PET薄膜表面氟碳树脂涂层性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚对苯二甲酸乙二醇酯(PET)薄膜具有良好的加工性、耐候性、透光性和优异的力学性能,在包装材料和太阳能电池背板领域有着广泛应用。氟碳树脂因其较好的耐候性、耐化学品和自洁性而广泛应用于钢结构的长效防腐、海洋防腐及防污、建筑外装饰及太阳能电池背板领域。
     本文选用PET薄膜为基体材料,氟碳树脂为涂层,通过表面涂覆的方式,将氟碳树脂涂覆于PET薄膜表面,以此制备出高透光率、耐候性好的涂层薄膜。同时,通过硅烷偶联剂及类流体技术对纳米Si02进行表面改性,并将其用于氟碳树脂的填充,由此来制备具有疏水性、较好透光率和耐候性的PET/改性Si02填充氟碳树脂复合涂层。论文的主要研究结果如下:
     (1)不同氟碳树脂含量的薄膜涂层,其透射率、水接触角、拉伸强度和断裂伸长率均随氟碳树脂含量的增加出现先增加后减小的趋势,当氟碳树脂含量为50wt%时有最大值。此时氟碳树脂在PET薄膜表面成膜性最好,能够形成均匀、致密的涂层。常规性能测试表明,不同氟碳树脂含量薄膜涂层的硬度均达2H,涂层附着力均达到1级,薄膜涂层具有较好的耐酸、耐碱及耐水性能,且经碱液腐蚀后,薄膜涂层仍保持有较高的透射率。
     (2)经硅烷偶联剂KH550改性的Si02粒子在氟碳树脂基体中出现较为明显的团聚,复合薄膜涂层的透射率、拉伸强度和断裂伸长率均随改性Si02含量的增加而出现下降。由于改性Si02粒子的部分团聚,在氟碳树脂基体表面形成了类似微纳米粗糙结构,改性Si02粒子的加入极大提高了复合薄膜涂层的疏水性,当改性Si02含量为0.5wt%时,其水接触角达最大值115°,较未添加改性Si02的复合涂层要高27°。添加不同含量改性Si02制备复合薄膜涂层的硬度均达2H,附着力达1级;复合薄膜涂层的耐酸、耐碱和耐水性能优良。SEM观察发现,经碱液腐蚀后的复合薄膜涂层表面出现Si02粒子的脱落现象,且其透射率在改性Si02含量较少时变化不大,在改性Si02含量较高时出现较大幅度的下降。
     (3)通过离子交换反应制备出具有类液体行为的Si02类流体,其化学性质稳定,且呈现单分散状态。Si02类流体的加入对复合薄膜涂层起到了一定的增透和疏水作用。添加不同含量Si02类流体制备复合薄膜涂层的透射率、水接触角、拉伸强度和断裂伸长率均出现不同幅度的增大,当Si02类流体的含量为0.2wt%时,复合薄膜涂层的水接触角达101°,较未添加Si02类流体的复合薄膜涂层增加了13°。添加不同含量Si02类流体制备复合薄膜涂层的硬度均达2H,附着力达1级。复合薄膜涂层具有优良的耐酸、耐碱和耐水性能。经碱液腐蚀后的复合薄膜涂层,其表面出现少许Si02粒子脱落的现象,但其仍保持较高的透射率。
The polyethylene terephthalate (PET) film is widely used in packing materials and solar cells backplane materials due to its excellent processability, weather resisting property and good light transmittance. Fluorocarbon resin is applied in the field of long-lasting, heavy anti-corrosion for steel structure, marine anti-corrosion, decoration for external walls and solar cell backplane due to its outstanding performance regarding fine weather resisting property, chemical resistance property and self-cleaning property.
     In this paper, the composite coating films with the good properties of high transmittance and fine weather resisting property were successfully prepared by using PET film as the substrate depositing with the fluorocarbon resin on the surface of the PET film. At the meantime, the new methods of using silane coupler and liquidlike fluids were employed to modify SiO2. Then, the modified SiO2was filled into the fluorocarbon resin to prepare the composite coating of PET/modified SiO2FEVE with high transmittance, hydrophobicity and fine weather resisting property. The main results were displayed as follow:
     (1) The results of transmittance, water contact angle, tensile strength and elongation at break show the same trend that they increase firstly, and then decrease with the increasing fluorocarbon resin content. The optimal performances of the coating layer are achieved at the fluorocarbon resin content50wt%. Because at that content, the coating possesses well film forming property and can form a homogeneous and dense layer on the surface of PET film. The conventional evaluations on performances show that all the samples have the hardness of2H and the adhesion of1grade. The coated films perform good acid, alkali and water resistance. And after alkali corrosion, the coated films still show high transmittance.
     (2) The SiO2modified by KH550shows agglomeration in the fluorocarbon resin matrix, which leads to the decrease of the transmittance and tensile strength and elongation at break of the coated film. But the addition of modified SiO2forms a kind of micro-nano structure on the surface of the PET film and it improves the water contact angle largely. When the content of modified SiO2is0.5wt%, the water contact angle achieves the maximum of115°. The coated films prepared with different content of modified SiO2possess excellent acid, alkali and water resistance properties, and the hardness reaches2H and the adhesion reaches1grade. The SEM images show that the modified SiO2fall off the surface after alkali corrosion, but it does not affect the transmittance of the films much when the content of modified SiO2is very low.
     (3) Solvent-free SiO2nanofluids is prepared via ion exchange reaction process, and shows good chemical stability and monodispersity. The solvent-free SiO2nanofluids plays a role of enhancity the anti-reflective and hydrophobic properties of the composite coating layer. The transmittance, water contact angle, tensile strength and elongation at break increase due to the addition of solvent-free SiO2nanofluids. When the content of solvent-free SiO2nanofluids is0.2wt%, the water contact angle reaches101°. The hardness and adhesive force of the composite film made by adding different content of solvent-free SiO2nanofluids are still2H and1grade. The composite films also have excellent acid, alkali and water resistance properties. After alkali corrosion, only a few SiO2particles fall off the surface and the composite films remain high transmittance.
引文
[1]冯树铭.PET薄膜的性能及其改性[J].聚酯工业,2009,22(1):15-18.
    [2]宋正海.国内PET薄膜市场发展趋势分析[J].合成材料老化与应用,2000,1:31-33.
    [3]Schmidt P G. Polyethylene Terephthalate Structural Studies[J]. Journal of Polymer Science: Part A,1963,1:1271-1292.
    [4]杨始堃.聚酯薄膜应用的相关技术(Ⅰ)[J].聚酯工业,2003,16(1):58-62.
    [5]Hollway J H. Why fluorine in coatings[J]. Surface Coatings International,1995, (2):50-51.
    [6]Best T. International Centre for Coatings Technology, Brussels,2001[C]. Brussels: Fluorine in Coatings IV Conference Papers,2001.
    [7]Yamabe M, Kojima G, Kaya S. Curable flourocopolymer. United States, 345057[P].1981,07, 14.
    [8]倪玉德.FEVE氟碳树脂与氟碳涂料[M].北京:化学工业出版社,2006:1-222.
    [9]Takashi T, Masaaki Y. Progress of fluoropolymers on coating applications development of mineral spirit soluble polymer and aqueous dispersion[J]. Progress in Organic Coatings, 2000(40):185-190.
    [10]许君栋,夏范武,王书林.钢结构防腐与氟碳涂料[J].涂料技术与文摘,2007,28(8):14-20.
    [11]边蕴静.第23次全国涂料工业信息年会暨第7届氟树脂及氟涂料技术研讨会,上海,2006[C].上海:第23次全国涂料工业信息年会暨第7届氟树脂及氟涂料技术研讨会,2006.
    [12]黄添源.中国涂料资讯报告会暨第四届中国建筑涂料战略研讨会,北京,2005[C].北京:中国涂料,2006.
    [13]孙明杰.太阳热反射隔热涂料的研究[D].北京化工大学,2010.
    [14]刘福春,杨立红,陈群志,等.纳米复合氟碳涂料的性能研究[J].腐蚀科学与防护技术,2005,16(6):343-346.
    [15]张于弛,高仁金.纳米二氧化钛的表面改性及复合氟碳涂料的制备[J].福建建材,2010,6:43-46.
    [16]Zhang Y, Ji Q, Liu Z. Preparation and UV Absorption Property of Hybrid Fluorocarbon/ZnO Thin Films Deposited by RF Magnetron Sputtering[J]. Advanced Materials Research,2011, 143-144:792-796.
    [17]范波波,冀志江,张维连.有机硅改性氟碳树脂的性能研究[J].涂料工业,2008,38(6):10-12.
    [18]段辉,白晨,汪厚植.氟树脂/硅溶胶复合涂层的制备和超疏水性能研究[J].化工新型材料,2006,34(7):55-58.
    [19]罗运军,桂红星.有机硅树脂及应用[M].北京:化学工业出版社,2002,90:94-95,108.
    [20]Kobayashi S, Maeda K, Hirashima Y, Hasegawa S, Tsutsumi K. Water based fluorine containing emulsion. United States,5859123[P],1999,1,12.
    [21]Suzuki H, Takeishi M, Narisawa I. Synthesis of polysiloxane-grafted fluoropolymers and their hydrophobic properties[J]. J. Appl. Polym. Sci.2000,78:1955-1963.
    [22]Boutevin B, Abdellah L, Dinia M. Synthesis of polysiloxanes with perfluorinated and acrylated urethane linked pendant groups[J]. Eur Polym J.1995,31:1127-1133.
    [23]Ameduri B, Boutevin B, Guida Pietrasanta F, et al. Synthesis of hybrid fluorinated silicones. I. Influence of the spacer between the silicon atom and the fluorinated chain in the preparation and the thermal properties of hybrid homopolymers[J]. J. Polym. Sci., Part A: polym. Chem.1996,34 (15):3077-3090.
    [24]黄四平,李丽娜,王勇进.有机硅聚合改性氟碳聚合物的微波合成研究[J].技术与市场,2006,12:48-49.
    [25]胡兵,蒋斌波,陈纪忠.单分散性Si02的制备与应用[J].化工进展,2005,24(7):603-607.
    [26]Bauer F, Glaesel H J, Hartmann E, et al. Functionalized inorganic/organic nanocomposites as new basic raw materials for adhesives and sealants[J]. Int J Adhesion & Adhesives,2004, 24:519.
    [27]Tsubokawa N, Yoshikawa S. Modification of Polymers with Controlled Molecular Weight onto Ultrafine Silica Surface[J]. Polym Sci,1995,33(3):581-586.
    [28]Werne T V, Patten T E. Preparation of Structurally well Defined Polymer Nanoparticle Hybirds with Controlled/Living Radical Polymerization[J]. J Am Chem Soc,1999,121(32): 7409-7410.
    [29]Shen Y, Zhu S, Zeng F. Atom Transfer Radical Polymerization of Methyl Methacrylate by Sulica Gel Supported Copper Bromide/Multidentate Amine[J]. Macromolecules,2000, 33(15):5427-5431.
    [30]Pyun J, Matyjaszewski K, Kowalewski T. Synthesis of Well-Defined Block Copolymers Tethered to Polysilsesquioxane Nanoparticles and Their Nanoscale Morphology on Surface[J]. J Am Chem Soc,2001,123(38):9445-9446.
    [31]毋伟,陈建峰,屈一新.硅烷偶联剂的种类与结构对二氧化硅表面聚合物接枝改性的影响[J].硅酸盐学报,2004,32(5):570-577.
    [32]谭秀民,冯安生,赵恒勤.硅烷偶联剂对纳米二氧化硅表面接枝改性研究[J].中国粉体技术,2011,1:14-17.
    [33]Li X, Cao Z, Zhang Z. Surface modification in situ of nano-SiO2 and its structure and tribological properties[J]. Applied Surface Science,2006,252 (22):7856-7861.
    [34]吴海艳,周莉,臧树良.纳米二氧化硅表面改性的研究[J].矿冶,2010,19(4):49-54.
    [35]Wang Z, Wang T, Wang Z. Organic modification of nano-SiO2 particles in supercritical CO2[J]. The Journal of Supercritical Fluids,2006,37 (1):125-130.
    [36]宇海银,吴正翠,关明云,等.超细Si02表面高分子化及其在PVC复合材料中的应用[J].应用化学,2003,20(10):946-952.
    [37]Ingall M D K, Honeyman C H, Mercure J V. Surface Functionalization and Imaging Using Monolayers and Surface-Modified Polymer Layers[J]. J Am Chem Soc,1999,121(15): 3607-3613.
    [38]Xia H, Yang Q. Preparation of Conductive Polyaniline/Nanosilica Particle Composites Through Ultrasonic Irradiation[J]. J. Appl. Poly. Sci,2003,87(11):1811-1817.
    [39]钱晓静,刘孝恒,陆路德.辛醇改性纳米二氧化硅表面的研究[J].无机化学学报,2004,20(3):335-338.
    [40]Bartholome C, Beyou E, Bourgeat-Lami E. Nitroxide-Mediated Polymerizations from Silica Nanoparticles Surface:"Graft From" Polymerization of Styrene Using a Triethoxy-Silyl-Terminated Alkoxyamine Initiator[J]. Marcromolecules,2003,36(21): 7946-7952.
    [41]Zhou Q, Wang S, Fan X. Living Anionic Surface-Initiated Polymerization (LASIP) of a Polymer on Silical Nanoparticles[J]. Langmuir,2002,18:3324-3331.
    [42]Zhou Q, Wang S, Fan X. Living Anionic Surface Initiated Polymerization (SIP) of Styrene from Clay Surfaces[J]. Chem Mater,2001,13(8):2465-2467.
    [43]Wang L, Lu A, Xiao Z. Modification of nanofibriform silica by dimethyldichlorosilane[J]. Applied Surface Science,2009,255(17):7542-7546.
    [44]Tai Y, Qian J, Zhang Y. Study of surface modification of nano-SiO2 with macromolecular coupling agent(LMPB-g-MAH)[J]. Chemical Engineering Journal,2008,144(13):354-361.
    [45]Bourlinos A B, Herrera R, Chalkias N, et al. Surface functionalized nanoparticles with liquid-like behavior[J]. Advanced Materials,2005,17(2):234-237.
    [46]李琦,吴晓彦,董丽杰,等.Si02纳米类流体及其复合材料的电性能研究[J].武汉理工大学学报,2011,1:22-27.
    [47]刘学清,刘继延,周芳.稻壳Si02/聚氨酯纳米复合材料的制备及性能研究[J].广东化工,2010,37(2):9-12.
    [48]欧宝立,李笃信.表面修饰纳米Si02增强增韧聚氯乙烯[J].复合材料学报,2009,26(1):48-53.
    [49]伍玉娇,杨红军,骆丁胜,等.PP/纳米SiO2/PP-g-MAH复合材料的研究[J].塑料,2007,36(2):50-55.
    [50]况波,姚凤霞,崔国振,等.改性二氧化硅/NR纳米复合材料结构与性能研究[J].橡胶工业,2009,56:398-401.
    [51]李伟华,田惠文,宗成中,等.纳米Si02的改性及其在涂料中的应用研究进展[J].材料保护,2009,42(2):43-52.
    [52]Zhang X, Wu W. Toughening of cycloaliphatic epoxy resin by nanosize silicon dioxide[J]. Material Letters,2006,60:3319-3323.
    [53]Zhou S, Wu L. The change of the properties of acrylic-based polyurethane via addition of nano-silica[J]. Progress in Organic Coatings,2002,45:33-42.
    [54]张卫国,王小燕,姚素薇.纳米二氧化硅复合涂料的制备及其性能[J].化工学报,2006,11:2745-2748.
    [55]赵宁,卢晓英,张晓燕,等.超疏水表面的研究进展[J].化学进展,2007,19(6):860-871.
    [56]Bourlinos A B, Herrera R, Chalkias N, et al. Surface functionalized nanoparticles with liquid-like behavior[J]. Advanced Materials,2005,17(2):234-237.