魏鲁明,等.退化喀斯特群落自然恢复过程研究——自然恢复演替系列[J].山地农业生物学报,1998.17(2):71-77.
    [78]汪殿蓓,暨淑仪等.深圳南山区天然森林群落多样性及演替现状[J].生态学报,2003,23(7):1415-1422.
    [79]汪殿蓓,暨淑仪等.双峰山国家森林公园人工群落物种多样性特征[J].南京林业大学学报,2007,31(3):103—106.
    [80]王伯荪,余世孝,彭少鳞.植物群落学实验手册[M].广州:广东高等教育出版社,1996,10-21.
    [81]钱迎倩,马克平.生物多样性研究的原理与方法[M].北京:中国科学技术出版社,1994,141-165.
    [82]Magurranae. Ecological diversity and its measurement[M]. New Jersey:Princeton University Press,1988:63-167.
    [83]孙儒泳,李博,诸葛阳,等.普通生态学[M].北京:高等教育出版社,1993:161-167.
    [84]张太平,任海.湿地松的生态学特征[J].生态科学,1999,18(2):8-12.
    [85]蒋有绪,郭泉水等.中国森林群落分类及其群落学特征[M].北京:中国林业出版社,1998:64-65.
    [86]李俊清等著.北京山地森林的生态恢复[M].北京:科学出版社,2008:70-73.
    [87]马克平,黄建辉等.北京东灵山地区植物群落多样性的研究[J].生态学报,1995,15(3):265-277.
    [88]沈琪.浙江省常绿阔叶林的物种组成和群落多样性——以若干保护较好地区为例[J].浙江教育学报,2005(6):57-61.
    [89]杨敏生,裴保华,朱之梯.白杨双交杂种无性系抗旱性鉴定指标分析[J].林业科学,2002,38(2):36-42.
    [90]Yang Minsheng. Studies on the Growth of Double Cress Clone of Ptomen to saunder the condition of water stress.20th session of the international polar commission,1996.
    [91]张锁福.环境胁迫与植物育种[M].北京:农业出版社,1993.
    [92]宇万太,于永强.植物地下生物量研究进展[J].应用生态学报,2001,12(6):927-932.
    [93]Arndt S K. Clifford S C. Wanek W, et al. Physiological and morphological adaptations of the fruit tree Ziziphus rotundifolia in response to progressive drought stress [J].Tree Physiology,2001(21):1-11.
    [94]Borghetti M. et al. Response to water stress of Italianalder seedings from diverse geographic origins [J].Can. J. for.Res.1989, 19:1071-1076.
    [95]陈卫元,曹晶,姜卫兵.干旱胁迫对红叶石楠叶片光合生理特性的影响[J].中国农学通报,2007,23(8):217-220.
    [96]Asada D. Production and scavenging of active oxygen in chloroplasts[M].Cold Spring Harbor Laboratory Press,New York,1992,173-192.
    [97]Dickman D I, et al. Photosynthesis, water relation and growth of two hybrid Populus genotypes during a severe drought [J].Can J For Res,1992,22(8):1094-1106.
    [98]付士磊,周永斌,何兴元等.干旱胁迫对杨树光合生理指标的影响[J].应用生态学报,2006,17(11):2016-2019
    [99]郭卫东,沈向,李嘉瑞等.植物抗早分子机理[J].西北农业大学学报,1999,27(4):102-108.
    [100]刘祖祺,张石城.植物抗性生理学[M].北京:中国农业出版社,1994.222-285.
    [101]赵可夫.植物抗盐生理[M].北京:中国科学技术出版社,1993.
    [102]张海燕,赵可夫.盐分和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究[J].植物学报,1998,40(1):56-60.
    [103]Yan X X, Zhao T F, Hu Y J. Effect of moderate sal tstress on cell sin root tipsofbarley [J].Acta Agriculture Boreali-Sinica, 1994,9:61-64.
    [104]汤章城.植物对水分胁迫的反应和适应性-Ⅰ抗逆性的一般概念和植物的抗涝性[J].植物生理学通讯,1983,19(3):24-29.
    [105]汤章城.植物对水分胁迫的反应和适应性-Ⅱ植物对干旱的反应和适应性[J].植物生理学通讯,1983,19(4):1-7.
    [106]张林刚,邓西平.小麦抗早性生理生化研究进展[J].干旱地区农业研究,2000,18(3):87-92.
    [107]霍仕平,曼庆九,宋光英等.玉米抗旱鉴定的形态和生理生化指标研究进展[J].干旱区农业研究,1995,13(3):67-73.
    [108]王霞,侯平,伊林克.水分胁迫对圣柳植物可溶性糖的影响[J].干旱地区研究,1999,16(2):1-10.
    [109]张美云,钱吉,郑师章.渗透胁迫下野生大豆游离脯氨酸和可溶性糖的变化复旦学报(自然科学版),2001,40(5):558-561.
    [110]Liu R X, Yang J L, Gao L. Changes in contents of proline, soluble saccharin and endogenous hormone in leaves of Chinese seabuckthorn and russian seabuckthorn under different soil water content [J]. Journal of Soil and Water Conservation,2005,19(3):148-151(in Chinese).
    [111]娄世庆,王可玢.菠菜和黄瓜光系统捕光叶绿素a/b蛋白质复合体的比较研究[J].植物学报1995,37(3):192-197.
    [112]罗华建.水分胁迫对枇杷光合特性的影响[J].果树科学,1999,16(2):126-130.
    [113]Cao B H, Zhang M R, Zhai M P. Growth and osmotic adjustment of Robinia pseudoacacia clones under drought stress[J].Journal of Zhejiang Forestry College,2005,22 (2):161-165 (in Chinese).
    [114]Chen P, Pan X L.Change of betaine contents and activity of betaine aldehyde dehydrogenase in seedlings of Haloxylon ammodendron under drought and NaCl stress[J].Plant Physiology Communication,2001,37 (6):520-522(in Chinese).
    [115]聂华堂.水分胁迫下柑桔的生理变化与抗旱性的关系[J].中国农业科学,1991,24(4):78-85.
    [116]夏阳.水分逆境对果树脯氨酸和叶绿素含量变化的影响[J].甘肃农业大学学报,1998,28(1):26-31.
    [117]Cutler J. M. Influence of water deficits and osmotic adjustment on leaf elongation in rice [J]. Crop Sci.1980,20:314-318.
    [118]Pauk K P,Thompson J E.Invitro simulation of senescence-related membrane damage by ozone-induced lipid proxidation[J].Nature,1980,283:504-506.
    [119]李锦树.干旱对玉米叶片细胞透性和膜脂的影响[J].植物生理学报,1983,(9):223-338.
    [120]Chen Y P, Chen Y N, Li W H. Analysis on the physiological characteristic of Populus euphratica under drought stress in the lower reaches of Tarim River[J].Acta Bot.Boreal.Occident. Sin.2004,24(10):1943-1948(in Chinese).
    [121]Lal A,Edwards G E. Analysis of inhibition of photosynthesis under water stress in the C4 species.
    [122]杨昌建,乔纳圣威尔斯,朱庆森,等.水分胁迫对水稻叶片气孔频率、气孔导度及脱落酸含量的影响[J].作物学报,1995,21(5):533-537.
    [123]孟雷,李磊鑫.水分胁迫对水稻叶片气孔密度、大小及净光合速率的影响[J].沈阳农业大学学报,1999,30(5):477-480.
    [124]张大鹏.水稻叶片气孔的研究[J].福建农学院学报,1989,18(3):302-307.
    [125]赵瑞霞,张齐宝,吴秀英等.干旱对小麦叶片下表皮细胞、气孔密度及气孔大小的影响[J].内蒙古农业科技,2001(6):6-7.
    [126]王静,续惠云.水分胁迫对春小麦苗期叶肉细胞和气孔数的影响[J].西北植物学报.2000,20(5):842-846.
    [127]房江育,张仁陟.无机营养和水分胁迫对春小麦叶绿素、丙二醛含量等的影响及其相关性[J].甘肃农业大学学报,36(1):89-94.
    [128]Malwszewaki S, Burchack A E, M, KOZ BOWSK A-SZWEWNOS,B. Stomatal response of bean (Phaseolus vulgaris L.)leaves to changing irradiance, air humidity, and water potential of root medium[J].Photosynthetica.1999,37(1):39-46.
    [129]盂雷,陈温福等.减弱光照强度水稻叶片气孔性状影响[J].沈阳农业大学学报.2002,33(2):87-89.
    [130]杨惠敏,王根轩.干旱和CO2浓度的升高对干旱区春小麦气孔密度及分布的影响[J],植物生态学报,2001,25(3):312-316.
    [131]Clifford S, Arndt S, Corlett J, et al. The role of solute accumulation osmotic adjustment and changes in cell wall elasticity in drought tolerance in ziziphus mauritiana (Lamk.)[J].Journal of Experimental Botany,1998,49(323):967-977.
    [132]王淼,代力民,姬兰柱,等.长白山阔叶红松林主要树种对干旱胁迫的生态反应及生物量分配的初步研究[J].应用生态学报,2001,12(4):496-450.
    [133]韦莉莉,张小全,侯振宏,等.杉木苗木光合作用及其产物分配对水分胁迫的响应[J].植物生态学报,2005,29(3):394-402.
    [134]Shan L. plant water use effeciency and water using of agriculture in semi2 arid region[J]. Plant physi logy communications, 1994,30(1):61-66.
    [135]李玉中,程延本,安顺清.北方地区干旱规律及抗旱综合技术[M].北京:中国农业科学技术出版社,2003:187-196.
    [136]刘孟雨,陈培元.水分胁迫条件下气孔与非气孔因素对小麦光合的限制[J].植物生理学通讯,1990(4):24-27.
    [137]Farquhar GD,Sharkey TD.Stomatal conductance and photosynthesis[J].Ann Rev plant physiol,1982,33:317.
    [138]Lawl orD W, Comic G. Photosynthetic carbon dassimilati on and ass o2 ciated metabolis m in relati on t o water deficits in higher in higherp lants[J]. Plant cell and Environment,2002,25 (2):275-294.
    [139]Yun J Y, Yang J D, Zhao H L.Research progress in the mechanism for drought and high temperature to affect plant photosynthesis[J].Acta Botanica Boreal2 Occident Sinica,2006,26(3):0614-06481.
    [140]Medrano H, Escal onaM J,Bota J, et al.Regulati on of photosynthesis of C3 plants inresponse to progressive drought stomatal conductanceas a reference parameter[J].Annals of Botany,2002,89:895-905.
    [141]Keith A.Mott and Thomas N. Buckley. Patchy stomatal conductance:emergent collective behavior of stomata[J].Trends in Plant Science.2000,5(6):258-262.
    [142]娄成后,王学臣.作物产量形成的生理学基础[M].中国农业出版社,2000:114-115
    [143]张蜀秋,刘新,娄成后.保卫细胞碳代谢与气孔运动[J].植物学报,2000,17(4):345-35
    [144]杨惠敏,王根轩.干旱和CO,浓度的升高对干旱区春小麦气孔密度及分布的影响[J].植物生态学报,2001,25(3):312-316.
    [145]陆继峰,金劲松.冠醚对烟草根系K+运转及气孔开度的影响[J].烟草科技/栽培与调制.1999(4):31-33.
    [146]王纪华,藤田正雄.有效微生物制剂对甜玉米离体叶片气孔开闭感受性的影响[J].北京农业学报.1999,17(3):15-17.
    [147]陈少瑜,郎南军,贾利强,等.干旱胁迫对坡柳等抗旱树种幼苗膜脂过氧化及保护酶活性的影响[J]植物研 究,2006,26(1):88-92.
    [148]任丽花,黄敏敏,江枝和,等.干旱胁迫对圆叶决明叶片超微结构的影响[J].中国草地学报,2008,30(1):30-34.
    [149]刘洪波,林思祖,丁国昌,等.不同低温处理对三种相思树种叶片细胞超微结构影响的比较研究[J].江西农业大学学报,2005,27(5):735-739.
    [150]王赞,李源,高洪文,等.干旱对鸭茅光合特性及叶绿体超微结构的影响[J].华北农学报,2008,23(3):100-105.
    [151]李芳,王燕凌,李文兵,等.不同水位条件对刚毛柽柳叶绿体超微结构的影响[J].干旱区研究,2009,26(1):65-69.
    [152]Wu YY, Li DQ.Effects of soil water stress on osmotic adjustment and chloroplast ultrastructure of winter wheat leaves[J].Acta Agriculture BorealiSinica,2001,16(2):87-93.
    [153]Giles K L,Beardsell M F,Cohen D.Cellular and ultra structural changes in mesophyll and bundle sheath cell of maize in response to water stress [J].Plant Physiol,1974,4:208-212.
    [154]韩善华.油菜叶绿体的干旱处理过程中的超微结构变化[J].作物学报,1991,17(4):311-313.
    [155]黄俊,郭世荣,吴震,等.弱光对不结球白菜光合特性与叶绿体超微结构的影响[J]应用生态学报2001,18(2):352-358.
    [156]林义章,张淑媛,朱海生.铜胁迫对小白菜叶肉细胞超微结构的影响[J]中国生态农业学报,2008,16(4):48-951.
    [157]白志英,李存东,屈平.干旱胁迫对小麦中国春2Synthetic6x代换系叶片超微结构的影响[J].电子显微学报,2009,28(1):69-71.
    [158]万里强,石永红,李向林,等.高温干旱胁迫下三个多年生黑麦草品种叶绿体和线粒体超微结构的变化[J]草业学报,2009,18(1):25-31.
    [159]郑敏娜,李向林,万里强,等.水分胁迫对6种禾草叶绿体、线粒体超微结构及光合作用的影响[J].草地学报,2009,17(5):643-649.